线积分例题选解
- 格式:doc
- 大小:229.50 KB
- 文档页数:3
定积分常见问题一、关于含“变上限积分”的问题321(1)()x x F x =⎰例、求下列导数32(2)()x x F x =⎰220(3)()()xF x tf x t dt =-⎰2例、求下列极限2221(1)lim(1)x t xx t e dt x -→∞+⎰求 2204()(2)lim,()(0)0,(0)2xx tf x t dtf x f f x→-'==⎰求连续,3例1(1)()()()sin f x f tx dt f x x x =+⎰求连续函数,使之满足1ln 1(2)()0()()1xt f x dt x f x f t x =>++⎰、设,其中,求 ()()3213()0(),1()8,()3f x f x xg x g t dt x f x >=-⎰()设在可微。
其反函数为且求二、定积分计算的有关问题411(1)例、(常见形式积分)4(2)1cos 2xdx x π+⎰(3).2(4)(0)aa >⎰0(5)⎰0(6)a例2、(分段函数,绝对值函数)[(1)()b a xdx a b <⎰0,02(2)(),()(),2x l kx x f x x f t dt l c x l ⎧≤≤⎪⎪=Φ=⎨⎪≤≤⎪⎩⎰、设求10(3)t t x dt -⎰sin ,02(4).()(),(0)0(),()0,2xx x f t g x t dt x x f x x g x x ππ⎧≤<⎪⎪-≥≥==⎨⎪≥⎪⎩⎰其中当时,而例3(对称区间上积分)11(1)(1sin )()x x x e e dx --++⎰(1212(2)sin ln x x x dx -⎡⎢⎣⎰244sin (3)1x x dx e ππ--+⎰()4[]()()baf x dx f xg x +⎰例、形如的积分42(1)dx sin 2sin cos 0(2)xx x e dxe e π+⎰2(3),1()dxtgx πλ+⎰例5、(由三角有理式与其他初等函数通过四则成复合而成的函数的积分)22022001.(sin )(cos ))2.(sin )(sin )21331,24223.sin cos ,1342,1253n n f x dx f x dx xf x dx f x dxn n n n n xdx xdx n n n n n ππππππππ==--⎧⋅⋅⋅⎪⎪-==⎨--⎪⋅⋅⎪-⎩⎰⎰⎰⎰⎰⎰ 常用结论,为正偶自然数为大于的正奇数,2(sin )(1)(sin )(cos )f x dxf x f x π+⎰2π⎰101020sin cos (2)4sin cos x x dx x x π---⎰、2(3)ln sin xdx π⎰ 320sin (4)1cos x xdx x π+⎰2220sin (5),sin cos n n n n x x I dx n N x x π+=∈+⎰计算 640(6)sin cos x x xdxπ⎰[]2(7)(),,()()sin ,()1cos xf x f x f x xdx f x x ππππ--=++⎰设在上连续且满足求1210011(8)(1)x dx--⎰求0(9)n π⎰2sin (10)()sin ,().x t xF x e tdt F x A B C D π+=⎰则是()正常数负常数恒为零不是常数例6 利用适当变量代换计算积分4(1)ln(1)tgx dx π+⎰120ln(1)(2)1x dx x ++⎰ 200(3)sin n x xdx π⎰20(4)(1)(1)dxx x α+∞++⎰求例7(其它)22(1)()[0,]()cos ()()2f x f x x x f t dt f x ππ=+⎰、设在上连续,且,求212(2)()()2()()f x x x f x dx f x dx f x =-+⎰⎰设,求120(3)()()arcsin(1),(01),()y y x y x x x y x dx '==-≤≤⎰设满足求22011(4)()(2)arctan ,(1)1,()2x f x tf x t dt x f f x dx -==⎰⎰、设连续,且满足求的值2200cos sin cos (5),,(2)1x x xdx A dx x x ππ=++⎰⎰已知:求220(6)()ln(12cos )(),()F a a x a dx F a F a π=-+-⎰设,求(2)(),()a xay a y f x edy f x dx --=⎰⎰(7)、设求1(8)(1)m n x x dx -⎰例8、计算下列广义积分(基本题)2(1),1dxx +∞-∞+⎰1(2),e 2ln (3),1xdx x+∞+⎰51(4)1(5)cos(ln ),x dx ⎰例9(1)0)pt te dt p p +∞->⎰(是常数,且2(2).(1)xx xe dx e +∞--+⎰例10、计算下列广义积分(广义积分变量代换例)3(1)23202ln(1)(2)(1)x x dx x +∞++⎰22200200.cos sin (1)(1)1sin sin (2),()2x x xdx A A dx x x x x dx dxx x π+∞+∞+∞+∞++=⎰⎰⎰⎰例11已知广义积分收敛于,试用表示广义积分的值已知求 经典例题例1求21limn n→∞ . 解将区间[0,1]n 等分,则每个小区间长为1i x n∆=,然后把2111n n n =⋅的一个因子1n 乘入和式中各项.于是将所求极限转化为求定积分.即21limn n →∞+ =1lim n n →∞+ =34=⎰.例20⎰=_________.解法1 由定积分的几何意义知,0⎰等于上半圆周22(1)1x y -+= (0y ≥)与x 轴所围成的图形的面积.故0⎰=2π. 解法2 本题也可直接用换元法求解.令1x -=sin t (22t ππ-≤≤),则⎰=22tdt ππ-⎰=2tdt =2202cos tdt π⎰=2π例3 比较12x e dx ⎰,212x e dx ⎰,12(1)x dx +⎰.解法1在[1,2]上,有2x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又1221()()f x dx f x dx =-⎰⎰,从而有2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.解法2 在[1,2]上,有2xx e e ≤.由泰勒中值定理212!xe e x x ξ=++得1x e x >+.注意到1221()()f x dx f x dx =-⎰⎰.因此2111222(1)x x x dx e dx e dx +>>⎰⎰⎰.例4 估计定积分22xxe dx -⎰的值.解设 2()xxf x e -=, 因为 2()(21)xxf x e x -'=-, 令()0f x '=,求得驻点12x =, 而 0(0)1f e ==, 2(2)f e =, 141()2f e -=,故124(),[0,2]ef x e x -≤≤∈,从而21224022xxee dx e --≤≤⎰,所以21024222x xe edx e ---≤≤-⎰.例5设()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (ban g x →∞⎰.解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又()0g x ≥,则()b ag x dx (b ag x ≤⎰()bag x dx ≤.由于1n n =,故lim (ban g x →∞⎰=()bag x dx ⎰.例6求sin lim n pnn xdx x+→∞⎰, ,p n 为自然数. 解法1 利用积分中值定理 设 sin ()xf x x=, 显然()f x 在[,]n n p +上连续, 由积分中值定理得 sin sin n p n x dx p x ξξ+=⋅⎰, [,]n n p ξ∈+, 当n →∞时, ξ→∞, 而sin 1ξ≤, 故sin sin lim lim 0n pnn x dx p xξξξ+→∞→∞=⋅=⎰.解法2 利用积分不等式 因为sin sin 1ln n pn p n p nn n x x n pdx dx dx x x x n++++≤≤=⎰⎰⎰, 而limln0n n pn→∞+=,所以 sin lim 0n pnn xdx x+→∞=⎰. 例7求10lim 1nn x dx x→∞+⎰.解法1 由积分中值定理 ()()()()bbaaf xg x dx f g x dx ξ=⎰⎰可知101nx dx x +⎰=111n x dx ξ+⎰,01ξ≤≤.又11lim lim01n n n x dx n →∞→∞==+⎰且11121ξ≤≤+, 故10lim 01n n x dx x→∞=+⎰. 解法2 因为01x ≤≤,故有01nn x x x≤≤+.于是可得110001nn x dx x dx x ≤≤+⎰⎰.又由于110()1n x dx n n =→→∞+⎰. 因此10lim 1nn x dx x→∞+⎰=0. 例8设函数()f x 在[0,1]上连续,在(0,1)内可导,且3414()(0)f x dx f =⎰.证明在(0,1)内存在一点c ,使()0f c '=.证明 由题设()f x 在[0,1]上连续,由积分中值定理,可得3413(0)4()4()(1)()4f f x dx f f ξξ==-=⎰,其中3[,1][0,1]4ξ∈⊂.于是由罗尔定理,存在(0,)(0,1)c ξ∈⊂,使得()0f c '=.证毕.例9(1)若22()x t x f x e dt -=⎰,则()f x '=___;(2)若0()()xf x xf t dt =⎰,求()f x '=___.()()()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-⎰.解 (1)()f x '=422x x xe e ---;(2)由于在被积函数中x 不是积分变量,故可提到积分号外即0()()xf x x f t dt =⎰,则可得()f x '=0()()xf t dt xf x +⎰.例10 设()f x 连续,且31()x f t dt x -=⎰,则(26)f =_________.解 对等式310()x f t dt x -=⎰两边关于x 求导得32(1)31f x x -⋅=,故321(1)3f x x -=,令3126x -=得3x =,所以1(26)27f =. 例11函数1()(3(0)x F x dt x =>⎰的单调递减开区间为_________.解()3F x'=,令()0F x '<3>,解之得109x <<,即1(0,)9为所求. 例12求0()(1)arctan xf x t tdt =-⎰的极值点.解()f x '(1)arctan x x -()f x '0得1x =,0x =.列表如下:故1x =为()f x 的极大值点,0x =为极小值点.例13已知两曲线()y f x =与()y g x =在点(0,0)处的切线相同,其中 2arcsin 0()x t g x e dt -=⎰,[1,1]x ∈-,试求该切线的方程并求极限3lim ()n nf n→∞.解由已知条件得20(0)(0)0t f g e dt -===⎰,且由两曲线在(0,0)处切线斜率相同知(0)(0)1f g =''===.故所求切线方程为y x =.而3()(0)3lim ()lim33(0)330n n f f n nf f n n →∞→∞-'=⋅==-. 例14 求 22000sin lim(sin )x x xtdtt t t dt→-⎰⎰;解22000sin lim (sin )x x xtdtt t t dt→-⎰⎰=2202(sin )lim (1)(sin )x x x x x x →-⋅⋅-=220()(2)lim sin x x x x →-⋅-=304(2)lim 1cos x x x →-⋅-=2012(2)lim sin x x x→-⋅=0.注 此处利用等价无穷小替换和多次应用洛必达法则.例15试求正数a 与b,使等式201lim1sin x x x b x →=-⎰成立.解2001lim sin x x x b x →-⎰=20x →=20lim 1cos x x x b x →→-2011cos x x b x →==-, 由此可知必有0lim(1cos )0x b x →-=,得1b =.又由2011cos x x x →==-, 得4a =.即4a =,1b =为所求. 例16设sin 20()sin x f x t dt =⎰,34()g x x x =+,则当0x →时,()f x 是()g x 的( ).A .等价无穷小.B .同阶但非等价的无穷小.C .高阶无穷小.D .低阶无穷小. 解法1由于 22300()sin(sin )cos lim lim ()34x x f x x xg x x x →→⋅=+2200cos sin(sin )lim lim34x x x x x x →→=⋅+ 22011lim 33x x x →==. 故()f x 是()g x 同阶但非等价的无穷小.选B . 解法2 将2sin t 展成t 的幂级数,再逐项积分,得到sin 223370111()[()]sin sin 3!342xf x t t dt x x =-+=-+⎰ , 则344340001111sin (sin )sin ()1342342lim lim lim ()13x x x x x x f x g x x x x →→→-+-+===++. 例17证明:若函数()f x 在区间[,]a b 上连续且单调增加,则有()baxf x dx ⎰()2baa b f x dx +≥⎰.证法1 令()F x =()()2xxa a a x tf t dt f t dt +-⎰⎰,当[,]t a x ∈时,()()f t f x ≤,则 ()F x '=1()()()22x a a x xf x f t dt f x +--⎰=1()()22xax a f x f t dt --⎰≥1()()22x a x a f x f x dt --⎰=()()22x a x a f x f x ---0=. 故()F x 单调增加.即 ()()F x F a ≥,又()0F a =,所以()0F x ≥,其中[,]x a b ∈. 从而()F b =()()2bba a ab xf x dx f x dx +-⎰⎰0≥.证毕. 证法2 由于()f x 单调增加,有()[()()]22a b a bx f x f ++--0≥,从而 ()[()()]22baa b a bx f x f dx ++--⎰0≥. 即()()2baa b x f x dx +-⎰()()22b a a b a b x f dx ++≥-⎰=()()22b a a b a bf x dx ++-⎰=0.故()baxf x dx ⎰()2baa b f x dx +≥⎰. 例18计算21||x dx -⎰.分析被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解21||x dx -⎰=021()x dx xdx --+⎰⎰=220210[][]22x x --+=52.注在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如33222111[]6dx x x --=-=⎰,则是错误的.错误的原因则是由于被积函数21x在0x =处间断且在被积区间内无界.例19 计算220max{,}x x dx ⎰.分析 被积函数在积分区间上实际是分段函数212()01x x f x x x ⎧<≤=⎨≤≤⎩. 解23212221201011717max{,}[][]23236x x x x dx xdx x dx =+=+=+=⎰⎰⎰例20设()f x 是连续函数,且10()3()f x x f t dt =+⎰,则()________f x =. 解 因()f x 连续,()f x 必可积,从而1()f t dt ⎰是常数,记1()f t dt a =⎰,则()3f x x a =+,且11(3)()x a dx f t dt a +==⎰⎰.所以2101[3]2x ax a +=,即132a a +=, 从而14a =-,所以 3()4f x x =-.例21 设23, 01()52,12x x f x x x ⎧≤<=⎨-≤≤⎩,0()()x F x f t dt =⎰,02x ≤≤,求()F x , 并讨论()F x 的连续性.解 (1)求()F x 的表达式.()F x 的定义域为[0,2].当[0,1]x ∈时,[0,][0,1]x ⊂, 因此23300()()3[]xxxF x f t dt t dt t x ====⎰⎰.当(1,2]x ∈时,[0,][0,1][1,]x x = , 因此, 则1201()3(52)xF x t dt t dt =+-⎰⎰=31201[][5]xt t t +-=235x x -+-, 故32, 01()35,12x x F x x x x ⎧≤<⎪=⎨-+-≤≤⎪⎩. (2) ()F x 在[0,1)及(1,2]上连续, 在1x =处,由于211lim ()lim(35)1x x F x x x ++→→=-+-=, 311lim ()lim 1x x F x x --→→==, (1)1F =. 因此, ()F x 在1x =处连续, 从而()F x 在[0,2]上连续.例22 计算21-⎰.由于积分区间关于原点对称,因此首先应考虑被积函数的奇偶性.解21-⎰=211--+⎰⎰.由于2是偶函数,而是奇函数,有10-=⎰, 于是21-⎰=214⎰=04⎰=1044dx-⎰⎰由定积分的几何意义可知4π=⎰, 故2114444dxππ-=-⋅=-⎰⎰.例23计算3412ee⎰.解3412ee⎰=34e3412ee⎰=⎰=3412ee=6π.例24计算4sin1sinxdxxπ+⎰.解4sin1sinxdxxπ+⎰=42sin(1sin)1sinx xdxxπ--⎰=244200sintancosxdx xdxxππ-⎰⎰=244200cos(sec1)cosd xx dxxππ---⎰⎰=44001[][tan]cosx xxππ--=24π-注此题为三角有理式积分的类型,也可用万能代换公式来求解,请读者不妨一试.例25计算2a⎰,其中0a>.解2a⎰=20a⎰,令sinx a a t-=,则2a⎰=3222(1sin)cosa t tdtππ-+⎰=3222cos0a tdtπ+⎰=32aπ.注 ,一般令sin x a t =或cos x a t =. 例26 计算a⎰,其中0a >.解法1 令sin x a t =,则a⎰2cos sin cos tdt t tπ=+⎰201(sin cos )(cos sin )2sin cos t t t t dt t t π++-=+⎰ 201(sin cos )[1]2sin cos t t dt t tπ'+=++⎰ []201ln |sin cos |2t t t π=++=4π. 解法2 令sin x a t =,则a⎰=2cos sin cos tdt t tπ+⎰.又令2t u π=-,则有20cos sin cos t dt t t π+⎰=20sin sin cos u du u u π+⎰.所以,a⎰22001sin cos []2sin cos sin cos t t dt dt t tt t ππ+++⎰⎰=2012dt π⎰=4π. 注 如果先计算不定积分,再利用牛顿-莱布尼兹公式求解,则比较复杂,由此可看出定积分与不定积分的差别之一.例27计算ln 0⎰.解设u =2ln(1)x u =+,221udx du u =+,则ln 0⎰=22220(1)241u u u du u u +⋅=++⎰22222200442244u u du du u u +-=++⎰⎰ 222001284du du u =-=+⎰⎰4π-.例28 计算220()xd tf x t dt dx -⎰,其中()f x 连续.分析 要求积分上限函数的导数,但被积函数中含有x ,因此不能直接求导,必须先换元使被积函数中不含x ,然后再求导.解由于220()xtf x t dt -⎰=2221()2x f x t dt -⎰. 故令22x t u -=,当0t =时2u x =;当t x =时0u =,而2dt du =-,所以220()xtf x t dt -⎰=201()()2x f u du -⎰=201()2x f u du ⎰, 故220()x d tf x t dt dx -⎰=201[()]2x d f u du dx ⎰=21()22f x x ⋅=2()xf x . 错误解答220()xd tf x t dt dx -⎰22()(0)xf x x xf =-=. 错解分析这里错误地使用了变限函数的求导公式,公式()()()xad x f t dt f x dx 'Φ==⎰中要求被积函数()f t 中不含有变限函数的自变量x ,而22()f x t -含有x ,因此不能直接求导,而应先换元.例29 计算30sin x xdx π⎰.解30sin x xdx π⎰30(cos )xd x π=-⎰330[(cos )](cos )x x x dx ππ=⋅---⎰30cos 6xdx ππ=-+⎰6π=-.例30 计算120ln(1)(3)x dx x +-⎰. 解 120ln(1)(3)x dx x +-⎰=101ln(1)()3x d x+-⎰=1100111[ln(1)]3(3)(1)x dx x x x +-⋅--+⎰ =101111ln 2()2413dx x x -++-⎰11ln 2ln324=-. 例31计算20sin x e xdx π⎰.解由于2sin xe xdx π⎰20sin xxde π=⎰220[sin ]cos xx e x e xdx ππ=-⎰220cos x e e xdx ππ=-⎰, (1) 而20cos xe xdx π⎰20cos xxde π=⎰220[cos ](sin )xx e x e x dx ππ=-⋅-⎰20sin 1x e xdx π=-⎰, (2) 将(2)式代入(1)式可得20sin xe xdx π⎰220[sin 1]x e e xdx ππ=--⎰,故20sin xe xdx π⎰21(1)2e π=+.例32 计算10arcsin x xdx ⎰.解10arcsin x xdx ⎰210arcsin ()2x xd =⎰221100[arcsin ](arcsin )22x x x d x =⋅-⎰ 21142π=-⎰. (1) 令sin x t =,则21⎰220sin t π=⎰220sin cos cos ttdt tπ=⋅⎰220sin tdt π=⎰201cos 22t dt π-==⎰20sin 2[]24t t π-4π=. (2)将(2)式代入(1)式中得1arcsin x xdx =⎰8π. 例33设()f x 在[0,]π上具有二阶连续导数,()3f π'=且0[()()]cos 2f x f x xdx π''+=⎰,求(0)f '. 解 由于0[()()]cos f x f x xdx π''+⎰0()sin cos ()f x d x xdf x ππ'=+⎰⎰[]000{()sin ()sin }{[()cos ]()sin }f x x f x xdx f x x f x xdx ππππ'''=-++⎰⎰()(0)2f f π''=--=.故 (0)f '=2()235f π'--=--=-. 例34(97研)设函数()f x 连续,1()()x f xt dt ϕ=⎰,且0()limx f x A x→=(A 为常数), 求()x ϕ'并讨论()x ϕ'在0x =处的连续性.分析 求()x ϕ'不能直接求,因为10()f xt dt ⎰中含有()x ϕ的自变量x ,需要通过换元将x从被积函数中分离出来,然后利用积分上限函数的求导法则,求出()x ϕ',最后用函数连续的定义来判定()x ϕ'在0x =处的连续性.解 由0()limx f x A x→=知0lim ()0x f x →=,而()f x 连续,所以(0)0f =,(0)0ϕ=.当0x ≠时,令u xt =,0t =,0u =;1t =,u x =.1dt du x =,则()()xf u du x xϕ=⎰,从而02()()()(0)xxf x f u dux x xϕ-'=≠⎰.又因为02()()(0)()limlimlim22xx x x f u du x f x A x xx ϕϕ→→→-===-⎰,即(0)ϕ'=2A.所以 ()x ϕ'=02()(),0,02x xf x f u du x x Ax ⎧-⎪≠⎪⎨⎪=⎪⎩⎰. 由于22000()()()()lim ()limlim limxxx x x x xf x f u duf u du f x x xx x ϕ→→→→-'==-⎰⎰=(0)2A ϕ'=. 从而知()x ϕ'在0x =处连续.注 这是一道综合考查定积分换元法、对积分上限函数求导、按定义求导数、讨论函数在一点的连续性等知识点的综合题.而有些读者在做题过程中常会犯如下两种错误: (1)直接求出2()()()xxf x f u dux xϕ-'=⎰,而没有利用定义去求(0)ϕ',就得到结论(0)ϕ'不存在或(0)ϕ'无定义,从而得出()x ϕ'在0x =处不连续的结论.(2)在求0lim ()x x ϕ→'时,不是去拆成两项求极限,而是立即用洛必达法则,从而导致()()()1lim ()lim ().22x x xf x f x f x x f x x ϕ→→'+-''==又由0()limx f x A x→=用洛必达法则得到0lim ()x f x →'=A ,出现该错误的原因是由于使用洛必达法则需要有条件:()f x 在0x =的邻域内可导.但题设中仅有()f x 连续的条件,因此上面出现的0lim ()x f x →'是否存在是不能确定的.例35(00研)设函数()f x 在[0,]π上连续,且()0f x dx π=⎰,0()cos 0f x xdx π=⎰.试证在(0,)π内至少存在两个不同的点12,ξξ使得12()()0f f ξξ==.分析 本题有两种证法:一是运用罗尔定理,需要构造函数0()()xF x f t dt =⎰,找出()F x的三个零点,由已知条件易知(0)()0F F π==,0x =,x π=为()F x 的两个零点,第三个零点的存在性是本题的难点.另一种方法是利用函数的单调性,用反证法证明()f x 在(0,)π之间存在两个零点.证法1 令0()(),0xF x f t dt x π=≤≤⎰,则有(0)0,()0F F π==.又00()cos cos ()[cos ()]()sin f x xdx xdF x xF x F x xdx ππππ==+⎰⎰⎰()sin 0F x xdx π==⎰,由积分中值定理知,必有(0,)ξπ∈,使得()sin F x xdx π⎰=()sin (0)F ξξπ⋅-.故()sin 0F ξξ=.又当(0,),sin 0ξπξ∈≠,故必有()0F ξ=. 于是在区间[0,],[,]ξξπ上对()F x 分别应用罗尔定理,知至少存在1(0,)ξξ∈,2(,)ξξπ∈,使得12()()0F F ξξ''==,即12()()0f f ξξ==.证法2 由已知条件0()0f x dx π=⎰及积分中值定理知必有10()()(0)0f x dx f πξπ=-=⎰,1(0,)ξπ∈,则有1()0f ξ=.若在(0,)π内,()0f x =仅有一个根1x ξ=,由0()0f xd x π=⎰知()f x 在1(0,)ξ与1(,)ξπ内异号,不妨设在1(0,)ξ内()0f x >,在1(,)ξπ内()0f x <,由()cos 0f x xdx π=⎰,0()0f x dx π=⎰,以及cos x 在[0,]π内单调减,可知:100()(cos cos )f x x dx πξ=-⎰=11110()(cos cos )()(cos cos )f x x dx f x x dx ξπξξξ-+-⎰⎰0>.由此得出矛盾.故()0f x =至少还有另一个实根2ξ,12ξξ≠且2(0,)ξπ∈使得 12()()0.f f ξξ==例36计算243dxx x +∞++⎰.分析 该积分是无穷限的的反常积分,用定义来计算.解2043dx x x +∞++⎰=20lim 43t t dx x x →+∞++⎰=0111lim ()213t t dx x x →+∞-++⎰ =011lim [ln ]23t t x x →+∞++=111lim (ln ln )233t t t →+∞+-+ =ln 32. 例37计算3+∞⎰.解3+∞⎰2233sec tan sec tan d ππθθθθθ+∞=⎰⎰23cos 1d ππθθ==⎰ 例38计算42⎰分析 该积分为无界函数的反常积分,且有两个瑕点,于是由定义,当且仅当32)⎰43⎰解 由于32⎰32lim aa +→⎰32lim aa +→⎰=32lim[arcsin(3)]a a x +→-=2π.43⎰34lim bb -→⎰34lim bb -→⎰=34lim[arcsin(3)]b b x -→-=2π. 所以42⎰22πππ=+=.例39计算0+∞⎰.分析 此题为混合型反常积分,积分上限为+∞,下限0为被积函数的瑕点. 解t ,则有+∞⎰=50222(1)tdt t t +∞+⎰=50222(1)dt t +∞+⎰,再令tan t θ=,于是可得5022(1)dt t +∞+⎰=25022tan (tan 1)d πθθ+⎰=2250sec sec d πθθθ⎰=230sec d πθθ⎰ =320cos d πθθ⎰=220(1sin )cos d πθθθ-⎰=220(1sin )sin d πθθ-⎰=3/21[sin sin ]3πθθ-=23. 例40计算21⎰. 解 由于221112111())d x x x +-==⎰⎰⎰,可令1t x x=-,则当x =时,t =;当0x -→时,t →+∞;当0x +→时,t →-∞;当1x =时,0t =;故有21010211()()12()d x d x x x x x--=+-⎰⎰⎰022dt t +∞-∞=++⎰⎰1arctan )2π=+ . 注 有些反常积分通过换元可以变成非反常积分,如例32、例37、例39;而有些非反常积分通过换元却会变成反常积分,如例40,因此在对积分换元时一定要注意此类情形.例41求由曲线12y x =,3y x =,2y =,1y =所围成的图形的面积. 分析 若选x 为积分变量,需将图形分割成三部分去求,如图5-1所示,此做法留给读者去完成.下面选取以y 为积分变量. 解选取y 为积分变量,其变化范围为[1,2]y ∈,则面积元素为dA =1|2|3y y dy -=1(2)3y y dy -. 于是所求面积为211(2)3A y y dy =-⎰=52. 例42抛物线22y x =把圆228x y +=分成两部分,求这两部分面积之比.解 抛物线22y x =与圆228x y +=的交点分别为(2,2)与(2,2)-,如图所示5-2所示,抛物线将圆分成两个部分1A ,2A ,记它们的面积分别为1S ,2S ,则有图5-21S =222)2y dy -⎰=24488cos 3d ππθθ--⎰=423π+,218S A π=-=463π-,于是12S S =423463ππ+-=3292ππ+-.例43 求心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积.分析 心形线1cos ρθ=+与圆3cos ρθ=的图形如图5-3所示.由图形的对称性,只需计算上半部分的面积即可. 解求得心形线1cos ρθ=+与圆3cos ρθ=的交点为(,)ρθ=3(,)23π±,由图形的对称性得心形线1cos ρθ=+与圆3cos ρθ=所围公共部分的面积为图5-3A =223203112[(1cos )(3cos )]22d d πππθθθθ++⎰⎰=54π. 3πθ=3cos ρθ=3211-o11-1cos θ+例44求曲线ln y x =在区间(2,6)内的一条切线,使得该切线与直线2x =,6x =和曲线ln y x =所围成平面图形的面积最小(如图5-4所示).分析 要求平面图形的面积的最小值,必须先求出面积的表达式.解 设所求切线与曲线ln y x =相切于点(,ln )c c ,则切线方程为1ln ()y c x c c-=-.又切线与直线2x =,6x =和曲线ln y x =所围成的平面图形的面积为图5-4A =621[()ln ln ]x c c x dx c -+-⎰=44(1)4ln 46ln62ln 2c c-++-+.由于dA dc =2164c c-+=24(4)c c --,令0dA dc =,解得驻点4c =.当4c <时0dA dc<,而当4c >时0dAdc >.故当4c =时,A 取得极小值.由于驻点唯一.故当4c =时,A 取得最小值.此时切线方程为: 11ln 44y x =-+. 例45求圆域222()x y b a +-≤(其中b a >)绕x 轴旋转而成的立体的体积.解 如图5-5所示,选取x 为积分变量,得上半圆周的方程为2y b =下半圆周的方程为1y b =图5-5则体积元素为dV =2221()y y dx ππ-=4π.于是所求旋转体的体积为V=4ab π-⎰=08b π⎰=284a b ππ⋅=222a b π.注 可考虑选取y 为积分变量,请读者自行完成.例46(03研)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D .(1)求D 的面积A ;(2)求D 绕直线x e =旋转一周所得旋转体的体积V . 分析 先求出切点坐标及切线方程,再用定积分求面积A ,旋转体积可用大的立体体积减去小的立体体积进行图5-6计算,如图5-6所示.解(1)设切点横坐标为0x ,则曲线ln y x =在点00(,ln )x x 处的切线方程是0001ln ()y x x x x =+-. 由该切线过原点知0ln 10x -=,从而0x e =,所以该切线的方程是1y x e=.从而D 的面积10()12y eA e ey dy =-=-⎰. (2)切线1y x e =与x 轴及直线x e =围成的三角形绕直线x e =旋转所得的旋转体积为2113V e π=,曲线ln y x =与x 轴及直线x e =围成的图形绕直线x e =旋转所得的旋转体积为1222011()(2)22y V e e dy e e ππ=-=-+-⎰.因此,所求体积为212(5123)6V V V e e π=-=-+.例47有一立体以抛物线22y x =与直线2x =所围成的图形为底,而垂直于抛物线的轴的截面都是等边三角形,如图5-7所示.求其体积.解 选x 为积分变量且[0,2]x ∈.过x 轴上坐标为x 的点作垂直于x 轴的平面,与立体相截的截面为等边三角形,其底边长为得等边三角形的面积为图5-7()A x 2=. 于是所求体积为 V =2()A x dx ⎰=2⎰=.例48(03研)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而作功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k ,0k >),汽锤第一次击打进地下a (m ),根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数r (01r <<).问: (1)汽锤打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深?(注:m 表示长度单位米) 分析 本题属于变力作功问题,可用定积分来求.解 (1)设第n 次击打后,桩被打进地下n x ,第n 次击打时,汽锤所作的功为n W (1n =,2,).由题设,当桩被打进地下的深度为x 时,土层对桩的阻力的大小为kx ,所以12211022x k k W kxdx x a ===⎰,2122222211()()22x x k kW kxdx x x x a ==-=-⎰.由21W rW =得22221x x ra -=,即 222(1)x r a =+,3222223323()[(1)]22x x k kW kxdx x x x r a ==-=-+⎰.由2321W rW r W == 得22223(1)x r a r a -+=,即 2223(1)x r r a =++.从而汽锤击打3次后,可将桩打进地下3x =m ).(2)问题是要求lim n n x →∞,为此先用归纳法证明:1n x +=.假设n x ,则12211()2n nx n n n x k W kxdx x x +++==-⎰2121[(1...)]2n n kx r r a -+=-+++.由2111...n n n n W rW r W r W +-====,得21221(1...)n n n x r r a r a -+-+++=.从而1n x +.于是1lim n n n x +→∞=.()m .例49有一等腰梯形水闸.上底为6米,下底为2米,高为10米.试求当水面与上底相接时闸门所受的水压力.解 建立如图5-8所示的坐标系,选取x 为积分变量.则过点(0,3)A ,(10,1)B 的直线方程为135y x =-+.于是闸门上对应小区间[,]x x dx +的窄条所承受的水压力为2dF xy gdx ρ=.故闸门所受水压力为F =10012(3)5g x x dx ρ-+⎰=5003g ρ,其中ρ为水密度,g 为重力加速度.图5-8。
不定积分与定积分部分典型例题例1 验证2)ln 1(21)(x x F +=和x x x G ln ln 21)(2+=是同一个函数的原函数, 并说明两个函数的关系.分析 依原函数的定义, 若)(x F 和)(x G 的导数都是某个函数)(x f 的原函数, 即有)()()(x f x G x F ='=', 则)(x F 和)(x G 是)(x f 的原函数. 所以, 只需验证)(x F 和)(x G 的导数是否为同一个函数即可.解 因为x xx x x F ln 11)ln 1()(+=⋅+=' xxx x x x G ln 111ln )(+=+⋅='所以2)ln 1(21)(x x F +=和x x x G ln ln 21)(2+=是同一个函数x x ln 1+的两个原函数.且有21)(21ln ln 21)ln 1(21)(22+=++=+=x G x x x x F说明两个原函数之间仅相差一个常数. 例2 已知某曲线y =f (x )在点x 处的切线斜率为x21, 且曲线过点)3,4(, 试求曲线方程.分析 根据不定积分的几何意义, 所求曲线方程为过点)3,4(, 斜率是xx f 21)(=的积分曲线.解 c x x xx x f y +===⎰⎰d 21d )(且曲线过点)3,4(, 即c +=43, 得出143=-=c于是所求曲线方程为1+=x y例3 判断下列等式是否正确. (1)x xx xd 11d 11d22-=-⎰(2)c x x x +-='⎰cos d )(sin(3)21d ln d d e 1=⎰x x x x分析 (1), (2)根据不定积分的性质进行判断;(3)根据定积分的定义进行判断.解 (1)依照不定积分的性质x x f x x f d )(d )(d =⎰所以, 等式x xx xd 11d 11d22-=-⎰成立.(2)依照不定积分的性质c x f x x f +='⎰)(d )(所以, 等式c x x x +-='⎰cos d )(sin 不成立. 正确的应为c x x x +='⎰sind )(sin(3)由定积分定义,)()(d )(a F b F x x f ba-=⎰是一个确定的数值, 因此, 对函数先求定积分再求导数等于对一个数值求导数, 所以结果应该为零. 即等式21d ln d de 1=⎰x x x x 错误, 正确的结果应为0d ln d d e 1=⎰x xxx . 例4 计算下列积分: (1)x x x d )1(23+⎰(2)x xxxx)d sin e (3e 2-+⎰ (3)x x d sin 20⎰π分析 对于(1), (2)利用基本积分公式和积分运算性质进行积分, 注意在计算时, 对被积函数要进行适当的变形;对于(3), 注意到被积函数带有绝对值符号, 而在积分时, 绝对值符号是一定要打开的, 且在积分区间]2,0[π上有⎩⎨⎧≤<-≤≤=πππ2sin 0sin sin x x x xx 利用定积分的区间可加性和N-L 进行计算.解(1)将被积函数变形为32312)1(xx x x x ++=+x x x d )1(23+⎰=x xx x x x x x x x d 1d 2d d )12(33⎰⎰⎰⎰++=++=c xx x +-+2221ln 221.(2)将被积函数变形为xx xx xx22sin 1e)3()sin e (3e +=+-再利用积分公式和积分运算性质得=+-⎰x x x xx)d sin e (3e 2⎰⎰+x xx xd sin 1d e)3(2 =c x x+-+cot 13ln )e 3( (3)⎰⎰⎰-+=ππππ2020d sin d sin d sin x x x x x x)]1(1[]11[cos cos 20--+---=+-=πππx x4=.说明:本例在求积分的方法直接积分法. 这种方法适用与那些只用到基本积分公式和积分运算性质, 或者对被积函数进行适当变形就 可以运用积分公式求积分的题目. 在解题中应该注意:1.熟悉基本积分公式;2.在解题中经常要对被积函数进行适当的的变形(例如(1)中将二项和的平方展开;(2)中将xe 乘到括号里边去;(3)中将绝对值打开), 变形的目的是使被积函数为积分基本公式中的函数或它们的线性组合. 这些方法和技巧的掌握是基于平时的练习;3.如果连续试探几次, 进行不同的变形后仍无法达到目的, 则应考虑其它积分方法求解.例5 计算下列积分:(1)x xx d 12⎰-;(2)x x xd )e (1e 2⎰+ (3)x xxd ln e12⎰(4)x x d sin 203⎰π分析 注意到这几个被积函数都是复合函数, 对于复合函数的积分问题一般是利用凑微分法(第一换元积分法), 在计算中要明确被积函数中的中间变量)(x u ϕ=, 设法将对x 求积分转化为对)(x u ϕ=求积分. 对于定积分的凑微分的题目要注意:换元积分法的特点, 即“换元变限”.(1)将被积函数21x x -看成ux , 其中21x u -=, 且x x u d 2d -=, 于是,u ux ux d 121d -=, 这时对于变量u 可以利用公式求积分. (2)将被积函数2)e (1e x x +看成2e u x , 其中x u e 1+=, 且x u xd e d =, 于是22d d e u u x u x =, 这样对于变量xu e 1+=可以利用积分公式求积分.(3)将被积函数x x 2)(ln 看成x u 2, 其中x u ln =, 且x xu d 1d =, 于是x x u d 2u u d 2=, 这样对于变量x u ln =可以利用积分公式求积分.(4)将被积函数x 3sin 分解成x x x x x x x sin cos sin sin )cos 1(sin sin 222-=-=即分成两个函数积分的和, 第一个积分可以由N-L 公式直接得到, 第二个积分中被积函数视为x u sin 2, 其中x u cos =, x x u d sin d -=解 (1)x x x d 12⎰-=u ux x d 121)1d(112122⎰⎰-=---)1(2x u -= =c x c u +--=+-21(2)u ux xx x x d 1)e 1(d )e (11d )e (1e 222⎰⎰⎰=++=+ (x u e 1+=) =c c u x ++-=+-e111 (3)[方法1]换元换限. 令x u ln =, 则x xu d 1d =, 且当1=x 时, 0=u , e =x 时, 1=u , 于是有 31)01(3131d d ln 33103102e12=-===⎰⎰u u u x x x[方法2] 只凑微分不换元, 不换积分限.)d(ln ln d ln e 12e12x x x xx⎰⎰=31])1(ln )e [(ln 31)(ln 3133e13=-==x(4) 因为x x d sin 203⎰π=x x x x x x x x d sin cos d sin d sin ]cos 1[20220202⎰⎰⎰-=-πππ对于积分1cos d sin 2020=-=⎰ππx x x对于积分x x x d sin cos 202⎰π用凑微分法,[方法1] 令x u cos =, 则x x u d sin d -=, 且当0=x 时, 1=u , 2π=x 时, 0=u , 于是有3131d d sin cos 1312202==-=⎰⎰u u u x x x π[方法2] 只凑微分不换元, 不换积分限.31cos 31dcos cos d sin cos 203202202=-=-=⎰⎰πππx x x x x x说明:第一换元积分法是积分运算的重点, 也是难点. 一般地, 第一换元积分法所处理的函数是复合函数, 故此法的实质是复合函数求导数的逆运算. 在运算中始终要记住换元的目的是使换元后的积分⎰u u f d )(容易求原函数.应用第一换元积分法时, 首先要牢记积分基本公式, 明了基本公式中的变量x 换成x 的函数时公式仍然成立. 同时还要熟悉微分学中的微分基本公式, 复合函数微分法则和常见的 “凑微分”形式. 具体解题时, “凑微分”要朝着⎰u u f d )(容易求积分的方向进行.在定积分计算中, 因为积分限是积分变量的变化范围, 当积分变量发生改变, 相应的积分限一定要随之变化, 所以, 在应用换元积分法解题时, 如果积分变量不变(例如(3)(4)中的方法2). 则积分限不变. 而且在换元换限时, 新积分变量的上限对应于旧积分变量的上限, 新积分变量的下限对应于旧积分变量的下限, 当以新的变量求得原函数时可直接代入新变量的积分上、下限求积分值即可无须在还原到原来变量求值(例如(3)(4)中的方法2).由于积分方法是灵活多样的, 技巧性较强, 一些“凑”的方法是要靠一定量的练习来积累的(例如(4))因此, 我们只有通过练习摸索规律, 提高解题能力.例6 计算下列积分:(1)⎰+x x x d 1)sin2(;(2)⎰22d e x x x ; (3)⎰e e1d ln x x分析 注意到这些积分都不能用换元积分法, 所以要考虑分部积分,对于分部积分法适用的函数及v u ',的选择可以参照表3-1, 具体步骤是:1.凑微分, 从被积函数中选择恰当的部分作为x v d ', 即v x v d d =', 使积分变为⎰v u d ; 2.代公式,⎰⎰-=u v uv v u d d , 计算出x u u d d '=3.计算积分⎰u v d . 在定积分的分部积分公式是⎰⎰-=baba bau v uv v u d d , 它与不定积分的区别在于每一项都带有积分上、下限. 注意公式中ba uv 是一个常数, 在计算中应随时确定下来, 在计算(3)小题时应设法先去掉被积函数的绝对值符号, 这时需要根据绝对值的性质适当的利用定积分对区间的可加性质.解 (1)设x v x u 2sin ,1='+=, 则x v 2cos 21-=, 由分部积分公式有 ⎰⎰++-=+x x x x x x x d 2cos 212cos )1(21d 1)sin2(=c x x x +++-2sin 412cos )1(21 (2) 设2e ,xv x u ='=, 则2e 2xv =, 由定积分分部积分公式有44e 4e 4e4e 4d e 2e2d e 20222202202=+-=-=-=⎰⎰x x x x x x x x(3)因为⎪⎩⎪⎨⎧≤≤<≤-=e1ln 1e1ln ln x x x x x , 利用积分区间的可加性得到⎰⎰⎰+-=e11e1e e1d ln d ln d ln x x x x x x其中第一个积分为⎰⎰-=1e 11e 11e 1d ln d ln x x x x x x x 1e2e 11e 1-=+-= 第二个积分为11e e d ln d ln e 1e1e1=+-=-=⎰⎰x x x x x ,最后结果为e221e 21d ln d ln d ln e 11e1e e1-=+-=+-=⎰⎰⎰x x x x x x .例7 计算下列无穷限积分: (1)x x d )1(113⎰∞++;(2)⎰∞+-02d e x x ; (3)⎰∞+0d ln 1x xx 分析 对于无穷限积分⎰+∞ax x f d )(的求解步骤为:(1)求常义定积分⎰-=baa Fb F x x f )()(d )(;(2)计算极限)]()([lim a F b F b -+∞→极限存在则收敛(或可积)否则发散. 收敛时积分值等于极限值.解 (1)])1(21[lim d )1(1lim d )1(1121313bb b b x x x x x -+∞→+∞→∞++-=+=+⎰⎰=)41()21(])11()1[(lim 2122-⨯-=+-+---+∞→b b 81=(2)]e 31[lim d e lim d e 030303bx b bx b x x x -+∞→-+∞→∞+--==⎰⎰31]e e[31[lim 03=--=-+∞→bb (3)+∞===+∞→+∞→∞+⎰⎰bb b b x x x x xx e e e)ln(ln lim )d(ln ln 1lim d ln 1说明此无穷积分发散.注意:正如3.4中提到的, 上述无穷限积分的计算过程也可以写成下面的形式(1)81])1(21[d )1(11213-=+-=++∞-∞+⎰x x x (2)31]e 31[d e 0303=-=+∞-∞+-⎰xx x (3)+∞===∞+∞+∞+⎰⎰e x x xx x x )ln(ln )d(ln ln 1d ln 1e e.。
不定积分和定积分一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 3)的曲线为( ). A .42+=x y B .32+=x y C .22+=x y D .12+=x y 答案:C2. 下列函数中,( )是2sin x x 的原函数.A .-2cos 2x xB .2cos 2x xC .2cos 21x -D .2cos 21x x答案:C3.下列等式不成立的是( ).A .3ln )d(3d 3x xx = B .)d(cos d sin x x x =-C .x x xd d 21= D .)1d(d ln x x x = 选择D 4.若c x x f x +-=-⎰2ed )(,则)(x f '=( ).A . 2ex -- B . 2e 21x- C . 2e 41x- D . 2e 41x--答案:D5. =-⎰)d(e x x ( ).A .c x x +-eB .c x x x ++--e eC .c x x +--eD .c x x x +---e e答案:B 6. 若c x x f xx+-=⎰11e d e )(,则f (x ) =( ).A .x 1 B .-x 1 C .21x D .-21x 答案:C7. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f x a=⎰ B .)()(d )(a F x F x x f xa-=⎰C .)()(d )(a f b f x x F b a-=⎰ D .)()(d )(a F b F x x f ba-='⎰答案:B8.下列定积分中积分值为0的是( ).A .x x x d 2e e 11⎰--- B .x x x d 2ee 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ答案:A9.下列无穷积分中收敛的是( ).A .⎰∞+0d sin x xB .⎰∞+0d e x xC .⎰∞+12d 1x xD .⎰∞+13d 1x x答案:C10.下列微分方程中,( )是线性微分方程.A .y y yx '=+ln 2B .x xy y y e 2=+'C .y y x y e ='+''D .x y y x y x ln e sin ='-'' 答案:D 11.微分方程0)()(432=+'''+'xy y y y 的阶是( ).A . 4B . 3C . 2D . 1 答案:C 二、填空题1.=⎰-x x d e d 2.答案:x x d e 2-2.__________________d )cos (='⎰x x 。
积分与路径无关后的计算例题积分与路径无关是指积分的结果不依赖于路径的选择。
当路径无关时,我们可以仅通过起点和终点的位置来计算积分,而不需要考虑路径的具体形状。
下面我将通过一个具体的例题来解释积分与路径无关的概念,并给出相关参考内容。
例题:计算函数 f(x, y, z) = x^2 + y^2 + z^2 在从点 A(-1, 0, 0)到点 B(1, 0, 0) 的路径上的积分。
解答:首先,我们可以将积分路径从 A 点到 B 点表示为曲线 C。
由于题目给出的函数是一个关于 x, y, z 的二次函数,且积分路径在 x 轴上,所以路径是完全位于 x 轴上的直线。
为了计算积分,我们可以使用路径参数化对积分路径进行参数化表示。
设路径参数为 t,那么起点和终点的参数值分别为 t1和 t2,且 t1 < t2。
对于该例题中的路径C,我们可以将其参数化表示为:x = ty = 0z = 0其中,t1 <= t <= t2。
根据路径参数化,我们可以计算出不同路径上的积分元素ds,然后进行积分计算。
在该例题中,由于路径完全位于 x 轴上,所以积分元素 ds 可以简化为 dx。
因此,我们需要计算函数 f(x, y, z) = x^2 + y^2 + z^2 在路径上的积分∫f(x, y, z) ds = ∫(x^2 + y^2 + z^2) ds,其中 ds = dx。
将路径方程代入积分表达式,我们可以得到:∫(x^2 + y^2 + z^2) ds = ∫(t^2 + 0 + 0) dt = ∫t^2 dt = 1/3 t^3 + C计算该积分的不定积分,我们可以得到积分结果为:1/3 t^3 + C将路径参数值代入积分结果,我们可以计算得到最终的积分值:积分结果 = 1/3 t^3 + C = 1/3 (t2)^3 + C - [1/3 (t1)^3 + C] = 1/3(t2)^3 - 1/3 (t1)^3由于积分与路径无关,所以积分结果仅依赖于起点和终点的位置,而与路径的选择无关。
曲线积分例题选解
1.已知曲线弧:
L (01)y x =≤≤,计算
L
xyds ⎰。
解: dx dx dy ds 2
1⎪⎭⎫
⎝⎛+=dx x x 2
2
11⎪⎪⎭
⎫ ⎝⎛--+=dx x 2
11
-=, L xyds ⎰2
1
10==⎰xdx 。
注:计算曲线积分时,对圆弧宜用参数方程。
2.设L 是曲线2
1,1x t y t =+=+上从点(1, 1)到点(2, 2)的一段弧,计算 2(2)L
I ydx x dy =+-⎰
解: ⎰⋅-++=1
2
]2)1()1(2[dt t t t
I =3)22(10
=+⎰dt t 。
3.计算⎜⎛-L
dx y dy x 3
3
,L 为圆周2
2
2x y x +=沿逆时针方向。
解:设x y x D 2:2
2≤+,由格林公式得
⎜⎛-L
dx y dy x 33⎰⎰+=D dxdy y x )33(22⎰⎰-=θπ
πθcos 203223dr r d ⎰-=22
4
cos 12ππθθd ⎰=204cos 24π
θθd ππ29
2214324=⋅⋅⋅=。
4.计算
(sin 2)(cos 2)x x L
e y y dx e y dy -+-⎰
,其中L
为上半圆周y =针方向。
解:记1L 为0=y 上从a x 2=到0=x 的有向线段,220:x ax y D -≤≤,
由格林公式得 ⎰
+-+-1
)2cos ()2sin (L L x x dy y e dx y y e ⎰⎰=D
dy 22a π=,
又
⎰=-+-1
0)2cos ()2sin (L x
x
dy y e dx y y e ,
所以 (sin 2)(cos 2)x x L
e y y dx e y dy -+-⎰=2
a π。
5.证明曲线积分
(1,1)22(0,0)
()(2sin )x y dx x y dy ++-⎰
与路径无关,并计算积分值。
解:y x P +=2
,1=∂∂y P ,y x Q 2sin 2-=,1=∂∂x Q , =∂∂y P x
Q ∂∂, 故曲线积分
(1,1)22(0,0)
()(2sin )x y dx x y dy ++-⎰
与路径无关,
(1,1)22(0,0)
()(2sin )x y dx x y dy ++-⎰
⎰⎰-+=1
02
1
02
)sin 21(dy y dx x =+=⎰dy y 102cos 3111
sin 232
+。
6.计算曲线积分⎜
⎠⎛+-=L
y
x ydx
xdy I 2
24,其中L 是以点(1,0)为中心,R 为半径的圆周(1R >),取逆时针方向。
解:取2
2
2
1164:R y x L =+,沿逆时针方向。
记D 为L 与1L 所为环域,
224y x y P +-=,2222
2)4(4y x x y y P +-=
∂∂, 224y x x Q +=,2
222
2)
4(4y x x y x Q +-=∂∂, 由格林公式得
0)(4122=∂∂-∂∂=⎜⎠⎛+-⎰⎰-D
L L dxdy y P x Q y x ydx
xdy , ⎜⎠⎛+-=1
2
24L y
x ydx xdy I π=-=⎰12161L ydx xdy R 。
7.设函数(,)Q x y 在xoy 平面上具有一阶连续偏导数,曲线积分
2(,)L
xydx Q x y dy +⎰
与路径无关,且对任意 t 恒有
(,1)(1,)(0,0)
(0,0)
2(,)2(,)t t xydx Q x y dy xydx Q x y dy +=+⎰⎰
求(,)Q x y 。
解:由曲线积分2(,)L
xydx Q x y dy +⎰
与路径无关,
知
x x
Q
2=∂∂,)(),(2y C x y x Q +=, ⎰
+)
1,()0,0(),(2t dy y x Q xydx ⎰+=10
2)]([dy y C t ⎰+=1
2)(dy y C t ,
⎰
+)
,1()
0,0(),(2t dy y x Q xydx ⎰+=t dy y C 0
)](1[⎰+=t
dy y C t 0
)(,
由题设知 ⎰+
10
2)(dy y C t ⎰+=t
dy y C t 0)(,
两边对t 求导得
)(12t C t +=,12)(-=t t C , 从而 12)(-=y y C ,所以2
(,)21Q x y x y =+-。
8.在变力k xy j zx i yz F
++=的作用下,质点由原点沿直线运动到椭球面
12
2
2222=++c z b y a x 上第一卦限的点),,(ζηξ,问ζηξ,,取何值时,力F 所作的功W 最大?并求出W 的最大值。
解:原点到点M ),,(ζηξ的直线段OM 为:t z t y t x ζηξ===,,,t 从0到1,
功W 为 ⎰
++=
OM
xydz zxdy yzdx W ξηζξηζ==⎰1
23dt t ,
下面求ξηζ=W 在条件 12
2
2
2
2
2
=+
+
c
b
a
ζηξ)0,0,0(>>>ζηξ (1)
下的最大值。
作拉格朗日辅助函数 )1(
),,(2
2
2
2
2
2
-+
+
+=c b a L ζηξλξηζζηξ,
建立方程组 ⎪
⎪⎪⎩⎪⎪⎪⎨⎧
==+==+==+=]
)1([0020
2022
22式即λζηξ
λζξηληξζλξηζL c L b
L a
L 解此方程组,得3
,3
,3
c b a =
=
=
ζηξ,由问题的实际意义知,abc W 9
3
max =。