临床放射生物学基础
- 格式:ppt
- 大小:6.96 MB
- 文档页数:72
放射生物学(Radiobiology)放射生物学研究的是放射对生物体作用及其效应规律的一-门学科。
1.正常组织对放射性的反应2.肿瘤对放射性的反应正常组织对放射的反应最小耐受量(TD5/5)一定的剂量-分割模式照射后5年内严重放射并发症发生率不超过5%的剂量最大耐受量(TD50/5)一定的剂量-分割模式照射后5年内严重放射并发症发生率不超过50%的剂量肿瘤放射治疗的两大基本原则1.最大程度地杀灭肿瘤2.最大程度地保护正常组织正常组织与肿瘤组织分次照射后的差别二、分次放疗的生物学基础(4R理论)在引起相同正常组织损伤时,多数时候分割照射的肿瘤局控要优于单次照射分割放射的生物学基础一4R理论(1975由Withers提出)放射损伤的修复(Repair of radiation damage)细胞周期的再分布(Redistribution within the cell cycle)乏氧细胞的再氧合(Reoxygenation)再群体化(Repopulation)(一)细胞放射损伤的修复1.亚致死损伤(sublethal damage)指受照射以后,细胞的部分靶内所累积的电离事件,通常指DNA单链断裂。
亚致死损伤是一种可修复的放射损伤。
亚致死损伤的修复:指假如将某一给定单次照射剂量,分成间隔一定时间的两次时所观察到的存活细胞增加的现象。
1959年EIkind发现,当细胞受照射产生亚致死损伤而保持修复能力时,细胞能在3小时内完成这种修复,将其称之为亚致死损伤修复。
影响亚致死损伤的修复的因素:1.放射线的质低LET辐射细胞有亚致死损伤和亚致死损伤的修复,高LET辐射细胞没有亚致死损伤因此也没有亚致死损伤的修复2.细胞的氧合状态处于慢性乏氧环境的细胞比氧合状态好的细胞对亚致死损伤的修复能力差3.细胞群的增殖状态未增殖的细胞几乎没有亚致死损伤的修复临床意义:细胞亚致死损伤的修复速率一般为30分钟到数小时常用亚致死损伤半修复时间(T1/2) 来表示不同组织亚致死损伤的修复特性在临床非常规分割照射过程中,两次照射之间间隔时间应大于6小时,以利于亚致死损伤完全修复2.潜在致死损伤(potential lethal damage)正常状态下应当在照射后死亡的细胞,在照射后置于适当条件下由于损伤的修复又可存活的现象。
间接作用:水的辐射反应的产物跟溶质分子间的作用BT定律:一种组织的放射敏感性与其细胞的分裂活动成正比而其分化程度成反比的结论放射增比剂(OER):缺氧条件下产生一定效应的剂量/有效条件下产生同样效应的剂量传能线密度(LET):电离粒子在其单位长度径迹上消耗的平均能量间期死亡:当细胞受到大剂量(100Gy或更大)照射时,细胞未经分裂就在间期立即死亡,这种死亡方式称为间期死亡铅当量:把达到与一定厚度的某屏蔽材料相同屏蔽效果的铅层厚度,称为该一定厚度屏蔽材料的铅当量屏蔽防护:是指在放射源和人员之间,放置能有效吸收放射线的屏蔽材料,从而衰减或取消射线对人体的危害放射损伤:由放射线照射引起的机体组织的损害原子能级:原子具有的能量是不连续的,这种不连续的能量状态,称为原子的能级时间防护:是指在不影响工作质量的前提下,尽量缩短人员受照射的时间危险度:即器官或组织接受单位当量剂量照射引起随机性损害效应的几率1.X线的防护的原则有哪些①X射线检查的正当化和最优化②X射线工作者与受检者防护兼顾③固有安全防护为主与个人防护为辅④合理降低个人受照剂量与全民检查频率2.光电效应的利与弊利:①不产生散射线,大大减少了照片的灰雾②可增加人体不同程度和造影剂对射线的吸收差别,产生高对比度的X线照片,对提高诊断的准确性很有好处③在放疗中,光电效应可增加肿瘤组织的剂量,提高其疗效。
弊:①入射X线通过光电效应可全部被人体吸收,增加了受检者的剂量。
3.宫内照射的有害效应包括哪些①胚胎死亡②畸形③智力低下④诱发癌症4.细胞周期各时相的放射敏感性①放射敏感性最高的时相是M和G2期②LS期放射抗性最强③若G1期想当长则G1早期有抗性,G1末期敏感④细胞内的巯基化合物较多,不敏感⑤S期后部的抗性通常最高5.辐射根据本质和作用的分类,并举例按粒子辐射:本质是一些高速运动的粒子。
本粒子带电粒子:a粒子,b粒子,质子(+),π介子,重离子质不带电的中性粒子:中子分电磁辐射:本质是一种电磁波(光子)如x射线,r射线,紫外线等。
临床放射生物学基础在医学领域中,临床放射生物学是一门至关重要的学科,它研究的是电离辐射与生物体相互作用的规律和机制,对于肿瘤的放射治疗、放射性损伤的预防和治疗等方面都具有重要的指导意义。
首先,我们来了解一下什么是电离辐射。
电离辐射是指能够使物质中的原子或分子发生电离的辐射,包括 X 射线、γ射线、质子、中子等。
当这些辐射与生物体相互作用时,会产生一系列的生物效应。
电离辐射对生物体的作用主要分为直接作用和间接作用。
直接作用是指辐射直接与生物大分子,如 DNA 等发生作用,导致其结构和功能的改变。
而间接作用则是通过辐射与水分子相互作用,产生自由基等活性物质,进而损伤生物大分子。
细胞是生物体的基本结构和功能单位,因此细胞对电离辐射的反应是临床放射生物学研究的重点之一。
不同类型的细胞对辐射的敏感性不同。
一般来说,增殖活跃的细胞,如造血细胞、胃肠道上皮细胞等,对辐射比较敏感;而神经细胞、肌肉细胞等分化成熟的细胞则相对不敏感。
细胞受到辐射后,会出现一系列的变化。
在细胞周期方面,辐射可能导致细胞周期的阻滞,使细胞停留在某个特定的时期,以便进行损伤修复。
如果损伤过于严重无法修复,细胞就会启动凋亡程序,以避免受损细胞的继续存活和增殖。
DNA 是遗传信息的携带者,辐射对 DNA 的损伤是导致细胞生物效应的关键因素。
常见的 DNA 损伤包括单链断裂、双链断裂、碱基损伤等。
其中,双链断裂被认为是最严重的损伤,如果不能及时准确地修复,很可能导致细胞死亡或基因突变。
辐射引起的生物效应还与辐射的剂量、剂量率、照射方式等因素有关。
低剂量辐射可能会引起一些适应性反应,如增强细胞的修复能力和抗氧化能力;而高剂量辐射则往往导致严重的损伤甚至细胞死亡。
剂量率越高,细胞损伤越严重;分次照射则可以利用细胞的修复能力,减轻辐射损伤。
在肿瘤的放射治疗中,临床放射生物学的原理得到了广泛的应用。
通过合理选择辐射剂量、照射方式和分次方案,可以最大程度地杀伤肿瘤细胞,同时保护正常组织。