中考数学基础训练(50套)
- 格式:doc
- 大小:2.09 MB
- 文档页数:35
班级 姓名 成绩 时间:10分钟一、选择题(共10小题,每小题4分,满分40分) 1.3-的倒数是( )A .3-B .13-C .13D .32.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是( ) A .选取该校一个班级的学生B .选取该校50名男生C .选取该校50名女生D .随机选取该校50名九年级学生3.一个几何体的三视图如图所示,这个几何体是( ) A .圆柱B .球C .圆锥D .正方体4.下列运算正确的是( ) A .222a a a += B .22()a a -=- C .235()a a =D .32a a a ÷=5.三角形在方格纸中的位置如图所示,则tan α的值是( ) A .34B .43 C .35 D .456.据统计,2009年漳州市报名参加中考总人数(含八年级)约为102000人,则102000用科学记数法表示为( ) A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯7.矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为( )A .B .C .D .8.如图,要使平行四边ABCD成为矩形,需添加的条件是( ) A .AB BC = B .AC BD ⊥ C .90ABC ∠=° D .12∠=∠ 9.分式方程211x x =+的解是( ) A .1 B .1- C .13 D .13- 10.如图,OAB △绕点O 逆时针旋转80°得到O C D △,若110A ∠=°,40D ∠=°,则∠α的度数是( )A .30°B .40°C .50°D .60°二、填空题(共5小题,每小题4分,满分20分)(第3题)主(正)视左视图俯视图 α (第5题)12BCDAO(第8题)B(第10题)11.若分式12x -无意义,则实数x 的值是____________. 12.如图,直线12l l ∥,1120∠=°,则2∠=_______________度. 13.若221m m -=,则2242007m m -+的值是_______________.14.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图,则这组金牌数的中位数是____________枚. 15.如图,在菱形ABCD 中,60A ∠=°,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是_____________.三、解答题(共7大题,满分90分,其中16-20题共64分)16.(每小题7分,共14分)(1)计算:1123-⎛⎫-+- ⎪⎝⎭.(2))给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(每小题8分,共16分) (1).解分式方程:1233x x x+=--.12l 2l 1(第12题) E F D B C A (第15题)中国 美国 俄罗斯英国 德国 澳大利亚 国家 金牌数(枚) (2008年8月24日统计) 奥运金牌榜前六名国家(第14题)(2).如图,在等腰梯形ABCD 中,E 为底BC 的中点,连结AE 、DE .求证:ABE DCE △≌△.18.(本题满分10分)某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由.19.(本题满分12分)(1)如图2-1,把等边三角形的各边三等分,分别以居中那条线段为一边向外作等边三角形,并去掉居中的那条线段,得到一个六角星,则这个六角星的边数是 .(2)如图2-2,在5×5的网格中有一个正方形,把正方形的各边三等分,分别以居中那条线段为一边向外作正方形,并去掉居中的那条线段.请你把得到的图形画在图2-3中,并写出这个图形的边数.(3)现有一个正五边形,把正五边形的各边三等分,分别以居中那条线段为一边向外作正五边形,并去掉居中的那条线段,得到的图形的边数是多少?A D CB E第17(2)题20.(满分12分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°,(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为3,求BC 的长.(结果保留π如何学好初中数学经典介绍浅谈如何学好初中数学(第20)(图2-1)(图2-3)(图2-2)数学是必考科目之一,故从初一开始就要认真地学习数学。
中考数学七年级下册知识专题训练50题含答案一、单选题1.下列计算正确的是() A .030=B .236-=-C .2139-=-D .2139-=2.若()155mx x =则m 的值是( ) A .1B .3C .5D .73.下列运算正确的是( ) A .22423x x x +=B .347()x x =C .22(2)(2)2x y x y x y +-=-D .32x x x -÷=4.下列算式中,正确的是( ) A .4442a a a ⋅= B .632a a a ⋅= C .()222a b a b -=-D .()224239a b a b -=5.如图,正方形中阴影部分的面积为( )A .a 2﹣b 2B .a 2+b 2C .abD .2ab6.如图,在ABC 中,已知D ,E 分别是边BC ,AB 的中点,若ADE 的面积是2,则ABC 的面积为 ( )A .1B .2C .4D .87.已知△ABC 中,D 是BC 边上的一点,点E 在AD 上,下列结论中不一定成立的是( )A .如果AD 是△ABC 的中线,那么ED 是△EBC 的中线B .如果AD 是△ABC 的高,那么ED 是△EBC 的高C .如果AD 是△ABC 的角平分线,那么ED 是△EBC 的角平分线 D .如果AD 是△ABC 的高,那么BD 是△ABE 的高 8.如图,AC △BE ,△ABE =70°,则△A 的度数为( )A .70B .65C .50D .1409.一个长方形的面积为(2mn +3n )平方米,长为n 米,则它的宽为( ) A .(2mn +2n )米 B .(2mn 2+3n 2)米 C .(2m +3)米D .(2mn +4n )米10.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ) A .11B .16C .17D .16或1711.已知:如图,在△ABC 中,△B =△DAC ,则△BAC 和△ADC 的关系是( )A .△BAC <△ADCB .△BAC =△ADC C .△BAC >△ADCD .不能确定12.下列各题的计算,正确的是( ) A .()3515=a aB .5210a a a ⋅=C .32242a a a -=-D .()3236ab a b -=13.若AD 是ABC ∆ 的角平分线,则AD 是( ) A .直线B .射线C .线段D .以上都不对14.下列计算中正确的是( ) A .235()x x =B .329(3)9x x -=C .623x x x ÷=D .23x x x -⋅=-15.已知()219x m x +-+是一个完全平方式,则m 的值为( )A .4B .7或-5C .±4D .-216.已知△A 与△B 互余,△B 与△C 互补,若△A =50°,则△C 的度数是( ) A .40°B .50°C .60°D .140°17.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( )A .2B .2-C .1D .1-18.如3a b +=-,1ab =,则22a b +=( ) A .-11 B .11 C .-7D .719.下列计算正确的是( ) A .224a a a +=B .3a-2a=1C .()333ab a b = D .()437a a =20.下表中的每一对x ,y 的值都是方程3y x的一个解:△y 的值随着x 的增大越来越大; △当0x >时,y 的值大于3; △当3x <-时,y 的值小于0.上述结论中,所有正确结论的个数是( )A .0个 B .1个 C .2个D .3个二、填空题21.计算642x x ÷的结果是______.22.若2x =41,y +2713y x -=,x y -的值为_______. 23.写出下面多边形的名称:(1)______ (2)_____ (3)_____ 24.()22--=a b _______; 25.计算: (1)201920180.1258_____. (2)426x x x______26.已知 x +y -3=0,2212x y -=-,则33x y ⋅=______,x -y 的值为______.27.如图,AC △BC ,CD △AB ,点B 到CD 边的距离是线段____________的长.28.若23x y =-⎧⎨=⎩是方程组23x y m x ny -=⎧⎨+=-⎩的解,则m =___________;n =___________.29.计算:0.252019×(﹣4)2020=_____. 30.计算:402×398=___.31.若点M (a +5,a -3)在y 轴上,则点M 的坐标为____________.32.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:12:00时是一个两位数,数字之和为7;13:00时十位与个位数字与12:00是所看到的正好互换了;14:00时比12:00时看到的两位数中间多出一个0.如果设小明在12:00看到的数的十位数字是x ,个位数字是y ,根据题意可列方程组为________.33.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;432(1)(1)x x x x x -++++51x =-……;则20082007200622+2+2++2+2+1=_____.34.若0(21)x -无意义,则代数式22008(41)x -的值为___________. 35.若3,5ab a b =+=,则33a b ab +=_____. 36.若226x x n ++是一个完全平方式,则n=______ 37.计算:(π﹣3)0+(12)-1=_____.38.若(x 2+y 2+1)(x 2+y 2﹣1)=48,则x 2+y 2=___39.某商场新进一批空调,按进价提高30 %后标价.五一期间,商场为了促销,又按标价打九折销售,每台空调仍可获利680元,该批空调每台的进货价格为________元.40.已知方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解,则222a ab b -+=___________.三、解答题41.ABC 在平面直角坐标系中的位置如图所示.(1)直接写出点A ,点B ,点C 的坐标; (2)求出ABC 的面积.42.“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.2021年十一月初,奥林匹克官方旗舰店上架了“冰墩墩”和“雪容融”这两款毛绒玩具,当月售出了“冰墩墩”200个和“雪容融”100个,销售总额为33000元.十二月售出了“冰墩墩”300个和“雪容融”400个,销售总额为72000元.(1)求“冰墩墩”和“雪容融”的销售单价;(2)已知“冰墩墩”和“雪容融”的成本分别为90元/个和60元/个.为回馈新老客户,旗舰店决定对“冰墩墩”降价10%后再销售,若一月份销售出这两款毛绒玩具的数量与十二月一样,求该旗舰店一月份销售的利润.43.(1)先化简,再求值:()22()()()3x y x y x y x xy +-+---,其中12,2x y ==; (2)已知:2215,3a b a b -=+=.求2(2)(2)4a b a b a ab ++--的值.44.如图,在方格纸内将△ABC 经过一次平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′.根据下列条件,利用网格点和三角尺画图: (1)补全△A ′B ′C ′(2)画出AC 边上的中线BD ; (3)画出AC 边上的高线BE ; (4)求△ABD 的面积 .45.解方程:(1)43=112+=13x y x y -⎧⎨⎩; (2)3+4=556=17x y x y --⎧⎨⎩.46.已知:如图,△1+△2=180°,△3=△4. 求证:EF△GH .47.解方程(1)42(3)0x x --= (2)2112236x x+-=- 48.在实数范围内因式分解(1)44a (2)4269a a -+ 49.计算:()()()223x y x y x y +--- 50.计算:(1)0211()()(3)233--÷----;(2)化简求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中x =-1,y =12.(3)已知x 16=,y 18=,求代数式22(23)(23)x y x y +--的值.参考答案:1.D【分析】根据零指数幂、负指数幂的运算逐项判断即可. 【详解】零指数幂的性质:任何非零数的零指数幂都等于1 则031=,A 选项错误由负指数幂的性质得:2211339-==,则B 、C 选项错误,D 选项正确 故选:D .【点睛】本题考查了零指数幂、负指数幂的运算,熟记运算法则是解题关键. 2.B【分析】根据幂的乘方法则,计算即可. 【详解】因为()1555m mx x x ==,所以5m =15, 解得m =3, 故选B .【点睛】本题考查了幂的乘方,熟练掌握公式是解题的关键. 3.D【分析】根据合并同类项,幂的乘方,平方差公式,同底数幂的除法运算法则逐项计算即可.【详解】解:A 、22223x x x +=原计算错误,该选项不符合题意; B 、3412()x x =原计算错误,该选项不符合题意;C 、22(2)(2)4x y x y x y +-=-原计算错误,该选项不符合题意;D 、32x x x -÷=正确,该选项符合题意; 故选:D .【点睛】本题考查了整式的运算,解题关键是熟练运用整式运算法则进行准确计算. 4.D【分析】根据整式的乘法运算法则、完全平方公式以及积的乘方运算即可求出答案. 【详解】解:A 、原式8a =,故A 不符合题意. B 、原式9a =,故B 不符合题意.C 、原式222a ab b =-+,故C 不符合题意.D 、原式429a b =,故D 符合题意. 故选:D .【点睛】本题考查整式的乘法运算法则、完全平方公式以及积的乘方运算,掌握法则与公式是解题的关键. 5.D【分析】根据图形中各个部分面积之间的关系进行计算即可. 【详解】解:阴影部分的面积为:()2221122222a b a b ab +-⨯-⨯=, 故选:D .【点睛】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征以及图形中各个部分面积之间的关系是正确解答的关键. 6.D【分析】根据D ,E 分别是边BC ,AB 的中点,可得到2ABDADES S=,2ABCABDSS=,从而有4ABCADESS=.【详解】解:△E 是AB 的中点, △AB=2AE △2ABDADESS=,又△D 是BC 的中点, △BC=2BD, △2ABCABDS S =△4248ABC ADESS==⨯=故答案为:D.【点睛】本题考查的知识点是三角形的中线,通过各边的中点,找出已知三角形面积与所求三角形面积的比例关系是解题的关键. 7.C【分析】根据三角形的高线,中线,角平分线的定义逐项分析判断即可求解.【详解】解:如图,1AD 是BC 边上的中线,2AD 是BAC ∠的角平分线,3AD 是BC 边上的高A.如果AD是△ABC的中线,那么ED是△EBC的中线,故正确,不符合题意;B.如果AD是△ABC的高,那么ED是△EBC的高,故正确,不符合题意;C.如果AD是△ABC的角平分线,那么ED不一定是△EBC的角平分线,故错误,符合题意;D.如果AD是△ABC的高,那么BD是△ABE的高,故正确,不符合题意.故选:C.【点睛】本题考查了三角形的高线,中线,角平分线的定义,掌握以上知识是解题的关键.8.A【分析】根据平行线的性质进行判断即可,两直线平行,内错角相等.【详解】解:△AC△BE,△△A=△ABE=70°,故选A.【点睛】本题主要考查了平行的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.9.C【分析】根据长方形的面积=长×宽,计算即可得到结果.【详解】解:△一个长方形的面积为(2mn+3n)平方米,长为n米,△它的宽为:(2mn+3n)÷n=(2m+3)米.故选:C.【点睛】本题考查了整式的除法,熟练掌握运算法则是解本题的关键.10.D【详解】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D 正确.考点:三角形三边关系;分情况讨论的数学思想11.B【详解】根据三角形的外角性质可得△ADC=△B+△BAD ,再由△BAC=△BAD+△DAC ,△B=△DAC ,即可得△BAC=△ADC .故选B .12.A【分析】根据 “幂的乘方,底数不变,指数相乘”进行解答即可判断选项A ;根据 “同底数幂相乘,底数不变,指数相加”进行解答即可判断选项B ;根据同类项的含义进行解答即可判定选项C ;根据积的乘方运算解答即可判断选项D .【详解】解:A 、()3515=a a ,符合题意; B 、52527+==a a a a ,原运算错误,不符合题意;C 、32a ,24a -不是同类项,不能合并,原运算错误,不符合题意;D 、()3236ab a b -=-,原运算错误,不符合题意; 故选A .【点睛】本题考查了整式的乘法和整式的加减,解题的关键是掌握幂的乘方的定义,同底数幂的乘法的定义,积的乘方的定义和整式加减的运算法则.13.C【分析】根据三角形角平分线的定义解答.【详解】解:三角形的角平分线是一条线段.故选C .【点睛】本题考查了三角形的角平分线、中线、高,熟记角平分线的定义是解题的关键. 14.D【分析】利用同底数幂的除法的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的法则对各项进行运算即可.【详解】解:A 、236x x =(),故A 不符合题意;B 、32639x x -=(),故B 不符合题意;C 、624x x x ÷=,故C 不符合题意;D 、23x x x -⋅=-,故D 符合题意故选:D .【点睛】本题主要考查幂的乘方与积的乘方,同底数幂的乘法,同底数幂的除法,解答的关键是对相应的运算法则的掌握.15.B【分析】完全平方公式:a 2±2ab +b 2的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】△()219x m x +-+=()21x m x +-+32,△()123m x x -=±⨯,△m-1=±6,△m=7或-5.故选B.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a ±b )2=a 2±2ab +b 2是解答本题的关键.16.D【分析】先根据互补角的定义可得50B ∠=︒,再根据互余角的定义即可得.【详解】A ∠与B ∠互余,且50A ∠=︒,9040B A ∴∠=︒-∠=︒,又B ∠与C ∠互补,180140C B ∴∠=︒-∠=︒,故选:D .【点睛】本题考查了互补角、互余角,熟练掌握互补角与互余角的定义是解题关键. 17.C【分析】把x 与y 的值代入方程计算即可求出a 的值.【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=, 解得1a =.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.D【分析】根据222()2a b a b ab +=+-直接代入求值即可.【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7.故选:D .【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键19.C【分析】根据合并同类项、积的乘方及幂的乘方法则计算即可得答案.【详解】A.a 2+a 2=2a 2,故该选项计算错误,B.3a-2a=a ,故该选项计算错误,C.(ab)3=a 3b 3,故该选项计算正确,符合题意,D.(a 3)4=a 12,故该选项计算错误,故选C.【点睛】本题考查合并同类项、积的乘方及幂的乘方,熟练掌握运算法则是解题关键. 20.D【分析】△根据表格中x 与y 的值变化情况即可得;△结合△的结论和0x =时3y =即可得;△结合△的结论和3x =-时0y =即可得.【详解】观察表格可知,y 的值随着x 的增大越来越大,则结论△正确0x =时,3y =∴由结论△可知,当0x >时,3y >,则结论△正确3x =-时,0y =∴由结论△可知,当3x <-时,0y <,则结论△正确综上,所有正确结论的个数是3个故选:D .【点睛】本题考查了二元一次方程的解,读懂表格,正确得出y 与x 的变化关系是解题关键.21.22x【分析】根据同底数幂除法的法则求解.【详解】解:64642222x x x x -÷==.故答案为:22x .【点睛】本题主要考查了同底数幂除法的运算法则,理解同底数幂相除,底数不变,指数相减是解答关键.22.3【分析】首先根据等式的性质,将指数的底数化相等,再根据指数相等联立方程组求解参数即可.【详解】解:将2x =41y +可化为:2(1)22x y +=将2713y x -=可化为:3133y x -=所以可得:2(1)31x y y x =+⎧⎨=-⎩解得:41x y =⎧⎨=⎩所以可得:413x y -=-=故答案为3【点睛】本题主要考查同底数幂的指数相等,关键在于将底数化相等.23. (1)五边形; (2)三角形; (3)四边形.【详解】分析:根据所给图形和多边形的定义进行分析解答即可.详解:题中所给3个多边形分别是:(1)五边形;(2)三角形;(3)四边形.故答案为:(1)五边形;(2)三角形;(3)四边形.点睛:知道“在多边形中,边数是n (n 为不小于3的正整数)的多边形被称为n 边形”是解答本题的关键.24.2244a ab b ++【分析】通过完全平方公式计算即可‘’【详解】()222244a b a ab b --=++; 故答案是2244a ab b ++.【点睛】本题主要考查了完全平方公式的计算,准确计算是解题的关键.25. -8 4x -【分析】(1)根据积的乘方的逆运算,即可求解;(2)先计算乘法,再计算除法,即可求解.【详解】解:(1)201920180.1258 20180.12588 ()()201818=-⨯-=-8故答案为:-8;(2)()()426x x x -⋅÷- 84x x =-÷4x =-故答案为:4x - .【点睛】本题主要考查了积的乘方的逆运算,幂的混合运算,熟练掌握相关运算法则是解题的关键.26. 27 -4【分析】根据x +y -3=0可得x +y 的值,代入3x •3y =3x +y 即可得到答案,对x 2-y 2=-12左边利用平方差公式分解因式后即可得到答案.【详解】解:△x +y -3=0,△x +y =3,△3x •3y =3x +y =33=27,△x 2-y 2=(x +y )(x -y )=-12,△3(x -y )=-12,△x -y =-4,故答案为:27,-4.【点睛】此题考查的是同底数幂的乘法及平方差公式,掌握同底数幂的运算法则是解决此题关键.27.BD【分析】本题利用点到直线的距离的定义即可得出结论.【详解】解:因为CD △AB ,所以点B 到CD 边的距离是线段BD 的长.故答案为BD.28. 7- 13- 【分析】根据二元一次方程组的解满足方程组,把二元一次方程组的解代入,可得答案.【详解】解:把23x y =-⎧⎨=⎩代入方程组23x y m x ny -=⎧⎨+=-⎩, 43233m n --=⎧⎨-+=-⎩. 解得:713m n =-⎧⎪⎨=-⎪⎩, 故答案为:7-,13-. 【点睛】本题考查了二元一次方程组的解,解题的关键是熟练掌握方程组的解的定义:使方程组的两个方程均成立的一对未知数的值就叫做方程组的解.29.4【分析】把0.252019×(﹣4)2020变形为0.252019×42019×4,逆用积的乘方法则计算即可.【详解】0.252019×(﹣4)2020=0.252019×42019×4=(0.25×4)2019×4=4,故答案为4.【点睛】本题考查了积的乘方法则逆用,熟练掌握积的乘方法则是解答本题的关键.积的乘方等于各因数乘方的积,即()mm m ab a b =(m 为正整数). 特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.30.159996【分析】利用平方差公式求解,将两个数分别表示成两个数和与差的形式,即可求解.【详解】解:()()224023984002400240021600004159996⨯=+⨯-=-=-= 故答案为159996【点睛】此题考查了平方差公式的应用,解题的关键是熟练掌握平方差公式.31.(0,-8)【分析】根据y 轴上的点横坐标为0列式解答即可.【详解】解:△点M (a +5,a -3)在y 轴上,△a +5=0,△a =-5,△a -3=-5-3=-8△M (0,-8)故答案为(0,-8).【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.32.710(10)100(10)x y y x x y x y y x +=⎧⎨+-+=+-+⎩【分析】根据题意“12:00时是一个两位数,数字之和为7”,可列出7x y +=;根据“13:00时十位与个位数字与12:00是所看到的正好互换了”可知13时的数字为10y x +;根据“14:00时比12:00时看到的两位数中间多出一个0”可知14时的数字为100x y +,最后根据小明匀速行驶,每个小时内行驶的路程相等列出方程组即可.【详解】根据题意可知:7x y +=13时的数字为10y x +14时的数字为100x y +又△小明匀速行驶△每个小时内行驶的路程相等,即:10(10)100(10)y x x y x y y x +-+=+-+故可列的方程组为:710(10)100(10)x y y x x y x y y x +=⎧⎨+-+=+-+⎩ 【点睛】本题主要考查二元一次方程组在实际中的应用,学会利用条件列出等式是解决本题的关键.33.200921-【分析】观察其右边的结果:第一个是x 2−1;第二个是x 3−1;…依此类推,得出第n 个的结果,从而得出要求的式子的值.【详解】根据给出的式子的规律可得:(x−1)(x n +x n −1+…x +1)=x n +1−1,则22008+22007+22006+……+22+2+1=(2-1)×(22008+22007+22006+……+22+2+1)=22009−1;故答案为:22009−1.【点睛】本题考查了平方差公式,发现规律:右边x 的指数正好比前边x 的最高指数大1是解题的关键.34.0【分析】根据负整数指数幂(2x−1)0无意义,可得2x-1=0,从而求得x 的值;将x 的值代入代数式(4x 2−1)2008即可求值.【详解】因为(2x−1)0无意义,所以2x-1=0,即x=12将x=12代入(4x 2−1)2008,得,(4⨯(12)2−1)2008,求值,得0.【点睛】本题考查的知识点是代数式求值,解题的关键是熟练的掌握代数式求值. 35.57【分析】根据完全平方公式的变形,先求出22a +b 的值,再利用提公因式法,将33a b+ab 化为()22ab a b + ,进而代入求值即可; 【详解】△ ab=3,a+b=5△()2222a+b 25a b ab =++= ,即22225a b ab ++=,△2ab=6,△22252ab=256=19a b +=--,△ 33a b+ab =()22ab a b +=3×19=57, 故答案为:57.【点睛】本题考查了求代数式的值、完全平方公式,主要考查整体思想,要认真掌握,并确保得分.36.3±【分析】利用完全平方公式的结构特征判断即可n的值即可.【详解】△22++是一个完全平方式,6x x n△2n=9,解得:n=±3,则n的值是±3,故答案为±3【点睛】此题考查完全平方式,解题关键在于利用完全平方公式进行解答.37.3.【分析】根据零指数幂和负整数指数幂计算即可得答案.)-1【详解】(π﹣3)0+(12=1+2=3,故答案为:3.【点睛】本题考查零指数幂的性质以及负整数指数幂的性质,任何不等于0的数的0次幂都等于1;任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数.38.7【分析】首先利用平方差公式将已知化简,进而得出x2+y2的值.【详解】解:因为(x2+y2+1)(x2+y2﹣1)=48,所以(x2+y2)2﹣12=48,所以(x2+y2)2=49,x2+y2=±7(负值舍去).故答案为:7.【点睛】本题考查了平方差公式,熟记公式是解题的关键.39.4000【分析】设该型号电脑每台进价为x元,则按进价提高30%的标价是x+30%x,那么打9折销售的价格-进价=盈利,根据这个等量关系列方程,求得解.【详解】设该型号电脑每台进价为x元,根据题意列方程得:(x+30%x)×0.9-x=680,解得:x =4000△该型号电脑每台进价为4000元.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.40.144【分析】根据题意,两个方程组有相同的解集得到方程组5325x y x y +=⎧⎨-=⎩,解方程组得12x y =⎧⎨=-⎩,将12x y =⎧⎨=-⎩代入方程组5451ax y x by +=⎧⎨+=⎩中,解出即可. 【详解】解:△方程组5354x y ax y +=⎧⎨+=⎩与2551x y x by -=⎧⎨+=⎩有相同的解, △5325x y x y +=⎧⎨-=⎩, 解得:12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入方程组5451ax y x by +=⎧⎨+=⎩中,得到:104521a b -=⎧⎨-=⎩ ,解得:142a b =⎧⎨=⎩△22222()(142)144a ab b a b -+=-=-=,故答案为:144.【点睛】本题考查了解二元一次方程组,求代数式的值,关键在于读懂题意联立出可以求解的二元一次方程组.41.(1)()()()2,5,5,2,3,3A B C --- (2)1202【分析】(1)依据图形中三角形顶点的位置,即可得到点,,A B C 的坐标;(2)利用割补法进行计算,即可得出ABC 的面积.【详解】(1)解:如图所示:()()()2,5,5,2,3,3A B C ---;(2)解:如图所示:11178372558222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯△ 21104056222⎛⎫=-++ ⎪⎝⎭ 1202=. 【点睛】本题考查网格中求三角形的面积,坐标与图形,关键是用数形结合的思想解题. 42.(1)“冰墩墩”的销售单价为120元,“雪容融”的销售单价90元;(2)17400元.【分析】(1)设“冰墩敏”的销售单价为x 元,“雪容融”的销售单价y 元,然后根据售出了“冰墩墩”200个和“雪容融”100个,销售总额为33000元;售出了“冰墩墩”300个和“雪容融”400个,销售总额为72000元,列出方程即可得到答案.(2)根据“利润=(售价-成本)⨯销售数量”,即可得到答案.(1)解:(1)设“冰墩敏”的销售单价为x 元,“雪容融”的销售单价y 元,根据题意得:2001003300030040072000x y x y +=⎧⎨+=⎩.解方程组得12090x y =⎧⎨=⎩.答:“冰墩墩”的销售单价为120元,“雪容融”的销售单价90元;(2)(120﹣120×10%﹣90)×300+(90﹣60)×400=17400(元).答:该旗舰店一月份销售的利润为17400元.【点睛】此题主要考查了二元一次方程组的应用,利润的概念,解题关键是依据题意找到合适的等量关系.43.(1)2,5x xy +;(2)-4【分析】(1)原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值; (2)将2215a b -=左边进行因式分解,再将3a b +=代入求得a -b 的值,从而求得a ,b 的值,最后将2(2)(2)4a b a b a ab ++--化简后将a ,b 的值代入求值即可.【详解】解:(1) 原式 =2222223x y x xy y x xy -+-+-+2x xy =+. 将12,2x y ==代入得:原式=212252+⨯=.(2) △()()2215a b a b a b -=+-=,又3a b +=,△5a b -=,△a 35b a b +=⎧⎨-=⎩,解得:41a b =⎧⎨=-⎩, 则41a b ==-,,△原式=2224424a ab b ab a ab +++--=224ab b +,=()()224141⨯⨯-+⨯-4=-. 【点睛】此题考查了整式的加减-化简求值、因式分解的应用及整式的混合运算,熟练掌握因式分解是解本题的关键.44.(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)4【分析】(1)由点B 的对应点B ′知,三角形需向左平移5个单位、向下平移2个单位,据此可得;(2)连接AC 的中点D 与点B 即可得;(3)过点B 作AC 延长线的垂线段即可得;(4)割补法求解可得.【详解】解:(1)如图所示,△A ′B ′C ′即为所求作三角形.(2)如图所示,BD 为AC 边上的中线;(3)如图所示,BE 为AC 边上的高线;(4)S △ABD =4×6﹣12×1×2﹣12×4×6﹣12×(1+6)×2=24﹣1﹣12﹣7=4.故答案为4.【点睛】本题主要考查作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.45.(1)=5=3x y ⎧⎨⎩ (2)=1=2x y -⎧⎨⎩【分析】(1)利用加减消元法,把△+△3⨯消去y ,得到1050x =,解得=5x ,把=5x 代入△,得到2513y ⨯+=,解得=3y ,即得;(2)利用加减消元法,把△3⨯+△2⨯消去y ,得到1919x =,解得=1x ,并代入△,得到3+4=5y -,解得=2y -,即得.【详解】(1)解:43=112+=13x y x y -⎧⎨⎩①②, △+△3⨯得1050x =,解得=5x .把=5x 代入△,得2513y ⨯+=,解得=3y .∴原方程组的解为=5=3x y ⎧⎨⎩. (2)3+4=556=17x y x y -⎧⎨-⎩①②, △3⨯+△2⨯,得1919x =,解得=1x ,并代入△,得3+4=5y -,解得=2y -.∴原方程组的解为=1=2x y ⎧⎨-⎩. 【点睛】本题考查了解二元一次方程组,解决问题的关键是熟练掌握加减消元法解二元一次方程组.46.见解析;【分析】由△1+△2=180°结合△AEG=△1可推导得出AB△CD ,可得△AEG=△EGD ,继而可求得△FEG=△EGH ,从而可得EF△GH.【详解】△△1+△2=180°,△AEG=△1,△ △AEG +△2=180°,△AB△CD ,△△AEG=△EGD ,△△3=△4,△△3+△AEG=△4+△EGD ,△△FEG=△EGH ,△EF△GH.【点睛】本题考查了平行线的判定与性质,正确识图,熟练掌握平行线的判定定理与性质定理是解题的关键.47.(1)3x =-;(2)92x =. 【详解】试题分析:(1)方程去括号,移项合并,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.试题解析:解:(1)去括号得:4x ﹣2x +6=0,移项合并得:2x =﹣6,解得:x =﹣3; (2)去分母得:4x +2=12﹣1+2x ,移项合并得:2x =9,解得:x =4.5.48.(1)()(22a a a +(2) ((22a a 【详解】(1)原式=22(2)(2)a a +-,=2(2)(2)(2)a aa . (2)原式=22(3)a -,=22((a a .考点:用公式法分解因式.49.27xy y -【分析】原式利用多项式乘以多项式法则,以及完全平方公式化简,去括号合并即可得到结果.【详解】()()()223x y x y x y +---,=22223262x xy xy y x xy y -+--+-=27xy y -.【点睛】此题主要考查了多项式乘以多项式,完全平方公式,熟练掌握运算法则是解本题的关键.50.(1)109;(2)-+x y ,32(3)12.【分析】(1)先算负整数指数幂,零指数幂,再合并即可;(2)先算括号内的,再算除法,最后将字母的值代入即可求解;(3)先利用平方差公式化简代数式,最后将字母的值代入即可求解.(1) 解:0211()()(3)233--÷---- 1932=÷+- =109; (2)解:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦2222244(33)52x xy y x xy xy y y x ⎡⎤=++--+--÷⎣⎦22222(44335)2=++-+-+-÷x xy y x xy xy y y x222)2(x xy x =-+÷x y =-+当x =-1,y =12时, 原式13(1)22=--+=; (3) 解:22(23)(23)x y x y +--(2323)(2323)x y x y x y x y =++-+-+46x y =⋅=24xy ,△x 16=,y 18=, △原式=112468⨯⨯=12.【点睛】本题考查实数运算及整式化简求值,解题的关键是掌握实数运算的相关法则及完全平方公式、平方差公式等整式运算的法则.。
中考数学数与式专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列运算正确的是( ) A .()328-=B .33--=C .()326-=-D .()239--=-2.下列说法正确的是( ) A .1的立方根是它本身 B .4的平方根是2 C .9的立方根是3D .0没有算术平方根3.比﹣2小的数是( ) A .﹣1B .﹣3C .0D .﹣124.下列计算正确的是( ) A .236a a a ⋅=B .22325a b 3ab 3a b -⋅=C .0(π 3.14) 3.14π-=-D .3262(a b)a b =5.长城总长约为670000米,用科学记数法表示为( ) A .56.710⨯米 B .50.6710⨯米 C .46.710⨯米D .60.6710⨯米6.下列计算正确的是( ) A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 27.一定相等的是( ) A .a 2+a 2与a 4B .(a 3)3与a 9C .a 2﹣a 2与2a 2D .a 6÷a 2与a 38.对于有理数a ,b 定义2a b a b =-,则()3x y x +化简后得( )A .2x y +B .2x y -+C .52x y +D .52x y -+9.下列运算正确的是( )A B .2=C .22=D 4=±10.N 是一个单项式,且22223N x y ax y ⋅=(-)-,则N 等于( ) A .32ayB .3ay -C .32xy -D .12axy11.下列计算正确的是( ) A .()235a a =B .()23624m m -=C .623a a a ÷=D .()222a b a b +=+ 12.( )A .2B .C .D .13.下列计算中,结果正确的是( ) A .a 3 +a =2a 4B .a 3•a 2=a 6C .2a 6÷a 2 =2a 3D .(a 2)4 =a 814.下列各组代数式中没有公因式的是 ( ) A .4a 2bc 与8abc 2 B .a 3b 2+1与a 2b 3–1 C .b (a –2b )2与a (2b –a )2 D .x +1与x 2–115.下列计算正确的是( )A 3=±B 3=-C .(23= D .23=-161m -,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m17.下列运算中,计算结果正确的是( ) A .a2•a3=a6B .a2+a3=a5C .(a2)3=a6D .a12÷a6=a218.下列运算正确的是( )A .824x x x ÷=B =C .()32628aa -=-D .11(1)32-⎛⎫--=- ⎪⎝⎭19的正确结果是( )A .(m ﹣5)5m -B .(5﹣m)5m -C .m ﹣5()5m --D .5﹣m 5m -二、填空题20.已知某种感冒病毒的直径是-0.000000012米,那么这个数可用科学记数法表示为____________. 21.45--=______. 22.2018年我省夏粮总产量达到2299000吨,将数据“2299000吨”用科学记数法表示为__________.23叫做二次根式. 24.2015的相反数为____.25.把202100000用科学记数法表示为______.260,则xzy=_______.27______=______.28.写出一个..绝对值大于2且小于3的无理数____________.29.当2a =+2943a a -+的值等于___.30.将数67500用科学记数法表示为____________.31有意义,则x 的取值范围是___________________. 32.有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是___________.33.213-的倒数是_____,213-的相反数是_____.34.“皮克定理”是用来计算顶点在格点(即图中虚线的交点,如图中的小黑点)上的多边形的面积公式,公式为S = a +2b-1.小明只记得公式中的表示多边形的面积,a和 b 中有一个表示多边形边上(含多边形顶点)的格点个数,另一个表示多边形内部的格点个数,但记不清楚究竟是哪一个表示多边形内部的格点个数,请你利用图 1 探究并运用探究的结果求图 2 中多边形的面积是____.35.若a +b =8,ab =15,则a 2+ab +b 2=________.36.已知甲数是719的平方根,乙数是338的立方根,则甲、乙两个数的积是__.37.分解因式:2244x y y -+-=__________.38.我国古代数学的许多创新与发展都曾居世界前列,其中“杨辉三角”(如图)就是一例,它的发现比欧洲早五百年左右.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.事实上,这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小的顺序排列)的系数规律. 例如,在三角形中第三行的三个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中各项的系数,等等. (1)当n =4时,4()a b +的展开式中第3项的系数是_________;(2)人们发现,当n 是大于6的自然数时,这个规律依然成立,那么7()a b +的展开式中各项的系数的和为_________.三、解答题39.计算:20220(1)1)-+︒. 40.计算:(1)()232()nn m mn m -⋅÷(2)解不等式组: 10223x x x +>⎧⎪-⎨≤+⎪⎩41.在平面直角坐标系中,已知点P (3,-1)关于原点对称的点Q 的坐标是(),1a b b +-,求b a 的值.42.(1)计算:﹣32+(π﹣2021)0﹣|1|.(2)解不等式组:3(1)25322x xxx-≥-⎧⎪⎨+<⎪⎩①②.43.计算:(1)(﹣1)3+(π+2022)0+(12)﹣2;(2)(-a)3•a2﹣(2a4)2÷a3.44.计算下列各式:(1)(2)45.已知2a-l的算术平方根为3,3a+b-1的算术平方根为4,求a+2b的平方根.46.(1)计算:0112sin3022π-⎛⎫⎛⎫-︒⎪ ⎪⎝⎭⎝⎭;(2)化简:2(21)(1)(1)x x x--+-.47.已知a,b,c在数轴上对应点的位置如图所示,化简||||||a ab b c-+-.48.观察以下等式:第1个等式:211111=+第2个等式:211326=+第3个等式:2115315=+第4个等式:2117428=+第5个等式:2119545=+按照以上规律,解决下列问题:(1)写出第7个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.参考答案:1.D【分析】根据乘方运算、绝对值及相反数的意义,逐个运算得结论.【详解】解:(-2)3=-8,故选项A、C错误;-|-3|=-3,故选项B错误;-(-3)2=-9,故选项D正确.故选:D.【点睛】本题考查了乘方运算,绝对值、相反数的意义.题目相对简单.负数的偶次方是正,负数的奇数次方为负.2.A【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A、1的立方根是它本身,故此选项符合题意;B、4的平方根是2 ,故此选项不符合题意;C、9D、0的算术平方根是0,故此选项不符合题意.故选:A.【点睛】本题考查平方根与立方根,解题的关键是正确理解立方根与平方根的定义.3.B【分析】对于正数绝对值大的数就大;对于负数绝对值大的反而小;负数小于0,0小于正数;【详解】解:A,是个负数绝对值比2小,﹣1>﹣2;B,是个负数绝对值比2大,﹣3<﹣2;C,0比负数大;D,是个负数绝对值比2小,﹣1>﹣2;2故答案选:B【点睛】本题考查有理数大小的判断,先比正负,再比绝对值.4.D【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、零指数幂的性质分别判断得出答案.【详解】解:A 、a 2•a 3=a 5,故此选项错误; B 、-a 2b 2•3ab 3=-3a 3b 5,故此选项错误; C 、(π-3.14)0=1,故此选项错误; D 、(a 3b 2)2=a 6b 4,正确. 故选D .【点睛】考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握相关运算法则是解题关键. 5.A【分析】根据科学记数法的定义即可得. 【详解】解:670000米56.710=⨯米, 故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 6.D【详解】试题分析:A .2x+3x 已经为最简式.B .x 2•x 3=x 5同底数幂相乘,指数相加. C .(x 2)3=x 6求幂的乘方,指数相乘.故只有D 正确 考点:整式运算点评:本题难度较低,主要考查学生对整式运算知识点的掌握.注意同底数幂相乘,指数相加.幂的乘方,指数相乘. 7.B【分析】A .根据整式的加法运算合并同类项即可; B .运用幂的乘法公式,底数不变,指数相乘,化简即可; C .根据整式的减法运算合并同类项即可;D .根据同底数幂的除法,底数不变,指数相减即可得出结论. 【详解】解:A .22242a a a a +=≠,故选项不合题意; B .()339a a =,故选项符合题意;C .22202a a a -=≠,故选项不合题意;D .624a a a ÷=,故选项不合题意; 故选:B .【点睛】本题考查整式的混合运算,熟练掌握每个计算的运算法则是解题的关键. 8.B【分析】根据新定义运算可直接进行求解. 【详解】解:∵2a b a b =-,∵()3x y x +()23x y x =+-223x y x =+-2x y =-+.故选:B .【点睛】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键. 9.A【分析】根据二次根式的性质以及二次根式的混合运算逐项计算分析判断即可求解.【详解】解:A 、=B 、2C 、253=+-D 4=,故该选项不正确,不符合题意. 故选:A .【点睛】此题主要考查了二次根式的性质以及二次根式的混合运算,掌握二次根式的性质以及运算法则是解题关键. 10.A【分析】利用单项式与单项式除法,把他们的系数,相同字母分别相除,对于只在一个单项式里含有的字母,则连同它的指数作为商的一个因式,进而得出即可. 【详解】解:∵N •(-2x 2y )=-3ax 2y 2, ∵N =-3ax 2y 2÷(-2x 2y )=32ay .故选:A .【点睛】此题主要考查了单项式除以单项式,熟练掌握运算法则是解题关键. 11.B【分析】分别根据幂的乘方运算法则,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一进行判断即可得出正确选项. 【详解】A. ()236a a =,故本选项不符合题意;B. ()23624m m -=,正确;C. 624a a a ÷=,故本选项不符合题意;D. ()2222a b a ab b +=++,故本选项不符合题意. 故选:B.【点睛】本题主要考查了同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键. 12.B【详解】试题分析:10099100991009912()22222--⨯-=-⨯=-=-.故选B.考点: 1.负整数指数幂;2.积的乘方. 13.D【分析】分别计算后判断即可.【详解】解:A.不是同类项不能合并,故该选项计算错误; B. a 3•a 2=a 5,故该选项计算错误; C. 2a 6÷a 2 =2a 4,故该选项计算错误; D.(a 2)4 =a 8,故该选项计算正确. 故选:D .【点睛】本题考查合并同类项、同底数幂乘法、单项式除单项式、幂的乘方.掌握相关运算法则是解题关键. 14.B【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【详解】A 、4a 2bc 与8abc 2有公因式4abc ,故该选项不满足题意;B、a3b2+1与a2b3–1,没有共公因式,故该选项满足题意;C、b(a–2b)2与a(2b–a)2有公因式()2a b-,故该选项不满足题意;2D、x+1与x2–1有公因式x+1,故该选项不满足题意;故选:B.【点睛】本题主要考查公因式的确定,熟练掌握因式分解是解决本题的关键.15.C【分析】根据二次根式的性质即可求出答案.【详解】A. 3=,故原选项错误;B. 3,故原选项错误;C. (23=,正确;D. D错误故选:C.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.D=进行化简,再根据绝对值的意义列出不等式,求解即可.a=-=-,m m11∵1-m≥0,∵m≤1故选:Da二者是等价的,故二者可以互化.17.C【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C、(a2)3=a2×3=a6,故本选项正确;D、a12÷a6=a12﹣6=a6,故本选项错误.故选C.【点睛】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.18.C【分析】分别根据同底数幂的除法法则,二次根式的加法法则,积的乘方运算法则以及零指数幂、负整数指数幂的运算法则逐一判断即可.【详解】A、826x x x÷=原计算错误,不符合题意;B、235=+=≠C、()32628a a-=-正确,符合题意;D、11(1)1212-⎛⎫--=-=-⎪⎝⎭原计算错误,不符合题意;故选:C.【点睛】本题主要考查了同底数幂的除法,幂的乘方与积的乘方,二次根式的运算,零指数幂、负整数指数幂的运算,熟记二次根式的运算、幂的运算法则是解答本题的关键.19.B【详解】试题解析:50m∴-≥,即5m≤,∵原式(5m=-故选B.20.-1.2×10-8【详解】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.0.000000012用科学记数法表示为21.4 -5【分析】先求出有理数的绝对值,再求相反数,即可得到答案.【详解】∵45--=45-, 故答案是: 45-. 【点睛】本题主要考查有理数的绝对值法则和相反数的概念,掌握有理数的绝对值法则和相反数的概念是解题的关键.22.2.299×106吨【分析】根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1,可得出答案.【详解】2299000吨=2.299×106吨,故答案为2.299×106吨.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.23.0a ≥【分析】根据二次根式的非负性解题即可.【详解】解:∵0a ≥,故答案为:0a ≥.【点睛】本题主要考查二次根式的定义,能够熟记定义是解题关键.24.-2015.【详解】试题解析:2015的相反数是-2015.考点:相反数.25.82.02110⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:202100000=2.021×108.故答案为:82.02110⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要确定a 的值以及n 的值.26.52【分析】根据根式有意义的条件可知2x+3_≥0,4y-6x_≥0,x+y+z_≥0,再根据已知条件可得到2x+3=0,4y-6x=0,x+y+z=0;通过解方程组即可求出x 、y 、z 的值,即可xz y的值.0=可得2304600x y x x y z +=⎧⎪-=⎨⎪++=⎩, 解得3294154x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 将x 、x 、z 的值代入xzy 可得3152494-⨯-=52, 所以xz y 的值为52. 故答案为52. 【点睛】此题考查二次根式有意义的条件,解题关键在于利用其性质进行解答. 27.【分析】(1)根据二次根式的性质即可求解.(2)根据最简二次根式的化简即可求解.=;=;【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的运算法则与性质. 28【分析】根据算术平方根的性质可以把2和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.∵写出一个大于2小于3.【点睛】本题考查了无理数的估算,估算无理数大小要用逼近法.用有理数逼近无理数,求无理数的近似值.29.92【分析】由2a =2a -=241a a -=-,整体代入即可求解.【详解】解:∵2a =∵2a -=()223a -=,∵2443a a -+=,即241a a -=-, ∵299943132a a ==-+-+. 故答案为:92. 【点睛】本题考查了分式的化简求值,二次根式的性质,掌握整体代入法是解题的关键. 30.46.7510⨯【分析】科学记数法的表示形式为ax10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:67500=46.7510⨯,即答案为:46.7510⨯.【点睛】本题考查用科学记数法表示较大的数,一般形式为ax10n ,其中1≤al<10,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.31.x≤且x≠0【详解】试题分析:当x 满足条件120{0x x -≥≠时,式子有意义,解得x≤且x≠0.考点:代数式有意义的条件.32【分析】直接根据题意列式计算即可.2是有理数,即输出的y【点睛】本题考查了求算术平方根和立方根即根据图片列式计算,能够根据图片正确列出算式是解题的关键.33. ﹣3553 【详解】试题解析:根据乘积为1的两个数互为倒数,可得一个数的倒数;根据只有符号不同的两个数互为相反数,可得一个数的相反数,故:213-的倒数是-35,213-的相反数是213 34.10.【分析】分别找到图1中图形内的格点数和图形上的格点数后,再与公式比较,即可发现表示图上的格点数对应的字母和图形内的格点数对应的字母,再利用图2中的有关数据代入公式即可求得图形的面积.【详解】解:根据图1可得,∵矩形内由2个格点,边上有10个格点,面积为6, 即106=2+12-; 正方形内由1个格点,边上有8个格点,面积为4, 即84=1+12-; ∵公式中表示多边形内部整点个数的字母是a ;表示多边形边上(含多边形顶点)的格点个数为b ,由图2得:8,6,a b ==6=18110.22b S a ∴+-=+-= 故答案为:10.【点睛】本题考查了新定义型的图形的变化类问题,解题的关键是能够仔细弄懂题意,弄懂公式中代数式的含义,根据题意进行探究,找到规律,再利用规律解决问题. 35.49【分析】首先配方得出a 2+ab+b 2=(a+b )2-ab 进而得出答案.【详解】解:∵a+b=8,ab=15,则a 2+ab+b 2=(a+b )2-ab=82-15=49.故答案为49.【点睛】此题主要考查了配方法的应用,正确配方是解题关键.36.2±.【分析】分别根据平方根、立方根的定义可以求出甲数、乙数,进而即可求得题目结果. 【详解】甲数是719的平方根 ∴甲数等于43±; 乙数是338的立方根, ∴乙数等于32. ∵43=232⨯ ∴甲、乙两个数的积是2±.故答案:2±.【点睛】此题主要考查了立方根、平方根的定义,解题的关键是根据平方根和立方根的定义求出甲数和乙数.37.(2)(2)x y x y +--+##(x -y +2)(x +y -2)【分析】先分组成22(44)x y y -+-,再利用完全平方公式化为22(2)x y --,最后利用平方差公式解答.【详解】解:2244x y y -+-22(44)x y y =--+22(2)x y =--(2)(2)x y x y =+--+故答案为:(2)(2)x y x y +--+.【点睛】本题考查因式分解,涉及分组分解法、完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题的关键.38. 6 128【分析】(1)当n=4时,4()a b +的展开式的系数恰好对应的是第五行的数,根据第五行的数即刻得出答案;(2)7()a b +的展开式的系数恰好对应第八行的数,据图写出第八行的数求和即可.【详解】解:(1)4()a b +的展开式的系数恰好对应的是第五行的数,为:1,4,6,4,1,故4()a b +的展开式中第3项的系数是6;(2)据题可知第八行的数为:1,7,21,35,35,21,7,1.故7()a b +的展开式中各项的系数的和为:1+7+21+35+35+21+7+1=128.故答案为:(1)6;(2)128.【点睛】本题考查完全平方公式,探索与表达规律.(1)能找出()n a b +的展开式的系数与杨辉三角中行数之间的关系是解题关键;(2)中能依据“杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和”写出“杨辉三角”的第八行数是解题关键.39.1【分析】根据数的乘方、零指数幂、开方法则进行计算,在加上特殊角的三角函数值,即可求解.【详解】解:原式=1+1-2=1121+-+=1.【点睛】本题考查实数的混合运算,熟练掌握实数的运算法则和熟记特殊角的三角函数值是解题的关键.40.(1)53n m n +;(2)- 12x <≤【分析】(1)运用整式的乘法法则计算即可;(2)根据不等式的运算求得解后再联立求解集即可.【详解】解:(1)原式 233253n n n m n m m n +-+=÷= (2)10223x x x +>⎧⎪⎨-≤+⎪⎩①② 解∵的1x >-,解∵得x 2≤,不等式组的解集为- 12x <≤【点睛】本题主要考查整式的乘法法则以及解一元一次不等式组,解题的关键是熟练地掌握整式的乘法的乘法法则以及解一元一次不等式组的解题步骤和方法即可.41.25 【详解】解:点(3,1)P -与点(,1)Q a b b +-关于原点对称,3a b ∴+=-,11b -=,解得:2,5b a ==-,2(5)25b a ∴=-=.42.(1)﹣7;(2)﹣2≤x <1【分析】(1)根据有理数的乘方、零指数幂、绝对值的意义进行化简即可;(2)先分别解不等式,再根据不等式组解集的规律写出解集即可.【详解】(1)原式=﹣9+11)=﹣9+1=﹣7(2)3(1)25322x x x x -≥-⎧⎪⎨+<⎪⎩①②, 解不等式∵,得x ≥﹣2,解不等式∵,得x <1,∵不等式组的解集为﹣2≤x <1.【点睛】本题考查了实数的混合运算和解不等式组,掌握实数的运算法则和解不等式组的步骤是解题的关键.43.(1)4(2)-5a 5【分析】(1)根据有理数的乘方,零指数幂,负整数指数幂分别进行计算即可; (2)根据同底数幂的乘法,积的乘方,单项式除以单项式分别进行计算即可.(1)解:原式=-1+1+4=4;(2)原式=-a3•a2﹣4a8÷a3=-a5-4a5=-5a5.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、同底数幂的乘法、积的乘方、单项式除以单项式,解题关键是掌握相关的运算法则.44.2【分析】(1)运用分配律计算即可;(2)先将二次根式化简,然后去括号计算即可.【详解】(1)解:=2(2)==【点睛】题目主要考查二次根式的运算,掌握二次根式的运算法则是解题关键.45.3±【分析】利用平方根及算术平方根的定义列出方程,得到a与b的值,确定出a+2b的值,即可求出平方根.【详解】解:由题意得2a-1=9,3a+b-1=16,解得:a=5,b=2,则a+2b=9,∵a+2b的平方根是3±.【点睛】此题考查了平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.46.(1)4;(2)2-+.x x342【分析】(1)根据零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂计算即可;(2)利用完全平方公式和平方差公式展开,化简即可.【详解】(1)原式112222=-⨯++ 1122=-++4=;(2)原式()224411x x x =-+--224411x x x =-+-+2342x x =-+.【点睛】本题考查了零指数幂,特殊角的三角函数值,算术平方根,负整数指数幂,完全平方公式和平方差公式,注意第(2)个小题平方差公式展开要加括号.47.-a +2c .【分析】根据已知判断出a +b ,c -a 及b -c 的符号,进而确定出二次根式、绝对值里边式子的符号,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:∵a <b <0<c ,a +b <0,c -a >0,b -c <0.∵||||||a a b b c -+-||||||||a a b c a b c =-++-+-=-a +(a +b )+(c -a )+(c -b )=-a +a +b +c -a +c -b=-a +2c .【点睛】此题考查了二次根式的性质与化简,整式的加减,以及绝对值的性质,去括号法则,以及合并同类项法则.正确得出各项符号是解题关键.48.(1)21113791=+ (2)21121(21)n n n n =+--;证明见解析 【分析】(1)观察前几个等式即可写出第7个等式;(2)结合(1)观察数字的变化规律即可写出第n 个等式,并进行证明.【详解】解:观察以下等式:第1个等式:211111=+, 第2个等式:211326=+,答案第16页,共16页 第3个等式:2115315=+, 第4个等式:2117428=+, 第5个等式:2119545=+, ……按照以上规律, (1)第7个等式:21113791=+; 故答案为:21113791=+; (2)第n 个等式:21121(21)n n n n =+-- 证明:∵等式右边11(21)n n n =+- 21122(21)(21)(21)21n n n n n n n n n -=+==---- ∵左边=右边∵猜想得证. 故答案为:21121(21)n n n n =+-- 【点睛】本题考查了规律型:数字的变化类、列代数式,解决本题的关键是观察数字的变化寻找规律.。
中考根底训练50制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
时间是:30分钟你实际使用分钟班级姓名学号成绩一、选择题:1.函数y=11+x中,自变量算的取值范围是 .2.据国家统计局统计,2021年第一季度国内消费总值约为43 300亿元,用科学记数法表示43 300亿元是亿元.3.如图,AB∥CD,∠B=680,∠E=200,那么∠D的度数为 .(第3题)4.某班a名同学参加植树活动,其中男生b名(b<a).假设只由男生完成,每人需植树15棵;假设只由女生完成,那么每人需植树棵.5,-2,3,x,3,-2,假设每个数据都是这组数据的众数,那么这组数据的平均数是 .6. 等腰三角形的腰长是6cm,底边长是8cm,那么以各边中点为顶点的三角形的周长是 . 7.请写出一个开口向上,与y轴交点纵坐标为-1,且经过点(1,3)的抛物线的解析式 .8.某把学生的纸笔测试、理论才能两项成绩分别按60%、40%的比例计入学期总成绩.小明理论才能这一项成绩是81分,假设想学期总成绩不低于90分,那么纸笔i贝9试的成绩至少是分.9.右图是一单位拟建的大门示意图,上部是一段直径为10米的圆弧形,下部是矩形ABCD,其中AB=3.7米,BC=6米,那么AD的中点到BC的间隔是 .10.直线y=k-4与y 轴相交所成的锐角的正切值为12,那么k 的值是 . 11.在△ABC 中,AB>BC>AC ,D 是AC 的中点,过点D 作直线z ,使截得的三角形与原三角形相似,这样的直线L 有 条.二、选择题 12.以下运算正确的选项是( ) (A)4=±2 (B)2-3=-6 (C)x 2·x 3=x 6 (D)(-2x)4=16x 413.在以下四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)14.在△ABC 中,∠C=900,BC=2,sinA=23,那么边AC 的长是( ) (A) 5 (B)3 (C)43(D)13 15.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是( )(A)14 (B)15 (C)16 (D)1716.如图,△ABC 中,∠B=900,AB=6,BC=8,将△ABC 沿DE 折叠,使点C 落在AB 边上的C ′处,并且C ′D∥BC,那么CD 的长是( )(A)409 (B)509 (C)154 (D)25417.有2名男生和2名女生,王教师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )(A)14 (B)13 (C)12 (D)2319.为了奖励进步较大的学生,某班决定购置甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购置这些钢笔需要花60元;经过协商,每种钢笔单价下降l元,结果只花了48元,那么甲种钢笔可能购置( )(A)11支 (B)9支 (C)7支〔D〕5支20.如图,在矩形ABCD中,EF∥AB,GH∥BC,EF、GH的交点P在BD上,图中面积相等的四边形有( )(A)3对 (B)4对 (C)5对 (D)6对三、解答题:先化简 (1+1x-1)÷xx2-1,再选择一个恰当的x值代人并求值.制卷人:打自企;成别使;而都那。
中考数学九年级专题训练50题含答案_一、单选题1.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A .B .C .D .12.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为x ,则得方程( ) A .()2001722x -=⨯ B .()22001%72x -= C .()2200172x -=D .220072x =3.如图,已知BD 与CE 相交于点A ,DE BC ∥,如果348AD AB AC ===,,,那么AE 等于( )A .247B .1.5C .14D .64.如图,CD 是⊙O 的直径,A ,B 是⊙O 上的两点,若15ABD ∠=°,则 ⊙ADC 的度数为( )A .55°B .65°C .75°D .85°5.一元二次方程()()()221211x x x --+=的解为( ) A .2x = B .121,12x x =-=-C .121,22x x ==D .121,12x x ==-6.如图,在Rt ABC 中,90C ∠=︒,10AB =,8AC =,D 是AC 上一点,5AD =,DE AB ⊥,垂足为E ,则AE =( )A .2B .3C .4D .57.如图,抛物线211242y x x =--与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且//CD AB .AD 与y 轴相交于点E ,过点E 的直线MN 平行于x 轴,与抛物线相交于M ,N 两点,则线段MN 的长为( )AB C .D .8.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( )A .B .C .D .9.如图,O 中,弦AB AC ⊥,4AB =,2AC =,则O 直径的长是( ).A .B .CD 10.在平面直角坐标系中,点2(2,1)A x x +与点(3,1)B -关于y 对称,则x 的值为( ) A .1B .3或1C .3-或1D .3或1-11.2022年,某省新能源汽车产能达到30万辆.到了2024年,该省新能源汽车产能将达到41万辆,设这两年该省新能源汽车产能的平均增长率为x .则根据题意可列出的方程是( ) A .()301241x +=B .()230141x += C .()()23030130141x x ++++=D .()23030141x ++=12.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( ) A .134B .154C .238D .25813.下列说法正确的是( )A .了解我市市民观看2022北京冬奥会开幕式的观后感,适合普查B .若一组数据2、2、3、4、4、x 的众数是2,则中位数是2或3C .一组数据2、3、3、5、7的方差为3.2D .“面积相等的两个三角形全等”这一事件是必然事件 14.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上B .今年夏天马鞍山不会下雪C .随意掷两枚质地均匀的骰子,朝上的点数之和为1D .库里罚球投篮3次,全部命中15.如图是二次函数2(1)2y a x =++图象的一部分,则关于x 的不等式2(1)20a x ++>的解集是( )A .x<2B .x>-3C .-3<x<1D .x<-3或x>116.已知抛物线y =ax 2+bx +3中(a ,b 是常数)与y 轴的交点为A ,点A 与点B 关于抛物线的对称轴对称,二次函数y =ax 2+bx +3中(b ,c 是常数)的自变量x 与函数值y 的部分对应值如下表:下列结论正确的是( )A .抛物线的对称轴是x =1 B .当x =2时,y 有最大值-1C .当x <2时,y 随x 的增大而增大D .点A 的坐标是(0,3)点B 的坐标是(4,3)17.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是( ) A .0B .﹣2C .1D .318.如图,在平面直角坐标系中,抛物线23(0)y ax bx a =++<交x 轴于A ,B 两点(B 在A 左侧),交y 轴于点C .且CO AO =,分别以,BC AC 为边向外作正方形BCDE ,正方形ACGH .记它们的面积分别为12,S S ,ABC 面积记为3S ,当1236S S S +=时,b 的值为( )A .12-B .23-C .34-D .43-19.将方程()()212523x x x x -=--化为一般形式后为( ) A ..2x -8x-3=0 B .9.2x +12x-3=0 C .2x -8x+3=0D .9.2x -12x+3=020.如图,抛物线y=14(x+2)(x ﹣8)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为M ,以AB 为直径作⊙D .下列结论:⊙抛物线的最小值是-8;⊙抛物线的对称轴是直线x=3;⊙⊙D 的半径为4;⊙抛物线上存在点E ,使四边形ACED 为平行四边形;⊙直线CM 与⊙D 相切.其中正确结论的个数是( )A .5B .4C .3D .2二、填空题21.已知反比例函数1ky x-=,每一象限内,y 都随x 的增大而增大,则k 的值可以是(写出一个即可)_____.22.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).23.如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.24.若二次函数261(0)y mx mx m =-+>的图象经过A (2,a ),B (﹣1,b ),C (5,c )三点,则a ,b ,c 从小到大排列是_____.25.如图,AB 是O 的直径,点M 在O 上,且不与A 、B 两点重合,过点M 的切线交AB 的延长线于点C ,连接AM ,若⊙MAO=27°,则⊙C 的度数是______.26.如图,在平面直角坐标系中,点E 在x 轴上,E 与两坐标轴分别交于A B C D 、、、四点,已知()()6,0,2,0A C -,则B 点坐标为___________27.请写出一个以2和-5为根的一元二次方程:______________________. 28.已知ab =2,那么3232a b a b-+=______.29.二次函数2y x x 2=+-的图象与x 轴有______个交点. 30.对于函数6y x=,若x >2,则y ______3(填“>”或“<”). 31.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km32.皮影戏中的皮影是由________投影得到.33.计算:011(2019)12sin 45()3π---+=____.34.如图,在Rt △ABC 中,⊙C =90°.△ABC 的内切圆⊙O 切AB 于点D ,切BC 于点E ,切AC 于点F ,AD =4,BD =6,则Rt △ABC 的面积=_____.35.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为____cm 2.36.若一个圆锥的底面积为16πcm 2,母线长为12cm ,则该圆锥的侧面积为_____. 37.如图,矩形OABC 的顶点,A C 分别在x 轴、y 轴上,顶点B 在第二象限,AB =将线段OA 绕点О按顺时针方向旋转60︒得到线段,OD 连接,AD 反比例函数()0ky k x=≠的图象经过,D B 两点,则k 的值为____.38.如图(1),在Rt ABC △中,=90ACB ∠︒,点P 以每秒1cm 的速度从点A 出发,沿折线AC CB -运动,到点B 停止,过点P 作PD AB ⊥,垂足为D ,PD 的长()y cm 与点P 的运动时间()x s 的函数图象如图(2)所示,当点P 运动5s 时,PD 的长是___________.39.在平面直角坐标系中,经过反比例函数ky x=图象上的点A (1,5)的直线2y x b =-+与x 轴,y 轴分别交于点C ,D ,且与该反比例函数图象交于另一点B .则BC AD +=______.三、解答题40.解方程:2(2)9x -=. 41.已知二次函数y=﹣x 2+2x+3(1)在如图所示的坐标系中,画出该函数的图象 (2)根据图象回答,x 取何值时,y >0?(3)根据图象回答,x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?42.在直角坐标平面内,直线y =12x +2分别与x 轴、y 轴交于点A 、C .抛物线y =﹣212x +bx +c 经过点A 与点C ,且与x 轴的另一个交点为点B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果⊙ABE 的面积与⊙ABC 的面积之比为4:5,求⊙DBA 的余切值;(3)过点D 作DF ⊙AC ,垂足为点F ,联结CD .若⊙CFD 与⊙AOC 相似,求点D 的坐标.43.如图,已知直线2y x =与双曲线ky x=的图象交于A ,B 两点,且点A 的坐标为()1,a .(1)求k 的值和B 点坐标;(2)设点()(),00P m m ≠,过点P 作平行于y 轴的直线,交直线2y x =于点C ,交双曲线ky x=于点D .若POC △的面积大于POD 的面积,结合图象,直接写出m 的取值范围.44.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆. (1)若该小区家庭轿车的年平均增长量都相同, 请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.45.为了测量某教学楼CD 的高度,小明在教学楼前距楼基点C ,12米的点A 处测得楼顶D 的仰角为50°,小明又沿CA 方向向后退了3米到点B 处,此时测得楼顶D 的仰角为40°(B 、A 、C 在同一水平线上),依据这些数据小明能否求出教学楼的高度?若能求,请你帮小明求出楼高;若不能求,请说明理由. 2.24)46.(1)用配方法解方程:x2﹣2x﹣1=0.(2)解方程:2x2+3x﹣1=0.(3)解方程:x2﹣4=3(x+2).47.梯形ABCD中DC⊙AB,AB =2DC,对角线AC、BD相交于点O,BD=4,过AC的中点H作EF⊙BD分别交AB、AD于点E、F,求EF的长.48.计算:3-+;⊙222602cos458︒+︒+︒sin45cos60tan3049.小明根据学习函数的经验,对函数y=|x2﹣2x|﹣2的图象与性质进行了探究,下面是小明的探究过程,请补充完整:(1)在给定的平面直角坐标系中;画出这个函数的图象,⊙列表,其中m=,n=.⊙描点:请根据表中数据,在如图所示的平面直角坐标系中描点:⊙连线:画出该函数的图象.(2)写出该函数的两条性质:.(3)进一步探究函数图象,解决下列问题:⊙若平行于x轴的一条直线y=k与函数y=|x2﹣2x|﹣2的图象有两个交点,则k的取值范围是;⊙在网格中画出y=x﹣2的图象,直接写出方程|x2﹣2x|﹣2=x﹣2的解为.参考答案:1.A【详解】试题分析:先求出总的球的个数,再出摸到红球的概率.已知袋中装有6个红球,2个绿球,可得共有8个球,根据概率公式可得摸到红球的概率为;故答案选A.考点:概率公式.2.C【分析】设调价百分率为x ,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x ,则:2200(1)72.x -=故选:C .【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.3.D【分析】证明ABC ADE △△∽ ,由相似三角形的性质得出AB AC AD AE=,则可得出答案. 【详解】解:⊙DE BC ∥,⊙ABC ADE △△∽, ⊙AB AC AD AE =, 即483AE =, ⊙6AE =,故选:D .【点睛】本题考查了相似三角形的判定与性质,熟记性质是解题的关键.4.C【分析】根据圆周角定理可得⊙ACD =15°,再由直径所对的圆周角是直角,可得⊙CAD =90°,即可求解.【详解】解:⊙⊙ACD =⊙ABD ,15ABD ∠=°,⊙⊙ACD =15°,⊙CD 是⊙O 的直径,⊙⊙CAD =90°,⊙⊙ADC =90°-⊙ACD =75°.故选:C【点睛】本题主要考查了圆周角定理,熟练掌握在同圆(或等圆)中,同弧(或等弧)所对的圆周角相等,直径所对的圆周角是直角是解题的关键.5.C【分析】根据因式分解法解一元二次方程,即可求解.【详解】解:()()()221211x x x --+= ()()212110x x x ----=,()()2120x x --=, 解得121,22x x ==, 故选C .【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 6.C【分析】先证明⊙ADE ⊙⊙ABC ,得出对应边成比例,即可求出AE 的长.【详解】解:⊙ED ⊙AB ,⊙⊙AED =90°=⊙C ,⊙⊙A =⊙A ,⊙⊙ADE ⊙⊙ABC , ⊙AD AE AB AC =,即5108AE =, 解得:AE =4.故选:C .【点睛】本题考查了相似三角形的判定与性质;熟练掌握相似三角形的判定方法,证明三角形相似得出比例式是解决问题的关键.7.D【分析】利用二次函数图象上点的坐标特征求出点A 、B 、C 、D 的坐标,由点A 、D 的坐标,利用待定系数法求出直线AD 的解析式,利用一次函数图象上点的坐标特征求出点E的坐标,再利用二次函数图象上点的坐标特征得出点M 、N 的坐标,进而可求出线段MN 的长.【详解】当0y =时,2112042x x --=, 解得:1224x x =-=,,⊙点A 的坐标为(-2,0);当0x =时,2112242y x x =--=-, ⊙点C 的坐标为(0,-2);当2y =-时,2112242x x --=-, 解得:1202x x ==,,⊙点D 的坐标为(2,-2),设直线AD 的解析式为()0y kx b k =+≠,将A(-2,0),D(2,-2)代入y kx b =+,得:2022k b k b -+=⎧⎨+=-⎩,解得:121k b ⎧=-⎪⎨⎪=-⎩, ⊙直线AD 的解析式为112y x =--, 当0x =时,1112y x =--=-, ⊙点E 的坐标为(0,1-).当1y =-时,2112142x x --=-,解得:1211x x ==⊙点M 、N 的坐标分别为(1,-1)、(1-1),⊙MN=(11=故选:D .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点M 、N 的坐标是解题的关键.8.A【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A 不可能,即不会是梯形.故选A .【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9.A【分析】连接BC ,由90BAC ∠=︒可知BC 为直径,利用勾股定理求解即可.【详解】解:连接BC ,如图:⊙AB AC ⊥,⊙90BAC ∠=︒,⊙BC 为直径,由勾股定理可得:BC =故选:A【点睛】此题考查了圆的有关性质,勾股定理,解题的关键是熟练掌握圆的相关知识. 10.C【分析】先根据关于y 轴对称点的坐标特点建立方程,然后解一元二次方程,即可得出结果.【详解】解:⊙A 、B 两点关于y 轴对称,⊙223x x +=,⊙()()310x x +-=,解得3x =-或1,故选:C .【点睛】本题考查了关于y 轴对称点的坐标特点和解一元二次方程,根据关于y 轴对称点的坐标特点建立方程是解题的关键.11.B【分析】设这两年该省新能源汽车产能的平均增长率为x ,根据题意列出一元二次方程即可求解.【详解】解:设这两年该省新能源汽车产能的平均增长率为x ,根据题意得,()230141x +=, 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.12.A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答. 【详解】 抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +) ∴23142b bc +=+ 23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.13.C【分析】根据全面调查与抽样调查、中位数与众数、方差、必然事件的定义逐项判断即可得.【详解】解:A 、了解我市市民观看2022北京冬奥会开幕式的观后感,适合抽样调查,则此项说法错误,不符题意;B 、因为一组数据2、2、3、4、4、x 的众数是2,所以2x =,将这组数据按从小到大进行排序为2,2,2,3,4,4,则第三个数和第四个数的平均数为中位数, 所以中位数是23 2.52+=,则此项说法错误,不符题意; C 、这组数据的平均数为2335745++++=, 则方差为222221(24)(34)(34)(54)(74) 3.25⎡⎤⨯-+-+-+-+-=⎣⎦,此项说法正确,符合题意;D 、“面积相等的两个三角形不一定全等”,则这一事件是随机事件,此项说法错误,不符题意;故选:C .【点睛】本题考查了全面调查与抽样调查、中位数与众数、方差、必然事件,熟练掌握各定义和计算公式是解题关键.14.C【分析】事件的发生的概率为0,即为一定不可能发生的事件.【详解】解:C 中事件中两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了不可能事件的定义,熟悉掌握概念是解决本题的关键.15.C【分析】直接根据二次函数的图像和性质即可得出结论.【详解】二次函数y =a(x +1)2+2的对称轴为x =﹣1,⊙二次函数y =a(x +1)2+2与x 轴的一个交点是(﹣3,0),⊙二次函数y =a(x +1)2+2与x 轴的另一个交点是(1,0),⊙由图像可知关于x 的不等式a(x +1)2+2>的解集是﹣3<x <1.故选C.【点睛】本题主要考查二次函数的图像与性质,找出y=a(x+1)2+2与x轴的两个交点是解本题的关键.16.D【分析】利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,然后根据x=-1时,y=8,判断增减性,再利用x=0时,y=3,结合对称轴,即可得出A、B点坐标.【详解】)⊙当x=1和3时,y=0,⊙抛物线的对称轴是直线x=2,故A选项错误;又⊙x=-1时,y=8,⊙x<2时,y随x增大而减小;x>2时,y随x增大而大,故C选项错误;⊙x=2时,y有最小值,故B选项错误;⊙x=0时,y=3,则点A(0,3),⊙点A与点B关于抛物线的对称轴对称,⊙B点坐标(4,3),⊙A、B、C错误,D正确.故选:D .【点睛】此题主要考查了二次函数的性质,由表格数据获取信息是解题的关键.17.D【分析】先找出二次函数y=2x2﹣2x+3的对称轴为直线x=12,求得a+b=1,再把x=1代入y=2x2﹣2x+3即可.【详解】解:⊙当x=a或x=b(a≠b)时,二次函数y=2x2﹣2x+3的函数值相等,⊙以a、b为横坐标的点关于直线x=12对称,则122a b+=,⊙a+b=1,⊙x=a+b,⊙x=1,当x=1时,y=2x2﹣2x+3=2﹣2+3=3,故选D.【点睛】题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和对称轴公式,是基础题,熟记性质是解题的关键.18.B【分析】先确定(0,3)C 得到3OC OA ==,利用正方形的性质,由1236S S S +=得到2222163(3)2OC OB OC OA OB +++=⨯⨯⨯+,求出OB 得到0()9,B -,于是可设交点式(9)(3)y a x x =+-,然后把(0,3)C 代入求出a 即可得到b 的值.【详解】解:当0x =时,233y ax bx =++=,则(0,3)C ,3OC OA ∴==,(3,0)A ∴,1236S S S +=,2222163(3)2OC OB OC OA OB ∴+++=⨯⨯⨯+, 整理得290OB OB -=,解得9OB =,(9,0)B ∴-,设抛物线解析式为(9)(3)y a x x =+-,把(0,3)C 代入得9(3)3a ⨯⨯-=,解得19a =-, ∴抛物线解析式为1(9)(3)9y x x =-+-, 即212393y x x =--+,23b ∴=-. 故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和正方形的性质.19.C【分析】通过去括号、移项、合并同类项将已知方程转化为一般形式.【详解】解:由原方程,得2x-4x 2=10x-5x 2-3,则x 2-8x+3=0.故选C .【点睛】本题考查了一元二次方程的一般形式.一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax 2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.20.D【分析】根据抛物线的解析式将其化为一般式,再利用抛物线的性质,求解最小值,对称轴.⊙D 的半径计算,主要是计算AB ,将y=0,带入就可以解得.【详解】解:根据抛物线的解析式y=14(x+2)(x ﹣8)将其化为一般式可得213442y x x =-- ⊙错误,抛物线的最小值是2134(4)25421444⎛⎫⨯⨯-- ⎪⎝⎭=-⨯ ;⊙正确,抛 物线的对称轴是323124--=⨯ ;⊙错误,根据y=14(x+2)(x ﹣8)可得,要使y=0,则 x=-2或8,因此(2,0)A - ,(8,0)B ,可得10AB = ,所以⊙D 的半径的半径为5;⊙错误,抛物线上不存在点E ,使四边形ACED 为平行四边形;⊙正确,直线CM 与⊙D 相切 故选D【点睛】本题主要考查二次函数的性质,二次函数的最值,对称轴,交点坐标一直是考试的重点内容,必须熟练的掌握.21.2【分析】根据反比例函数的性质,每一象限内,y 都随x 的增大而增大,则1-k<0解出k 值范围,取合适的数即可.【详解】⊙反比例函数1k y x -=,每一象限内,y 都随x 的增大而增大, ⊙1-k<0,⊙k>1,取k=2,满足题意,故答案为:2.【点睛】本题考查了反比例函数的增减性,理解反比例函数的增减性是解题的关键. 22.⊙、⊙、⊙【详解】本题考查的是由三视图判断几何体依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可. ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故答案为⊙⊙⊙.23【分析】连接BC,连接CO并延长CO交AB于点H,切线性质定理得⊙OCD=90°,CD AB得CH⊙AB,由垂径定理可得CH垂直平分AB,可推出ABC为等边三角形,进//而得出答案.【详解】解:如图,连接BC,连接CO并延长CO交AB于点H,⊙,直线CD与O相切于点C,⊙OC⊙CD⊙⊙OCD=90°⊙//CD AB⊙⊙AHC=⊙OCD=90°⊙CH⊙AB⊙AH=BH⊙CH垂直平分AB⊙AC=BC=⊙AB AC⊙AC=BC=AB⊙ABC为等边三角形,⊙60A∠=︒,⊙cos⊙A【点睛】本题考查垂径定理、切线的性质定理等,熟练掌握垂径定理是解题的关键.24.a<c<b【分析】抛物线开口向上,可根据二次函数的性质拿出对称轴,再根据A,B,C三点横坐标到对称轴的距离判断大小关系.【详解】由题意对称轴x=-62m m-=3, A 点横坐标到对称轴的距离为3-2=1B 点横坐标到对称轴的距离为3-(-1)=4C 点横坐标到对称轴的距离为5-3=2⊙4>2>1⊙b >c >a,从小到大排列为a <c <b.【点睛】考察二次函数的性质,根据横坐标到对称轴的距离即可判断大小关系,不需要求出具体坐标.25.36【详解】如图:连接MO,因为M 为切点,所以OM⊙MC, ⊙OMC=90°,因为OA=OM,所以⊙MAO=⊙OMA= 27°,所以⊙MOC=54°,所以⊙C=90°-54°=36°26.(0,-【分析】根据A 、C 的坐标得到圆的半径长和OE 长,利用勾股定理求出OB 的长,得到点B 坐标.【详解】解:如图,连接BE ,⊙()6,0A ,()2,0C -,⊙8AC =,4BE CE ==,2OC =,⊙422OE =-=,⊙在Rt OBE 中,OB =⊙(0,B -.故答案是:(0,-.【点睛】本题考查圆的性质和平面直角坐标系,解题的关键是根据已知点坐标得到线段长,结合几何的性质求点坐标.27.答案不唯一,如【详解】试题分析:方程的根的定义:方程的根就是使方程左右两边相等的未知数的值. 答案不唯一,如.考点:一元二次方程的根的定义28.12 【分析】由已知可得a=2b ,代入式子进行计算即可.【详解】⊙a b=2, ⊙a=2b , ⊙3a 2b 3a 2b -+=6262b b b b -+=12, 故答案为12. 【点睛】本题考查了比例的性质,得出a=2b 是解题的关键.29.两【分析】二次函数2y x x 2=+-的图象与x 轴的交点个数,即是2x x 2=0+-解的个数.【详解】令2x x 2=0+-,即()()120x x -+=解得x=1或x=-2,二次函数2y x x 2=+-的图象与x 轴有两个交点.故答案为两【点睛】此题考查抛物线与坐标轴的交点,解题关键在于使函数值等于0.30.<【分析】根据反比例函数的性质即可解答.【详解】当x=2时,632y==,⊙k=6时,⊙y随x的增大而减小⊙x>2时,y<3故答案为<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.31.6.【分析】过点C作CE⊙BD于E构造直角三角形,由方位角确定⊙ECD=60°,在Rt⊙CED 中利用三角函数AB=CD•cos⊙ECD即可.【详解】过点C作CE⊙BD于E,由湖的南,北两端A和B⊙⊙EBA=⊙BAC=90º,又⊙BEC=90º则四边形ABCE为矩形,⊙AB=CE⊙点D位于点C的北偏东60°方向上,⊙⊙ECD=60°,⊙CD=12km,在Rt⊙CED中,⊙CE=CD•cos⊙ECD=12×12=6km,⊙AB=CE=6km.故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.32.中心【分析】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【详解】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【点睛】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.33.3【分析】原式第一项利用零指数幂法则计算,第二项根据绝对值的代数意义去绝对值符号,第三项代入特殊角三角函数值计算,第四项利用负整数指数幂法则进行计算,最后进行加减运算即可得到结果.【详解】解:011(2019)12sin 45()3π-︒--+=123-+=13=3【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.34.24【分析】设内切圆半径为r ,根据内切圆的性质和勾股定理求出r 即可.【详解】设内切圆半径为r,则OE=OF=OD=r易知BD=BE=6,AD=AF=4⊙Rt△ABC中,AC2+BC2=(4+r)2+(6+r)2=AB2=100解得r=2,则AC=6,BC=8⊙S△ABC=24【点睛】本题考查的是三角形,熟练掌握熟练掌握三角形的内切圆是解题的关键. 35.16π.【分析】根据大圆的弦AB与小圆相切于点C,运用垂径定理和勾股定理解答.【详解】设AB切小圆于点C,连接OC,OB,⊙AB切小圆于点C,⊙OC⊙AB,⊙BC=AC=12AB=12×8=4,⊙Rt⊙OBC中,OB2=OC2+BC2,即OB2-OC2= BC2=16,⊙圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=16π(cm2).故答案为:16π.【点睛】本题考查了圆的切线,熟练掌握圆的切线性质定理,垂径定理和勾股定理是解决此类问题的关键.36.48πcm2【分析】根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.【详解】解:⊙圆锥的底面面积为16πcm2,⊙圆锥的半径为4cm,这个圆锥的侧面积为:212412482cm ππ⨯⨯⨯= 故答案为:48πcm 2.【点睛】本题考查了圆锥的计算,解题的关键是根据圆锥的底面面积得出圆锥的半径.37.-【分析】作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,根据旋转的性质求出OA=OD=m ,⊙AOD=60°,求出点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭,构造关于m 的方程,解方程得出点B 坐标,即可求解.【详解】解:如图,作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -, ⊙线段OA 绕点О按顺时针方向旋转60︒得到线段,OD⊙OA=OD=m ,⊙AOD=60°, ⊙1cos 2OE OD DOE m =∠=,sin DE OD DOE =∠=,⊙点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭, ⊙点B 、D 都在反比例函数()0k y k x=≠的图象上,⊙1322m m -=, 解得124,0x x ==(不合题意,舍去),⊙点B 坐标为(-,⊙4k =--故答案为:-【点睛】本题为反比例函数与几何综合题,考查了反比例函数的性质,旋转的性质,三角函数等知识,理解反比例函数性质,构造方程,求出点B 坐标是解题关键.38.1.2cm【分析】根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sinB 的值,可求出PD .【详解】解:由题图(2)可得3AC =cm ,4BC =cm ,5AB ∴=cm. 当5x =时,点P 在BC 边上,⊙5AC CP +=cm ,2BP AC BC AC CP ∴=+--=,在Rt ABC △中,3sin 5AC B AB ==, 在Rt PBD △中, 36sin 2 1.255PD BP B ∴=⋅=⨯==(cm ).【点睛】此题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC 、BC 的长度.39.【分析】先分别求出k ,b 的值得到函数解析式,得到点C ,D 的坐标,勾股定理求出CD 及AB 的长,即可得到答案. 【详解】解:将点(1,5)代入k y x =,得k =5,⊙5y x=, 将点(1,5)代入y =-2x +b ,得-2+b =5,解得b =7,⊙y =-2x +7,当527x x=-+时,解得x =1或x =2.5, 当x =2.5时,y =2,⊙B (2.5,2),令y =-2x +7中x =0,得y =7;令y =0,得x =3.5,⊙C (3.5,0),B (0,7),⊙CD =⊙AB⊙BC +AD =CD -AB故答案为:【点睛】此题考查了待定系数法求函数解析式,一次函数图象与坐标轴的交点,勾股定理,正确掌握待定系数法求出解析式是解题的关键.40.15 =x,21x=-【分析】直接利用开平方的方法解一元二次方程即可得到答案.【详解】解:(1)⊙()229x-=,⊙23x-=±,解得15 =x,21x=-.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.41.(1)图象见解析;(2)-1<x<3;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.【详解】试题分析:(1)列表,描点,连线,画出抛物线;(2)(3)根据图象回答问题即可.试题解析:(1)列表:描点、连线可得如图所示抛物线.(2)当-1<x <3时,y >0;(3)当x <1时,y 随x 的增大而增大.当x >1时,y 随x 的增大而减小.42.(1)y =﹣21322x -x +2;(2)98;(3)(﹣32,258)或(﹣3,2). 【分析】(1)由直线得到A 、C 的坐标,然后代入二次函数解析式,利用待定系数法即可得;(2)过点E 作EH ⊙AB 于点H ,由已知可得141252AB EH AB OC =⨯ ,从而可得EH 、HB 的长,然后再根据三角函数的定义即可得;(3)分情况讨论即可得.【详解】(1)令直线y =12x +2中y =0得12x +2=0解得x =-4,⊙A (-4,0),令x =0得y =2,⊙C (0,2) 把A 、C 两点的坐标代入212y x bx c =-++得, 2840c b =⎧⎨-=⎩, ⊙322b c ⎧=-⎪⎨⎪=⎩ , ⊙213222y x x =--+ ;(2)过点E 作EH ⊙AB 于点H ,由上可知B (1,0), ⊙45ABE ABC S S ∆∆=, ⊙141••252AB EH AB OC =⨯ , ⊙4855EH OC ==, 将85y =代入直线y =12x +2,解得45x =- ⊙4855E ⎛⎫- ⎪⎝⎭, ⊙49155HB =+= , ⊙90EHB ∠=︒ ⊙995cot 885HB DBA EH ∠===; (3)⊙DF ⊙AC ,⊙90DFC AOC ∠=∠=︒,⊙若DCF CAO ∠=∠,则CD//AO ,⊙点D 的纵坐标为2,把y=2代入213222y x x =--+得x=-3或x=0(舍去), ⊙D (-3,2) ;⊙若DCF ACO ∠=∠时,过点D 作DG ⊙y 轴于点G ,过点C 作CQ ⊙DG 交x 轴于点Q ,⊙90DCQ AOC ∠=∠=︒ ,⊙90DCF ACQ ACO CAO ∠+∠=∠+∠=︒,⊙ACQ CAO ∠=∠,⊙AQ CQ =,设Q (m ,0),则4m + ⊙32m =- , ⊙302Q ⎛⎫- ⎪⎝⎭,, 易证:COQ ∆⊙DCG ∆ , ⊙24332DG CO GC QO === ,设D (-4t ,3t+2)代入213222y x x =--+得t=0(舍去)或者38t =, ⊙32528D ⎛⎫- ⎪⎝⎭,. 综上,D 点坐标为(﹣32,258)或(﹣3,2) 43.(1)2k =;点B 的坐标为()1,2--(2)1m >或1m <-【分析】(1)利用待定系数法进行求值即可;(2)结合图象,可知当PC >PD ,POC △的面积大于POD 的面积,由此可知1m >或1m <-.(1)解:⊙点()1,A a 在直线2y x =上,⊙212a =⨯=,⊙点A 的坐标是()1,2, 代入函数k y x=中,得212k =⨯= ⊙直线2y x =经过原点⊙由双曲线的对称性可知,点A 与点B 关于原点对称,点B 的坐标为()1,2--; (2)如图所示:⊙点A 的坐标是()1,2,点B 的坐标为()1,2--,若POC △的面积大于POD 的面积,则:PC >PD ,结合图象可知此时:1m >或1m <-,【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.44.(1)25%;(2)室内21露天66;室内22露天62;室内23露天58;室内24露天54;【分析】(1)设平均增长率为x ,根据题意可列出关于x 的一元二次方程,解方程即可. (2)设室内车位为a 个,露天车位为b 个,根据计划投入15万元用于建若干个停车位,可列出一个关于a ,b 的方程,再根据计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,列出关于a ,b 的不等式,解不等式可求出a 的范围,因为a 是整数,所以最后的方案有有限个.【详解】(1)设平均增长率为x ,根据题意得2640(1)1000x += 解得125%4x ==或94x =-(不符合题意,舍去)。
中考数学数与式专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.下列四个数中,是无理数的是( )A B .1π3 C .52 D .3.142.﹣2的相反数为( )A .0B .﹣1C .﹣2D .23a 的取值范围是( )A .1a ≥-B .0a ≠C .1a >-D .0a > 4.下列多项式相乘,能用平方差公式计算的是( )A .()()22x x ++B .()()x y x y -+-C .()()22x y x y -+D .()()x y x y --+ 5.计算(﹣20)+17的结果是( )A .﹣3B .3C .﹣2017D .20176﹣5的结果为( )A .5B .5C .6D .17.下列计算正确的是( )A .336a a a +=B .336a a a ⋅=C .()325a a =D .33()ab ab =8.当 x =-3 )A .3B .-3C .±3 D9.点P (2a +1,4)与P '(1,3b -1)关于原点对称,则2a +b =( )A .3B .-2C .-3D .210.科学家使用某技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.用科学记数法表示数据0.00000000022,其结果是( ) A .90.2210-⨯ B .102.210-⨯ C .112210-⨯ D .80.2210-⨯ 11.下列运算不能运用平方差公式的是( )A .(23)(23)m m +-B .(23)(23)m m -+-C .(23)(23)m m ---D .(23)(23)m m -+-- 12.下面四个数中,最大的数是( )A .4-B .1-C .0D .513.下列计算正确的是( )A .2323()n n x x +=B .233262)((())a a a +=C .23236))((()a b a b +=+D .22[(])n n x x -=14.计算2a 2·3a 3的结果为( )A .6a 5B .-6a 5C .6a 6D .-6a 6 15.下列计算正确的是( )AB .2=C 2D 32 16.在式子“322(1)--中”的“○”内填入下列运算符号,计算后结果最大的是( ) A .+B .-C .×D .÷ 17.计算()()()()()()x c b c b c x a x b a b x b b a x a ---++------所得的结果是( ) A .x c - B .x a - C .1x a - D .1-x b18.下列各数中,是有理数的是( )A .面积为3的正方形的边长B .体积为8的正方体的棱长C .两直角边分别为2和3的直角三角形的斜边长D .长为3,宽为2的长方形的对角线长19.下列各题中的两项是同类项的是( )A .23x y 和-23x y ;B .22a b 和20.2ab ;C .11abc 和9bc ;D .26和2x .二、填空题20.要使式子2x x -有意义,则x 的取值范围______. 21.已知,2253a b ab a b +==+=,,______________.22.比较大小: 1.5-____34-(用<,>,= 填空).23.如果一个数的立方根是6,则它相反数的立方根是______,它倒数的立方根是____.24.苏州公共自行车自2010年起步至今,平均每天用车量都在10万人次以上,在全国公共自行车行业排名前五名.根据测算,日均10万多人骑行公共自行车出行,意味着苏州每年因此减少碳排放6865.65吨,相当于种树近22.7万棵,对数据6865.65吨按精确到0.1吨的要求取近似值可表示为___吨.25.已知:3a b +=,则代数式22(1)(1)484a b a ab b ab ++----=__________. 26.116-的相反数是______,倒数是______,绝对值是______.27.下列代数式中的哪些是单项式,哪些是多项式,哪些是整式?3x y z ++,4xy ,1a ,22m n ,x 2+x +1x ,0,212x x -,m ,﹣2.01×105 整式集合:{_______________ …}单项式集合:{__________ …}多项式集合:{_______________…}.28m =_____. 29.若4m n -=,则228m n n --=______.30x 的取值范围是____________.31x 的取值范围为_____.32.若1139273m m ⨯⨯=,则m=__________.33_______4(填“>”“<”或“=”).34.计算:(22=_____.35.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)111113266--+=____________. 36.已知a 与b 互为相反数,c 、d 互为倒数,x 的绝对值是2,y 不能作除数,则()201122012010122()a b cd y x+-++的值等于_____. 37.已知关于x 的多式225x x k -+的一个因式是3x +,则k 的值是__.38.()()2312x x n x ax ++=++,则a 的取值____39.23(2)x y y ⎛⎫-⋅- ⎪⎝⎭=_____________.三、解答题40)2 41.解答下列问题.(1)|1(.(2)已知:2(5)49x +=,求x 的值.42.若36xy =,且5x y -=.(1)求()()22x y -+的值;(2)求22x xy y x y -+++的值.43.计算:11021|27(2022)----. 44.如图,点A 、B 、C 、D 分别表示四个高铁车站的位置.(1)用含a 、b 的代数式表示B 、D 两站之间的距离是 ;(最后结果需化简)(2)若已知B 、D 两站之间的距离是80km ,求A 、B 两站之间的距离.45.已知有理数a ,b ,c 在数轴上所对应的点分别为点A ,B ,C ,且a b =-,()2130a c ++-=.(1)求a ,b ,c 的值;(2)若将数轴折叠,使点A 与点C 重合.数轴上M ,N 两点经过上述折叠后重合,且M ,N 两点之间的距离为2022,则M 表示的数为______,N 表示的数为______.(点M 在点N 的左侧)(3)若点P 为数轴上一动点,其对应的数为x ,当点P 在点B 与点C 之间时,化简式子:31124x x x +--+-(写出化简过程).46.如图,a ,b ,c 是数轴上三个点A 、B 、C 所对应的实数.(1)将a ,b ,c ,0由大到小排列(用“>”连接)__________________;(2)a b -______0;b c -______0(填写“>”,“=”,“<”)(3)试化简:a b --47.算一算:(1)()()2228233m m m m ⋅⋅-; (2)()()53253a b ⎡⎤⋅⎢⎥⎣⎦; (3)()()453t t t -⋅-⋅-;(4)已知24m n a a ==,,求32m n a +的值;(5)已知2328162x ⨯⨯=,求x 的值.48.计算:(1)(﹣8)+10﹣(﹣2)+(﹣1)(2)()2721149353⎛⎫÷--⨯- ⎪⎝⎭ . 49.已知有A 、B 两种不同规格的货车共50辆,现计划分两趟把甲种货物306吨和乙种货物230吨运往某地,先用50辆货车共同运输甲种货物,再开回共同运输乙种货物.其中每辆车的最大..装载量如表:(1)装货时按此要求安排A 、B 两种货车的辆数,共有几种方案.(2)使用A 型车每辆费用为600元,使用B 型车每辆费用800元.在上述方案中,哪个方案运费最省最省的运费是多少元?(3)在(2)的方案下,现决定对货车司机发共2100元的安全奖,已知每辆A 型车奖金为m 元,每辆B 型车奖金为n 元,38m n <<,且m ,n 均为整数.则m =___________,n =____________.参考答案:1.B【分析】根据无理数的三种形式:①开方开不尽的数,①无限不循环小数,①化简后含有π的数,结合所给数据进行判断即可.【详解】A 3=是整数,不是无理数,故A 不符合题意;B 、1π3是无理数,故B 符合题意; C 、52是分数,不是无理数,故C 不符合题意; D 、3.14是有限小数,不是无理数,故D 不符合题意;故选:B .【点睛】本题考查了无理数的定义,解答本题的关键是熟悉无限不循环小数是无理数. 2.D【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【详解】解:﹣2的相反数为2故选D【点睛】本题考查了相反数的定义,理解相反数的定义是解题的关键.3.A【分析】根据二次根式有意义:被开方数为非负数可得出x 的取值范围.【详解】解:①①10a +≥ ,解得:1a ≥-.故选:A .【点睛】本题考查了二次根式有意义的条件,要求同学们掌握二次根式有意义则被开方数为非负数.4.C【分析】根据平方差公式:两个数的和乘两个数的差,等于两个数的平方差,字母表示为:(a +b )(a −b )=22a b -,找出整式中的a 和b ,进行判定即可.【详解】解:A 、(x +2)(x +2)=()2+2x ,不符合平方差公式的特点,故选项A 错误; B 、(−x +y )(x −y )=()2x y --,不符合平方差公式的特点,故选项B 错误;C、(2x−y)(2x+y)=224x y,符合平方差公式的特点,故选项C正确;D、(−x−y)(x+y)=()2-不符合平方差公式的特点,故选项D错误.x y+故选:C.【点睛】此题考查了平方差公式,注意抓住整式的特点,灵活变形是解题关键.5.A【分析】原式利用异号两数相加的法则计算即可得到结果.【详解】解:原式=-(20-17)=-3故选A.【点睛】本题考查了有理数的加法,熟练掌握加法法则是解本题关键.6.D【分析】根据二次根式的乘法法则即可得.【详解】解:原式5,65=-,=,1故选:D.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式的乘法法则是解题关键.7.B【分析】根据合并同类项、同底数幂的乘法、幂的乘方、积的乘方等知识点进行判定即可.【详解】解:A. 333+=,选项计算错误,不符合题意;2a a aB. 336⋅=,选项计算正确,符合题意;a a aC.()326a a=,选项计算错误,不符合题意;D. 333ab a b=,选项计算错误,不符合题意;()故选:B.【点睛】此题考查了整式的运算,涉及的知识有:合并同类项、同底数幂的乘法、幂的乘方、积的乘方的运算,熟练掌握运算法则是解本题的关键.8.A【分析】把x=-3代入二次根式进行化简即可求解.【详解】解:当x =-33==.故选A.【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键.9.C【分析】根据平面直角坐标系中任意一点(),P x y ,关于原点的对称点是(),x y --可得到a b ,的值,再代入2a b +中可得到答案.【详解】解:点P (2a +1,4)与P '(1,3b -1)关于原点对称,则211a +=-,314b -=-,解得1a =-,1b ,23a b +=-,故选C .【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点,根据关于原点对称点的坐标特点求出a b ,的值是解答本题的关键.10.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:100.00000000022 2.210-=⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要确定a 的值以及n 的值.11.B【分析】依据平方差公式的特点进行判断即可.【详解】解:A 、(23)(23)m m +-符合平方差公式;B 、2(23)(23)(23)(23)(23)m m m m m -+-=---=--,不符合平方差公式; C 、(23)(23)(23)(23)m m m m ---=-+-符合平方差公式;D 、(23)(23)m m -+--符合平方差公式.故选B .【点睛】此题考查完全平方公式,平方差公式,解题关键在于掌握计算公式.12.D【分析】根据正数都大于0,负数都小于0,两个负数比较大小,绝对值大的反而小进行求解即可.【详解】①-4<-1<0<5,①最大的数是5,故选D.【点睛】本题考查了有理数大小的比较,熟练掌握有理数大小比较的方法是解题的关键.13.D【分析】根据幂的乘方法则,合并同类项法则依次分析各项即可.【详解】解:A、(x2n)3=x6n,故本选项错误;B.(a2)3+(a3)2=a6+a6=2a6,(a6)2=a12,故本选项错误;C.(a2)3+(b2)3=a6+b6≠(a+b)6,故本选项错误;D.[(-x)2]n=x2n,本选项正确.故选D.【点睛】本题考查了幂的乘方法则,合并同类项法,解答本题的关键是熟练掌握幂的乘方法则:幂的乘方,底数不变,指数相乘;合并同类项法则:把同类项的系数相加,字母和字母的指数不变.14.A【分析】根据单项式乘单项式的运算法则进行运算即可.【详解】原式=6a5.故选A.【点睛】本题考查了单项式乘单项式的知识,属于基础题.15.D【分析】根据二次根式的运算法则可以对各个选项的正误作出判断.【详解】AB、=C=D3322=÷=,选项正确.故选D.【点睛】本题考查二次根式的运算,熟练掌握二次根式的运算法则是解题关键.16.A【分析】分别按各选项求出结果,然后比较即可.【详解】解:①328-=-,()211-=①-8+1=-7,-8-1=-9,-8×1=-8,-8÷1=-8,①-7>-8=-8>-9,①计算结果最大的是-7.故选:A.【点睛】本题主要考查了有理数的乘方和混合运算,掌握n a表示n个a相乘是解题的关键.17.C【分析】通过分式的加法法则,即可求解.【详解】原式=()()()()()() ()()()()()()()()() x c a b b c x a x b b cx a x b a b x a x b a b x a x b a b ------+----------=2()()()()()()()()() ax bx ac bc bx ab cx ac bx cx b bc x a x b a b x a x b a b x a x b a b --+--+--++----------=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+()()()()ax bx ac bc bx ab cx ac bx cx b bcx a x b a b--+--+---+---=2+ ()()() ax ab bx bx a x b a b-----=()() ()()() a x b b x b x a x b a b------=()() ()()()a b x bx a x b a b-----=1 () x a -.故选C.【点睛】本题主要考查分式的加法法则,掌握分式的通分和约分,是解题的关键. 18.A【详解】A选项:面积为3B选项:体积为8,是有理数,此选项正确;C 、两直角边分别为2和3=,是无理数,此选项错误;D 、长为3,宽为2误.故选A.19.A【分析】同类项是指所含字母相同并且相同字母的指数也分别相等的项,根据同类项的定义判断并选出正确答案.【详解】23x y 和-23x y 是同类项,A 正确;22a b 和20.2ab 不是同类项,B 错误;11abc 和9bc 不是同类项,C 错误; 26和2x 不是同类项,D 错误;正确答案选A.【点睛】本题主要考查学生对同类项的定义的掌握,能够熟练的判断出两个式子是否是同类项是解答本题的关键.20.2x ≠【分析】根据分式的分母不为零,即20x -≠即可解答. 【详解】2x x -有意义, ∴20x -≠ 2x ∴≠【点睛】本题考查了分式有意义的条件,熟练掌握方式有意义的条件即“当分母不为零时,分式有意义”是解本题的关键.21.19【分析】根据完全平方公式将5a b +=两边平方,已知3ab =,由此即可求解.【详解】解:5a b +=两边平方得,22()5a b +=,即22225a ab b ++=,①3ab =,①22252252319a b ab +=-=-⨯=,故答案是:19.【点睛】本题主要考查的完全平方公式的应用,理解和掌握完全平方公式及其配方法是解题的关键.22.<【分析】直接根据有理数大小比较方法:正数大于0,负数小于0,正数大于负数,两个负数绝对值大的反而小,判断即可.【详解】解: 1.5-<34-, 故答案为:<.【点睛】本题考查了有理数的大小比较,熟练掌握有理数的大小比较方法是解本题的关键.23. -6 16【分析】根据立方根的概念求解.【详解】如果一个数的立方根是6,则这个数为216∴6=-16=. 故答案为:6-,16. 【点睛】本题考查了求一个数的立方根,熟练掌握概念是解题的关键.24.6865.7.【详解】试题分析:求近似值,在一般情况下,无特殊要求就用“四舍五入”, 对数据6865.65吨按精确到0.1吨的要求取近似值可表示为 6865.7吨.考点:近似值.25.-32【分析】先根据多项式乘以多项式展开,根据完全平方公式凑完全平方公式,再将3a b +=整体代入求解即可.【详解】解:22(1)(1)484a b a ab b ab ++----=()214ab a b a b ab +++-+- ()241a b a b =+-++当3a b +=时,原式23431=-⨯+43632=-=-故答案为:32-【点睛】本题考查了多项式的乘法,完全平方公式,整体代入是解题的关键.26. 116##76 67- 116##76 【分析】依据相反数、倒数、绝对值的定义求解,要区分清楚这三个容易混淆的概念,求带分数的倒数时,应先把带分数化成假分数后再求倒数. 【详解】-=-17166, ①116-的相反数是116,倒数是67-,绝对值是116. 故答案为:①116,①67-,①116. 【点睛】此题考查了相反数、绝对值和倒数的性质,要求掌握相反数、绝对值和倒数的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.27. 3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105… 4xy ,22m n ,0,m ,﹣2.01×105 (3)x y z ++ 【分析】根据整式、单项式、多项式的定义判断后选出即可.【详解】解:整式集合:{3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105 …}; 单项式集合:{ 4xy ,22m n ,0,m ,﹣2.01×105 …}; 多项式集合:{3x y z ++ …}. 故答案为:3x y z ++,4xy ,22m n ,0,m ,﹣2.01×105…;4xy ,22m n ,0,m ,﹣2.01×105 …;3x y z ++ 【点睛】本题考查了对单项式,多项式,整式的定义的理解和运用,注意:整式包括多项式和单项式,数与字母的积是单项式,单个的数与单个的字母也是单项式,若干个单项式的和组成的代数式叫做多项式.28.1【分析】根据同类二次根式的被开方数相同可得出关于m 的方程,解出即可.【详解】解:①①13m m +=-,解得:1m =.故答案为:1【点睛】本题考查了同类二次根式的知识,一元一次方程,注意掌握同类二次根式化为最简二次根式后被开方数相同且根指数均为2.29.16【分析】将原式化简然后整体代入即可解决问题.【详解】解:①4m n -=,①228m n n --=)8()m m n n n -+-(=)8m n n +-4(=4()m n -=4×4=16.故答案为:16.【点睛】本题考查了因式分解的应用,解决本题的关键是掌握提公因式法分解因式. 30.x≥0且x≠2.【详解】试题分析:根据题意得:x≥0且x ﹣2≠0,解得:x≥0且x≠2.考点: 二次根式有意义的条件;分式有意义的条件.31.x≥﹣4【详解】分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解. 详解:根据题意得x+4≥0解得x≥-4.故答案为x≥-4.点睛:此题主要考查了二次根式有意义的条件,关键是明确二次根式的被开方数为非负数,比较简单,是常考题型.32.2【分析】把左边先逆用幂的乘方法则变形,再根据同底数幂的乘法计算,然胡两边比较即可求出m 的值.【详解】解:①1139273m m ⨯⨯=,①23113333m m ⨯⨯=,①511133m +=,①5m+1=11,①m=2.故答案为:2.【点睛】本题考查了同底数幂的乘法、以及幂的乘方法则,熟练掌握运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘. 33.<【分析】先求出328=,3464=,根据2864<即可得出答案.【详解】解:①328=,3464=, 又①2864<,4<.故答案为:<.【点睛】本题主要考查了立方根,以及实数的大小比较,关键是掌握实数的大小比较方法.34.6-【分析】直接利用完全平方公式以及二次根式的混合运算法则化简得出答案.【详解】解:原式=4+2﹣=6﹣.故答案为:6﹣.【点睛】本题主要考查完全平方公式以及二次根式的混合运算,掌握相关知识和运算法则是解题的关键.35. -15 -7.6 56 【详解】试题分析:进行有理数的加减混合运算时,可先统一成加法,再运用加法交换律,结合律进行运算.(1)-5+7-15-4+2=-5+7+(-15)+(-4)+2=-5+(-15)+[7+(-4)+2]=-15; (2)-0.5+4.3-9.6-1.8=(-0.5-1.8+4.3)-9.6=-7.6;(3)111113266--+=11115132666⎛⎫-+-+= ⎪⎝⎭ 36. 2.5-或 1.5-【分析】根据相反数、倒数、绝对值的定义得到a+b=0,cd=1,x=±2,y=0,再分别代入所求的代数式中,然后先算乘方,再算加减运算.【详解】解:①a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,①a+b=0,cd=1,x=±2,y=0①当a+b=0,cd=1,x=2,y=0时,原式=2011201020121202102⨯-⨯++ =2×0-2×1+12+0=0-2+2-0= 1.5-;当a+b=0,cd=1,x=-2,y=0时,原式=20112010201212021-02⨯-⨯+ =2×0-2×1-12+0 =0-2-12-0= 2.5-;故答案为 2.5-或 1.5-【点睛】本题考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.掌握互为相反数的两个数和为0,互为倒数的两数的积为1是解题的关键. 37.33-【分析】设另一个因式为(2)x n -,根据多项式乘以多项式展开,左右两边对比得到等量关系求解即可;【详解】设另一个因式为(2)x n -,则2(2)(3)2(6)3x n x x n x n -+=+--,即()2225263x x k x n x n -+=+--, ∴653n k n -=-⎧⎨=-⎩, 解得1133n k =⎧⎨=-⎩, 故答案为:33-.【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键. 38.7【分析】将原式左侧进行展开后,先根据3n 求出n 的值,然后利用a=n+3即可求解.【详解】将原式左端进行展开,()223312x n x n x ax +++=++①3n=12①n=4①a=3+4=7故答案为7.【点睛】本题考查了因式分解,本题的关键是将等式的左端展开,然后进行比对. 39.-8x 2y【分析】根据幂的乘方与积的乘方计算即可【详解】原式=232(8)x y y ⨯-=-8x 2y【点睛】此题考查幂的乘方与积的乘方,掌握运算法则是解题关键40.85--【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【详解】解:7125=-+--735=-+-85=--【点睛】此题主要考查了实数运算,正确化简各数是解题关键.41.(1)7(2)122,12x x ==-【分析】(1)先逐项化简,再算加减即可;(2)利用平方根化简,再进行计算即可.【详解】(1)解:原式=(61)(2)+--+,=612+=7;(2)解:由原式得5757x x +=+=-,12212x x ==-,.【点睛】本题考查了实数的混合运算和平方根的运算,解决此题的关键是熟练的运用运算法则进行求解.42.(1)42(2)74或48【分析】(1)将原式变形为()24xy x y +--,再代入求解即可;(2)利用()()224x y x x y y +=-+先求出x y +的值,再将原式变形为()()2x y xy x y -+++,代入即可求解.(1) ()()22x y -+224xy x y =+--()24xy x y =+--,①36xy =,5x y -=,①原式()243625442xy x y =+--=+⨯-=,即结果为42;(2)①()()224x y x x y y +=-+,36xy =,5x y -=,①()222543616913x y +=+⨯==,①x y +的值为13±,22x xy y x y -+++ 222x xy y x y xy =-++++()()2x y xy x y =-+++,当13x y +=时,原式()()225361374x y xy x y =-+++=++=;当13x y +=-时,原式()()225361348x y xy x y =-+++=+-=;即结果为74或者48.【点睛】本题主要考查了多项式乘多项式及完全平方公式,掌握多项式乘多项式的运算法则及完全平方公式是解题的关键.43.0【分析】先根据绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则进行化简,然后再根据实数混合运算法则进行运算即可.【详解】解:原式11121-0=【点睛】本题主要考查了实数的混合运算,熟练掌握绝对值的意义,分数指数幂,负整数指数幂和零指数幂的运算法则,是解题的关键.44.(1)2a-3b (2)90km【详解】试题分析: (1)根据两点间的距离列出代数式即可;(2)根据两点间的距离列出AB 的代数式进行解答即可.试题解析:(1)用含a 、b 的代数式表示B. D 两站之间的距离是a −2b +a −b =2a −3b ;故答案为2a −3b ;(2)由题意可知:2a −3b =80kmAB =(5a −8b −70)−(a −2b )=4a −6b −70=160−70=90,①A 、B 两站之间的距离是90km.45.(1)1a =-,1b =,3c =.(2)-1010,1012.(3)12【分析】(1)根据偶次方的非负性,绝对值的非负性由非负数和为0可得方程,进而求出a 、c 、b ,(2)先找到对折点,再根据M ,N 两点之间的距离为2022,可得它们到对折点的距离为1011以及点M 在点N 的左侧可得答案;(3)根据点P 的位置得出13x <<,再化简绝对值,进行整式运算即可解答.【详解】(1)解:根据题意得:10a +=,30c -=,解得:①1a =-,3c =,又①a b =-,①1b =,综上所述:1a =-,1b =,3c =.(2)解:①1a =-,3c =,将数轴折叠,使点A 与点C 重合. 故对折点所表示的数为-1+3=12, ①M ,N 对折点所表示的数也是1,①M ,N 两点之间的距离为2022,点M 在点N 的左侧,故点M 表示的数为1-1011=-1010,点M 表示的数为1+1011=1012,故答案为:-1010,1012.(3)解:①当点P 在点B 与点C 之间时,1b =,3c =.①13x <<,①10x ->,10x +>,40x -<, ①31124x x x +--+-=3(1)(1)2(4)x x x +----=33+12+8x x x +--,=12.【点睛】本题考查了偶次方的非负性,绝对值的非负性,数轴上的点之间的距离、绝对值的化简、整式加减等知识,数形结合是解题的关键.46.(1)0c a b >>>(2)>,<(3)2b【分析】(1)数轴上,越往左数字越小,越往右数字越大,据此即可作答;(2)根据(1)中的结果,结合不等式的性质即可作答;(3)根据(2)中的结果去绝对值和根号,即可得解.【详解】(1)根据数轴上各数的位置,有:0c a b >>>,故答案为:0c a b >>>;(2)在(1)中有0c a b >>>,①a b >,c b >,①0a b ->,0c b ->,①0b c -<,故答案为:>,<;(3)①0a b ->,0c b ->,①a b --()()()a b a c c b =--++--a b a c c b =-+++-+2b =,故答案为:2b .【点睛】本题考查了利用数轴比较实数的大小,不等式的性质,求一个数的立方根以及二次根式的性质等知识,根据数据得到0c a b >>>,再根据不等式的性质得到0a b ->,0c b ->,是解答本题的关键.不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a b >,那么a m b m ±±>;①不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a b >,且0m >,那么am bm >或a b m m>;①不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a b >,且0m <,那么am bm <或a b m m<. 47.(1)102m(2)7530a b(3)12t(4)128(5)6【分析】)(1)运用同底数幂乘法公式和幂的乘方公式运算,再合并即可;(2)运用幂的乘方和积的乘方公式运算即可;(3)先确定符号,再用同底数幂乘法公式运算即可;(4)逆用同底数幂乘法公式和幂的乘方公式,再整体代入即可;(5)将等式两边转化成同底数幂,再让指数相等得到一个一元一次方程,解之即可. (1)解:原式1046101010332m m m m m m ⋅===--;(2)原式()()()5551561567530a b a b a b =⋅=⋅=; (3)原式34512t t t t =⋅⋅=;(4)①24m n a a ==,,①()()3232323224816128m n m n m n a a a a a +=⋅=⋅⨯=⨯==; (5)①2328162x ⨯⨯=,即()34232222x⨯⨯=, ①352322x +=,①3523x +=,解得:6x =.【点睛】本题考查了同底数幂乘法公式,积的乘方公式,幂的乘方公式,灵活掌握这三个公式正逆用是解题的关键.48.(1)3;(2)﹣113. 【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=﹣8+10+2﹣1=3;(2)原式=79×157﹣163=﹣113. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(1)三种方案(2)A 种货车30辆,B 种货车20辆时费用最省,费用为34000(元)(3)40 45【分析】(1)设安排A 种货车x 辆,则安排B 种货车()50x -辆,列出不等式组,求整数解即可;(2)根据三种方案判断即可;(3)根据二元一次方程,求整数解即可.【详解】(1)解:设安排A 种货车x 辆,则安排B 种货车()50x -辆,()()75503063750230x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:28x 30≤≤,因为x 为整数,所以可以取28,29,30,共三种方案.(2)使用A 种货车费用600元,B 种货车800元,600800<,∴在上述方案中,安排A 种货车最多时最省费用,即当A 种货车30辆,B 种货车20辆时费用最省,费用为:306002080034000⨯+⨯=(元);(3)在(2)的方案下,由题意得:30202100m n +=,210020270303n n m -∴==-, 38m n <<,303820210030202100n n n ⨯+<⎧∴⎨+>⎩, 解得:4248n <<,经验算,只有当45n =时,m =27045403-⨯=为整数,其余n 的取值不符合要求, 此次奖金发放的具体方案为:每辆A 种货车奖金为40元,每辆B 种货车奖金为45元.【点睛】本题考查一元一次不等式(组)的应用,二元一次方程的整数解问题,解题的关键是理解题意,学会利用参数根据不等式(组)解决问题.。
中考数学九年级上册专题训练50题含答案一、单选题1.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(-4,3),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O外或⊙O上2.若线段MN的长为2cm,点P是线段MN的黄金分割点,则最短的线段MP的长为()A.)1cm B C.(3cm D3.如图,将一块正方形空地划出部分区域进行绿化,绿化后一边减少了3m,另一边减少了2m,剩余面积为230m的矩形空地,则原正方形空地的边长为()A.6m B.7m C.8m D.9m︒+︒-︒的结果是()4.计算tan602sin452cos30C D.1A.2B5.将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线⊙剪开,则虚线⊙所对的圆弧长和展开后得到的多边形的内角和分别为()A .,1802π︒ B .,5404π︒ C .,10804π︒ D .,21603π︒6.两个相似三角形的面积比为1⊙4,那么它们的周长比为( )A .B .2⊙1C .1⊙4D .1⊙2 7.下列一元二次方程中,有两个不相等的实数根的是( )A .2104x x -+=B .2230x x -+=C .220x x ++=D .220x x += 8.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且AB =2.若AC =2,则BD 的长为( )A .B .4CD .29.如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB 的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD =9.6米,留在墙上的影长CD =2米,则旗杆的高度( )A .12米B .10.2米C .10米D .9.6米 10.两个相似三角形的周长之比为3:2,其中较小的三角形的面积为12,则较大的三角形的面积为( )A .27B .18C .8D .311.如图一个扇形纸片的圆心角为90°,半径为4,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,则图中阴影部分的面积为( )A .163π-B .43πC .163π-D .3π 12.如图,AB 为⊙O 直径,点C ,D 在⊙O 上且AC BC =.AD 与CO 交于点E ,⊙DAB =30°,若AO =CE 的长为( )A .1BC 1D .2 13.如图,在平面直角坐标系中,⊙P 过O (0,0),A (3,0),B (0,﹣4)三点,点C 是OA 上的点(点O 除外),连接OC ,BC ,则sin⊙OCB 等于( )A .45B .43C .34D .3514.如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,1AC =,以A 为圆心AC 为半径画圆,交AB 于点D ,则阴影部分面积是( )A 3π-B 6πC 6πD .π15.如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC交于D 点.若⊙BFC =20°,则⊙DBC =( )A .30°B .29°C .28°D .20°16.已知a 是方程x 2﹣3x ﹣2=0的根,则代数式﹣2a 2+6a +2019的值为( ) A .2014 B .2015 C .2016 D .2017 17.已知实数a 是一元二次方程270x x +-=的根,则4371a a a ++-的值为( ) A .48 B .49 C .50 D .5118.用配方法解方程2210x x --=时,配方结果正确的是( )A .2(1)2x -=B .2(1)0x -=C .2(1)1x -=D .2(1)2x += 19.一个矩形内放入两个边长分别为3cm 和4cm 的小正方形纸片,按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm 2;按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm 2,若把两张正方形纸片按图⊙放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为( )A .6cm 2B .7 cm 2C .12cm 2D .19 cm 2 20.如图,四边形ABCD 是正方形,动点E 、F 分别从D 、C 两点同时出发,以相同的速度分别在边DC 、CB 上移动,当点E 运动到点C 时都停止运动,DF 与AE 相交于点P ,若AD=8,则点P 运动的路径长为( )A .B .C .4πD .2π二、填空题21.已知关于x 的方程(x ﹣1)2=5﹣k 没有实数根,那么k 的取值范围是 ___. 22.如图,将四边形ABCD 绕顶点A 顺时针旋转45︒至四边形AB C D '''的位置,若4cm AB =,则图中阴影部分的面积为________2cm .23.如图,⊙O 是⊙ABC 的外接圆,AB =AC ,若⊙OBC =20°,则⊙ACB =_____°.24.若关于x 的一元二次方程2320ax a ++=有实数根,则a 的取值范围是______. 25.若m ,n 是一元二次方程2510x x --=的两个实数根,则26m m n --的值是________.26.已知y=x 2+x ﹣14,当x=____________时,y=﹣8.27.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x ,根据题意可列方程是_______. 28.直角三角形纸片的两直角边长分别为6,8,现将⊙ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan⊙CBE 的值是_____.29.已知26a -100a +7=0以及27b -100b +6=0,且ab ≠1,则a b的值为__________.30.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C 距离地面的高度为2.5m ,宽度AB 为1m ,则该圆形门的半径应为_____m .31.在△ABC 中,⊙C =90°,cosA c =4,则a =_______. 32.关于x 的一元二次方程()291600x ax a ++=>)有两个相等的实数根,则a 的值为_________.33.如图,⊙ABC 内接于O ,AB 为O 的直径,点D 为O 上的一点,且4AB =,15DCB ∠=︒,则劣弧AD 的长为______(结果保留π).34.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.35.如图,AB 是O 的直径,E 是O 上的一点,C 是弧AE 的中点,若A 50∠=,则AOE ∠的度数为________°.36.如图,在矩形ABCD 中,5AD =,4AB =,E 是BC 上的一点,3BE =,DF AE ⊥,垂足为F ,则tan FDC ∠=_______.37.若tana=12,则sina=___________________. 38.用配方法将2810x x --=变形为2(4)x m -=,则m=_________.39.如图,等腰BAC 中,120ABC ∠=︒,4BA BC ==,以BC 为直径作半圆,则阴影部分的面积为________.40.如图,ABC 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE 沿直线DE 翻折得到FDE ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.三、解答题41.根据下列条件分别找到图1中的圆心O 和图2中的圆心P 的位置。
中考数学数与式真题训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.下列式子中,正确的是( ) A .-57>-79B .-14<-13C .-23<-710 D .37<142 A .-7B .7C .±7D .无意义3.2221121p p p p p p --⋅+-+的结果是( ) A .p B .1pC .11p p -+ D .11p p +- 4.据报道,2021年某市有关部门将在市区完成150万平方米老住宅小区综合整治工作,150万(即1500000)用科学记数法可表示为( ) A .71.510⨯B .61.510⨯C .51.510⨯D ..41510⨯5.今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( ) A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯6.下列各式中,x 可以取一切实数的是( )A B .2C D .x x- 7.某种细胞的直径是0.0067毫米,数字0.0067用科学记数法表示为( ) A .36.710⨯B .36.710-⨯C .36.710-⨯D .36.710--⨯8.下列运算正确的是( ) A .a 3+a 2=2a 5 B .a 3•(a 2)3=a 9C .a 8÷a 4=a 2D .(a +b )(b -a )=a 2-b 29.下列各式:−15a 2b 2,12x −1, -25,1x,2x y-,a 2-2ab 中单项式的个数有( )A .4个B .3个C .2个D .1个10.下列说法正确的是( )①0是绝对值最小的有理数;①相反数大于本身的数是负数①数轴上原点两侧的数互为相反数;①两个数比较,绝对值大的反而小A .①①B .①①C .①①D .①①11.下列各式从左到右的变形中,是因式分解的为( ) A .21234a b a ab =⋅B .222469(23)x xy y x y -+=-C .22(21)xy xy y y xy x -+-=--+D .2(3)(3)9x x x +-=-12.已知有理数a 、b 、c 满足||||||1a b c a b c++=,则||abc abc =( ) A .3B .3-C .1D .1-130a =,则实数a 在数轴上的对应点一定在( ) A .原点左侧 B .原点右侧C .原点或原点左侧D .原点成原点右侧14.若多项式26x mx +-因式分解成()()32x x +-,则m 的值为( ) A .1B .1-C .5D .5-15.下列各式计算正确的是( ) A .235a a a ⋅=B .32632639x y x y ⎛⎫-=- ⎪⎝⎭C .3162-⎛⎫-= ⎪⎝⎭D .()222x y x y -=-16.已知有理数a ,b ,c 在数轴上的位置如图所示,下列结论正确的是( )A .0c a ->B .a b <C .0a b +>D .c b c b -=-17.下列运算正确的是( ) A .236x x x ⋅=B .()32628x x -=-C .632x x x ÷=D .235x x x +=18是同类二次根式的是( )AB CD19.估计2的运算结果应在下列哪两个数之间 ( ). A .4.5和5.0B .5.0和5.5C .5.5和6.0D .6.0和6.520.下列说法:①如果一个实数的立方根等于它本身,这个数只有0或1;①2a 的算术平根是a ;①8-的立方根是2-;①带根号的数都是无理数;其中,不正确的有( ) A .1个B .2个C .3个D .4个二、填空题 21.若代数式12022x -有意义,则实数x 的取值范围是______.22.若2230x y -=,且5x y +=,则x y -=___________.23.计算:________________.24.0.7096精确到千分位,则0.7096≈__________.25.3649的算术平方根是________________________________.26.函数=y 中自变量x 的取值范围是___________;当x =________时,代数式21x x --的值等于0. 27.如图,半径为3π的圆在数轴上滚动,开始在数轴上点A (称圆与数轴相切)处,向左侧动一周至点B ,若A 所对应的数是3,则点B 所对应的数是__________.281的相反数是_____.29.无锡地表水较丰富,外来水源补给充足.市区储量为6349万立方米,用科学记数法表示为 立方米.3002=__.31.下列数字﹣112,1.2,π,0,3.14,37,﹣111113中,有理数有______个.32.若a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,则23a b c -+的值是__________.33.计算:(x 2)5=_______.34.若a b <<,且a ,b 是两个连续的整数,则a b +的值为_________.3536a =_____________.37|=_____.38___________(只填写一个即可). 39.化简aa 3-的结果为___________40.比较大小:﹣5_____ 2,﹣45_____﹣56 .三、解答题41.化简:5x 2﹣3y ﹣3(x 2﹣2y ).421=1-,求3x yx y+-的值. 解:根据算术平方根的定义,1=,得2(2)1x y -=,所以21x y -=①……第一步 根据立方根的定义,1-,得121y -=-①……第二步 由①①解得1,1x y ==……第三步 把1,1x y ==代入3x y x y+-中,得30x yx y +=-……第四步 (1)以上解题过程存在错误,请指出错在哪些步骤,并说明错误的原因; (2)把正确解答过程写出来.43.在数轴上把下列各数表示出来,并用“<”连接各数. 5,1-22,|﹣4|,﹣(﹣1),﹣(+3)44.(1)已知2245A x y xy =-,2234B x y xy =-,求2A B -.(2)化简求值:22111122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中1x =,23y =-.45.计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 46.已知:210a =,25b =,280c =.求-22c b a +的值. 47.计算下列各题: (1)()3212282⎛⎫-+-÷-⨯ ⎪⎝⎭(2)1311664124⎛⎫-⨯-+-÷ ⎪⎝⎭48.计算或化简:(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯-(2)221581()()(2)(14)4696--+÷-+-⨯-(3)x 2+5y -4x 2-3y -1 (4) 7x +4(x 2-2)-2(2x 2-x +3)49.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”. (1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)50.已知1x =,求代数式229x x -+的值.参考答案:1.A【分析】根据正数大于负数,两个负数绝对值大的反而小,逐个判断即可求解【详解】解:5545 7763 -==77499963-==5779∴->-故A正确1134412-==1143312-==1143∴->-故B错误22203330-==7721101030-==27310∴->-故C错误312728=17428=3174∴>故D错误故选:A【点睛】本题考查有理数的大小比较,熟记有理数的大小比较法则是解决本题的关键2.A【分析】根据开立方与立方互为逆运算的关系,求解即可.,故本题答案应为:A.【点睛】开立方与立方互为逆运算的关系是本题的考点,熟练掌握其关系是解题的关键.3.A【分析】先将式子中的分子和分母进行因式分解,再进行约分即可. 【详解】2221121p p p p p p --⋅+-+ ()()()()211111p p p p p p --+=⋅+- p =, 故选:A .【点睛】本题主要考查了分式的计算,准确将式子中的分子、分母进行因式分解是解答本题的关键. 4.B【分析】根据科学记数法:把一个数写成10n a ⨯的形式,其中110a ≤<,n 为整数,由此问题可求解.【详解】解:把150万(即1500000)用科学记数法可表示为61.510⨯; 故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键. 5.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将24000用科学记数法表示为:42.410⨯,故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.C【分析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,逐一判断即可.【详解】解:A .x≥0,故本选项不符合题意;B . 2中,-x≥0,解得x≤0,故本选项不符合题意;C .x 可以取一切实数,故本选项符合题意;D.xx-中,x≠0,解得x≠0,故本选项不符合题意.故选C.【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.7.B【分析】根据科学记数法的表示即可求解.【详解】0.0067=36.710-⨯故选B.【点睛】此题主要考查科学记数法的表示,解题的关键是熟知负指数幂的应用.8.B【分析】根据合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式求解判断即可.【详解】解:A.a3+a2≠2a5,故错误,不符合题意;B.a3•(a2)3=a3•a6=a9,故正确,符合题意;C.a8÷a4=a4,故错误,不符合题意;D.(a+b)(b-a)=b2-a2,故错误,不符合题意;故选:B.【点睛】本题主要考查了合并同类项、同底数幂乘法、幂的乘方、积的乘方、平方差公式,熟记相关运算法则是解题的关键.9.C【分析】根据单项式的定义,结合选项找出单项式即可.【详解】解:−15a2b2,-25是单项式,共有2个故选C【点睛】本题考查了单项式的定义:数或字母的积组成的式子叫做单项式,注意单独的一个数或字母也是单项式.10.C【分析】利用有理数的定义,数轴绝对值判定即可.【详解】解:①0是绝对值最小的有理数,此①正确,①相反数大于本身的数是负数,此①正确,①数轴上到原点的距离相等且在原点两侧的数互为相反数,故①不正确, ①两个负数比较,绝对值大的反而小.故①不正确, 综上,①①的说法正确, 故选:C .【点睛】本题主要考查了有理数、数轴、相反数,解题的关键是熟记有理数的定义. 11.C【分析】根据因式分解的定义:把一个多项式化成几个整式的积的形式,逐一进行判定即可.【详解】解:A 、左边不是多项式,因此不是因式分解,故此选项不符合题意; B 、左边与右边不相等,因此不是因式分解,故此选项不符合题意;C 、提取公因式y -后,将多项式化成了两个整式积的形式,是因式分解,故此选项符合题意;D 、左边是积的形式,右边是多项式,因此不是因式分解,故此选项不符合题意; 故选C .【点睛】此题考查了因式分解的概念,正确理解因式分解是将一个多项式化成几个整式积的形式是解答此题的关键. 12.D【分析】此题首先根据已知条件和绝对值的意义得到a ,b ,c 的符号关系,在进一步求解即可.【详解】解:根据绝对值的意义知:一个非零数的绝对值除以这个数等于1或-1, 又||||||1a b c a b c++=,则a ,b ,c 中必有两个1和一个-1, 即a ,b ,c 中两正一负, ①abc <0, 则||abcabc =−1; 故选:D .【点睛】本题主要考查了绝对值的性质应用,掌握绝对值的性质和有理数的乘、除法法则是解决此题的关键. 13.C【分析】根据二次根式的性质,知-a≥0,即a≤0,根据数轴表示数的方法即可求解.【详解】解:0a =,a a =-, ①a≤0,故实数a 在数轴上的对应点一定在原点或原点左侧. 故选:C .【点睛】此题主要考查了二次根式的性质,实数与数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型. 14.A【分析】运用多项式乘多项式的乘法法则解决此题.【详解】解:()()22322366x x x x x x x +-=-+-=+-.由题意得,()()2632x mx x x +-=+-,①2266x x x mx +-=+-, ①1m =. 故选:A .【点睛】本题主要考查多项式乘多项式,熟练掌握多项式乘多项式的乘法法则是解决本题的关键. 15.A【分析】根据各自的运算公式计算判断即可. 【详解】①235a a a ⋅=, ①A 正确;①326328327x y x y ⎛⎫-=- ⎪⎝⎭,①B 不正确; ①3182-⎛⎫-=- ⎪⎝⎭, ①C 不正确;①()2222x y x xy y -=-+, ①D 不正确;故选A .【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键.16.A【分析】根据有理数a ,b ,c 在数轴上的位置,可得0c a b <<<,c a >b >,可对A,B 选项进行判断,根据有理数的加减法法则可判断C,D .【详解】解:根据题意可得0c a b <<<,c a >b >, A. 0c a ->,故该选项正确,符合题意;, B. a b >,故该选项不正确,不符合题意;C. 0a b +<,故该选项不正确,不符合题意;D. 0c b <<,0b -<()0c b c b ∴-=+-< ∴c b b c -=-,故该选项不正确,不符合题意;故选A【点睛】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小;也考查了数轴的认识,以及有理数的加法运算和绝对值的意义.17.B【分析】根据同底数幂乘法、除法、幂的乘方及合并同类项法则逐一计算即可得答案.【详解】A.x 2·x 3=x 2+3=x 5,故该选项计算错误,不符合题意,B.()32628x x -=-,故该选项计算正确,符合题意, C.x 6÷x 3=x 6-3=x 3,故该选项计算错误,不符合题意,D.x 2与x 3不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查同底数幂乘法、除法、幂的乘方及合并同类项,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;熟练掌握运算法则是解题关键.18.B故选B.19.B【分析】先进行二次根式的运算,再估算大小.【详解】解:222==+,≈,3 1.732∴+≈,2 5.464<<,5.0 5.464 5.5故选B.【点睛】此题考查无理数的估算,二次根式的混合运算,先运算,再进行估算即可.20.C【分析】分别根据实数、立方根和算术平方根的定义对各小题进行逐一判断即可.【详解】解:①如果一个实数的立方根等于它本身,这个数有0或1或-1,所以①不正确;①a2的算术平方根是|a|,故①不正确;①-8的立方根是-2,故①正确;,不是无理数,故①不正确;所以不正确的有3个.故选:C.【点睛】本题考查了实数、立方根和算术平方根,熟知算术平方根的定义、立方根的定义及实数的分类是解答此题的关键.21.2022x≠【分析】根据分式有意义的条件:分母≠0即可得出结论.x-≠【详解】解:由题意可得20220x≠解得:2022x≠.故答案为:2022【点睛】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.22.6【分析】根据平方差公式即可求出答案.【详解】解:①x 2-y 2=30,且x +y =5,①(x -y )(x +y )=30,①x -y =6,故答案为:6.【点睛】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 23.-x 2y . 【详解】试题解析:21(2)2x xy x y ⋅-=- 考点:单项式乘以单项式.24.0.710【分析】把万分位上的数字6四舍五入即可.【详解】解:0.7096精确到千分位,则0.70960.710≈故答案为:0.710.【点睛】此题考查的是求一个数的近似数,掌握四舍五入法是解决此题的关键. 25. 67-5 【分析】根据算术平方根的定义和立方根的定义即可得出结论.【详解】解:①2636()749=,3(5)125-=-;①3649的算术平方根是675-. 故答案为:67;-5. 【点睛】此题考查的是求一个数的平方根、算术平方根和立方根,掌握平方根的定义、算术平方根的定义和立方根的定义是解决此题的关键.26. 3x ≤ 2【分析】①根据二次根式有意义的条件得出不等式,运算即可;①根据分式的值为零的条件得出不等式,运算即可.【详解】①由题意得:3-x ≥0,解得:3x ≤;①由题意得:x-2=0且x-1≠0,解得:2x =;故答案为:3x ≤;2【点睛】本题考查了二次根式有意义的条件和分式的值为零的条件,掌握知识点是解题关键.27.-3【分析】先求出圆的周长,再用点A 表示的数减去圆周长即可求出B 所对应的数【详解】解:①半径为3π,①圆周长=326ππ⋅= ①A 所对应的数是3,且由A 向左侧动一周至B ,①3-6=-3,①点B 所对应的数是-3故答案为:-3【点睛】本题考查了数轴表示数及有理数的减法,数轴上的数右边的总比左边的大28.【分析】根据只有符号不同的两个数叫做互为相反数解答.1的相反数是1故答案为:1【点睛】本题考查了相反数,是基础题,熟记概念是解题的关键.29.6.349×710【详解】试题解析:将6349万用科学记数法表示为:6.349×107.考点:科学记数法—表示较大的数.30.-4【分析】首先根据5次方根和零指数幂的运算法则计算,然后根据有理数的加减运算法则求解即可.【详解】解:原式31=--4=-.故答案为:4-.【点睛】此题考查了5次方根和零指数幂的运算,解题的关键是熟练掌握5次方根和零指数幂的运算法则.31.6【分析】有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.【详解】解:﹣112,1.2,0,3.14,37,﹣111113是有理数, π不是有理数,故答案为6.【点睛】本题考查了有理数的定义,熟练掌握有理数的定义是解答本题的关键. 32.-28或0【分析】根据相反数,有理数的大小比较,数轴的性质得到a ,b ,c 的值,再代入计算.【详解】解:a 是相反数等于本身的数,b 是最大的负整数,数轴上表示实数c 的点与表示1-的点相距2个单位,①a =0,b =-1,c =-3或1,当c =-3时,23a b c -+=()()23013--+-=28-;当c =1时,23a b c -+=()23011--+=0,故答案为:-28或0.【点睛】本题考查了代数式求值,解题的关键是根据相反数,有理数的大小比较,数轴的性质得到各字母的值.33.x 10【分析】幂的乘方,底数不变,指数相乘,据此计算即可.【详解】解:(x 2)5=x 2×5=x 10.故答案为:x 10.【点睛】本题主要考查了幂的乘方,熟记幂的运算法则是解答本题的关键.34.9a ,b 是两个连续的整数,即可求得,a b 的值,从而求解.【详解】解:①a b <,且a ,b 是两个连续的整数,45<<,①4,5a b ==,∴9a b +=,故答案为:9.35.-1.8【分析】根据根式的性质即可得到答案.【点睛】本题考查的知识点是根式性质,解题的关键是熟练的掌握根式性质.36.-3【分析】根据同类二次根式的定义可得238103a a -=-,由此求解即可【详解】解:①①238103a a -=-,①260+-=a a①3a =-或2a =,①两个根式都是最简根式,①2a =当a =3时,二次根式有意义且符合题意,故答案为-3.【点睛】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式37【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:||【点睛】本题考查绝对值的意义,解题关键是掌握负数的绝对值是它的相反数. 38.2或3..【详解】,,①2,3.故答案为2或3.【点睛】本题主要考查了估算无理数的大小,正确找出符合题意的整数是解题的关键.39.【详解】分析:根据二次根式乘法,可化简二次根式.详解:原式=故选答案为:点睛:本题考查了二次根式的性质与化简,利用了二次根式的乘法.40. < >【分析】根据正数大于一切负数,两个负数中绝对值大的反而小,即可得出答案.【详解】解:﹣5<2, ①424530=<525630=, ①﹣45>﹣56. 故答案为:<,>.【点睛】本题考查了有理数的大小比较,用到的知识点是:正数>0,负数<0,正数>负数;两个负数中绝对值大的反而小.41.2x 2+3y .【分析】先去括号,然后合并同类项即可得出答案.【详解】原式=5x 2﹣3y ﹣3x 2+6y=(5x 2﹣3x 2)+(6y ﹣3y )=2x 2+3y .【点睛】本题主要考查整式的加减,掌握去括号,合并同类项的法则是解题的关键. 42.(1)错误在第一步和第四步,理由见解析;(2)当1,1x y ==时,3x y x y +-无解当0,1x y ==时,31x y x y+=-- 【分析】(1)根据算术平方根的定义可知错误步骤及原因;(2)可由算术平方根和立方根的定义求出x,y 的值代入求解即可,其中x 的值有两个.【详解】解:(1)错误在第一步和第四步第一步错误原因:①1的平方根是1±,①21x y -=±第四步错误原因:当1,1x y ==时,3x y x y+-无解(21=,得2(2)1x y -=,所以21x y -=±,1=-,得121y -=-,21121x y y -=⎧⎨-=-⎩,解得11x y =⎧⎨=⎩ 21121x y y -=-⎧⎨-=-⎩,解得01x y =⎧⎨=⎩①当1,1x y ==时,3x y x y +-无解 当0,1x y ==时,31x y x y+=-- 【点睛】本题考查了平方根和立方根,正确理解平方根和立方根的定义和性质是解题的关键.43.数轴见详解,1(3)2(1)452-+<-<--<-<. 【分析】将各数表示在数轴上,再用“<”连接即可.【详解】解:如图所示:①用“<”连接各数为:1(3)2(1)452-+<-<--<-<; 【点睛】此题考查了有理数大小比较,以及数轴,将各数正确表示在数轴上是解本题的关键.44.(1)2256-x y xy ;(2)22x y -+,149- 【分析】(1)根据整式的加减计算法则进行求解即可;(2)先去括号,然后根据整式的加减计算法则进行化简,最后代值计算即可.【详解】解:(1)①2245A x y xy =-,2234B x y xy =-,①()()2222224534A B x y xy x y xy -=---222210348x y xy x y xy --+=2265x y xy -=;(2)2211112()()2323x x y x y --+-+ 22121122323x x y x y =-+-+ 22x y =-+,当1x =,23y =-时, 原式2221()3=-⨯+- 429=-+ 149=-. 【点睛】本题主要考查了整式的加减计算,整式的化简求值,含乘方的有理数混合计算,解题的关键在于能够熟练掌握相关计算法则.45.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;【详解】(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点睛】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.46.32【分析】利用同底数幂的除法法则,同底数幂的乘法法则,幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:当210a =,25b =,280c =时,()2222222222280510802510180102532c b ac b ac b a -+÷⨯÷⨯=÷⨯=÷⨯=⨯⨯===.【点睛】本题考查的是同底数幂的除法,同底数幂的乘法,幂的乘方,熟练掌握相对应的运算法则是解决本题的关键.47.(1)-3.5;(2)-12【分析】(1)根据有理数混合运算的法则,先算乘方,后算乘除,最后算加减,对每一项分别计算,然后求值即可;(2)根据有理数混合运算的法则,除一个数等于乘一个数的倒数,利用乘法交换律先计算-6和4的积,然后利用乘法分配律分别计算即可.【详解】(1)解:原式=114882⎛⎫⎛⎫-+-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=﹣4+12=﹣3.5 (2)原式=131131642441821264126412⎛⎫⎛⎫-⨯⨯-+-=-⨯-+-=-+=- ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查了有理数的混合运算,乘法的交换律和分配律,解决本题的关键是熟练掌握整式混合运算的法则.48.(1)34; (2) -63;(3)-3x 2+2y-1; (4) 9x-14.【分析】(1)逆用乘法分配律进行计算即可;(2)先把除法化为乘法, 再用乘法分配律进行计算即可;(3)合并同类项即可;(4)去括号,合并同类项即可.【详解】(1)222(5)(3)(7)312(3)555-⨯-+-⨯-⨯- =2225373123555⨯-⨯+⨯ =()2357125⨯-+ =34.(2)221581()()(2)(14)4696--+÷-+-⨯-=158()36(14)4694--+⨯+⨯- =-9-30+32-56=-63(3)x 2+5y -4x 2-3y -1=-3x 2+2y-1(4)7x +4(x 2-2)-2(2x 2-x +3)=7x+4x 2-8-4x 2+2x-6=9x-14.【点睛】本题考查了有理数的混合运算,掌握相关法则是解题关键,合理运用运算定律能起到简便计算的目的.49.(1)()()22a b a b -+(2)2700【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.【详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.50.11.【分析】先将代数式配方,然后再把1x =代入要求的代数式中进行求解即可.【详解】解: ()222918x x x -+=-+当1x =时,原式)21183811=-+=+=. 【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握完全平方公式和二次根式的混合计算法则.。
2023年2月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.2.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A.B.C.D.3.如图是一个几何体的侧面展开图,这个几何体是()A.长方体B.圆柱C.球D.圆锥4.如图,已知点P为反比例函数y=-6x上一点,过点P向坐标轴引垂线,垂足分别为M,N,那么四边形MONP的面积为()A.-6B.6C.3D.125.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则(). A.从中随机抽取1张,抽到黑桃的可能性更大B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大C.从中随机抽取5张,必有2张红桃D .从中随机抽取7张,可能都是红桃 6.函数3xy x =+中,自变量x 的取值范围是( ) A .3x >-B .3x <-C .x≠-3D .x≠ 37.将抛物线22y x =-向右平移3个单位,再向下平移2个单位,所得抛物线解析式为( )A .()2232y x =-++ B .()2232y x =-+- C .()2232y x =--+D .()2232y x =---8.从正面、上面、左面三个方向看某一物体得到的图形如图所示,则这个物体是( )A .三棱锥B .三棱柱C .圆锥D .圆柱9.如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用( )个小正方体A .12B .11C .10D .910.若气象部门预报明天下雨的概率是70%,下列说法正确的是( ) A .明天下雨的可能性比较大 B .明天下雨的可能性比较小 C .明天一定会下雨D .明天一定不会下雨11.一个由两个一次性纸杯组成的几何体如图水平放置,它的俯视图是( )12.已知点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上,则下列结论正确的是( ) A .122y y >>B .212y y >>C .122y y >>D .212y y >>13.下图是几个小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的主视图为( )A .B .C .D .14.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),其部分图象如图所示,下列结论:①4ac <b 2;①方程ax 2+bx +c =0的两个根是x 1=-2,x 2=6;①12a +c >0;①当y >0时,x 的取值范围是-2≤x <2;①当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个15.如图是某几何体的三视图,则该几何体是( )16.若下列有一图形为二次函数2286y x x =-+的图形,则此图为( )A .B .C .D .17.已知二次函数21=++()y ax bx c b c ≠图象的最高点坐标为(-2,4),则一次函数22()4y b c x b ac =-+-图象可能在:A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限18.如图是一个圆形转盘,让转盘自由转动两次,则指针两次都落在黄色区域的概率是( ).A .14B .34C .29D .91619.二次函数y=ax2+bx+c (a 、b 、c 为常数,且a≠0)中x 与y 的部分对应值如下表:给出以下三个结论:(1)二次函数y=ax2+bx+c 最小值为﹣4; (2)若y <0,则x 的取值范围是0<x <2;(3)二次函数y=ax2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,则其中正确结论的个数是( )A .0B .1C .2D .320.如图,平行于x 轴的直线AC 分别交抛物线21y x =与223x y =于B 、C 两点,过点C作y 轴的平行线交1y 于点D ,直线DE ∥AC 交2y 于点E ,则DEAB的值是( )A .2B .32y =C .3D .3.二、填空题21.有6张同样的卡片,卡片上分别写上数字“1921”、“1994”、“1935”、“1949”、“1978”、“1980”,将这些卡片背面朝上,洗匀后随机从中抽出一张,抽到标有的数字是偶数的概率是______.22.抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,则a 的取值范围是________.23.事件A 发生的概率为15,大量重复做这种试验事件A 平均每100次发生的次数是___.24.已知二次函数245y x x =--的图像与x 轴交于A 、B 两点,顶点为C ,则①ABC 的面积为________.25.甲、乙两人分别从、、A B C 这3个景点随机选择2个景点游览,甲、乙两人选择的2个景点恰好相同的概率是________.26.在10以内的素数中,随机抽取其中的一个素数,则所抽取的素数是偶数的等可能性大小是______.27.一个几何体的三视图如图所示,则这个几何体的名称是___________.28.如图,P 是反比例函数y = 3x图象上一点,P A ①x 轴于点A ,则PAOS =_______________.29.写出抛物线y =2(x ﹣1)2图象上一对对称点的坐标,这对对称点的坐标可以是_____.30.如图,转盘的白色扇形和黑色扇形的圆心角分别为240°和120°.让转盘自由转动2次,则指针一次落在白色区域,另一次落在黑色区域的概率是________.31.如图,在平面直角坐标系中,反比例(0)ky k x=>的图象和ABC ∆都在第一象限内,52AB AC ==,BC x ∕∕轴,且4BC =,点A 的坐标为()3,5.若将ABC ∆向下平移m 个单位长度,,A C 两点同时落在反比例函数图象上,则m 的值为_____.32.已知Rt △ABC ,①C =90°,AB =13,AC =12,以AC 所在直线为轴将此三角形旋转一周所得圆锥的侧面积是________.(结果保留π)33.若二次函数26y x x k =-+的最小值为2,则k =________.34.将图所示的Rt①ABC 绕AB 旋转一周所得的几何体的主视图是图中的________ (只填序号).35.如图,矩形ABCD 的顶点C ,D 在x 轴的正半轴上,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上,则矩形ABCD 的面积为__36.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__. 37.如图,将抛物线212y x =平移得到抛物线m ,抛物线m 经过点(6,0)A -和点(0,0)O ,它的顶点为P ,它的对称轴与抛物线212y x =交于点Q .(1)点P 的坐标为______;(2)图中阴影部分的面积为_____.38.30张牌,牌面朝下,每次抽出一张记下花色后再放回,洗牌后再抽,抽到红心、黑桃、草花、方块的频率依次为20%,32%,44%,4%,则四种花色的牌各约有________ .(按红心、黑桃、草皮、方块的顺序填写)39.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;①244b ac a->0;①ac -b +1=0;①OA·OB =ca-.其中正确结论的个数是______个.40.如图,在平面直角坐标系中.点A 、B 在反比例函数y =5x的图象上运动,且始终保持线段AB =M 为线段AB 的中点,连接OM ,则线段OM 的长度是_____.三、解答题41.当自变量x 取何值时,函数512y x =+与54y x =-的值相等?这个函数值是多少? 42.抛物线2y ax bx c =++的对称轴为直线2x =,且顶点在x 轴上,与y 轴的交点为A ,A 点的坐标为()0,1,点()2,1B 在抛物线的对称轴上,直线1y =-与直线2x =相交于点C .(1)求该抛物线的函数表达式.(2)点P 是(1)中图象上的点,过点P 作x 轴的垂线与直线1y =-交于点D .试判断PBD ∆是否为等腰三角形,并说明理由.(3)作PE BD ⊥于点E ,当点P 从横坐标2013处运动到横坐标2019处时,请求出点E 运动的路径长.43.如图,一次函数112y k x =+与反比例函数22k y x=的图象交于点(4,)A m 和(8,2)B --,与y 轴交于点C .(1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ;(3)过点A 作AD ①x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当ODAC S 四边形:ODES=3:1时,求点P 的坐标.44.我校为了迎接体育中考,了解学生的体育成绩,从全校1000名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表中,a=,b=,c=;(2)补全统计图;(3)“跳绳”数在180(包括180)以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?45.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W (元)与x (天)之间的函数关系式; (2)求x 为何值时,日销售利润为900元?(3)直接写出哪一天销售这种水果的利润最大?最大日销售利润为多少元?46.在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为x 后放回,然后乙也从中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(),x y . (1)请用列表或画树状图的方法写出点P 所有可能的坐标; (2)求点P 在函数22y x =-+的图象上的概率.47.已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =3;当x =12时,y =1.求x =-12时,y 的值.48.综合与探究如图,已知抛物线y =﹣x 2﹣2x +3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .其顶点为D ,对称轴是直线l ,且与x 轴交于点H .(1)求点A ,B ,C ,D 的坐标;(2)若点P 是该抛物线对称轴l 上的﹣个动点,求①PBC 周长的最小值;(3)若点E 是线段AC 上的一个动点(E 与A .C 不重合),过点E 作x 轴的垂线,与抛物线交于点F ,与x 轴交于点G .则在点E 运动的过程中,是否存在EF =2EG ?若存在,求出此时点E的坐标;若不存在,请说明理由.49.指出下列随机事件中,哪些是等可能事件,哪些是非等可能事件.①在一个装着3个白球、3个黑球(每个球除颜色外都相同)的袋中摸出一个球,摸出白球与摸出黑球;①掷一枚均匀的骰子,朝上一面的点数分别为1、2、3、4、5、6;①从4张扑克牌中(4张牌的花色分别为红桃、方块、梅花、黑桃)随意抽取一张,这张牌分别是红桃、方块、梅花、黑桃;①掷一枚图钉,钉尖着地与钉尖朝上.50.如图,①OAB的OA边在x轴上,其中B点坐标为(3,4)且OB=BA.(1)求经过A,B,O三点的抛物线的解析式;(2)将(1)中的抛物线沿x轴平移,设点A,B的对应点分别为点A′,B′,若四边形ABB′A′为菱形,求平移后的抛物线的解析式.参考答案:1.B【分析】根据左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),判断即可.【详解】解:根据左视图的定义可知: 该几何体的左视图为:故选:B.【点睛】此题考查的是判断一个几何体的左视图,掌握左视图的定义: 由物体左边向右做正投影得到的视图(不可见的用虚线),是解决此题的关键.2.B【详解】试题分析:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2.故选B.考点:二次函数图象与几何变换.3.D【分析】根据圆锥侧面展开图的特征即可求解.【详解】解:如图是一个几何体的侧面展开图,这个几何体是圆锥.故选:D.【点睛】本题主要考查几何体的展开图,解题的关键是根据几何体的展开图判断几何体的形状,难度不大.4.B【分析】设P(x,y),根据点P在反比例函数上得xy=-6,由反比例函数k的几何意义结合矩形的面积公式即可得出答案.【详解】设P(x,y),①点P在反比例函数y=-6x上,①xy=-6,①S四边形MONP=ON·OM=|xy|=|-6|=6.故答案为B.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x=(k 为常数,k ≠0)图像上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k .5.A【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【详解】解: A 、黑桃数量多,故抽到黑桃的可能性更大,故正确;B 、黑桃张数多于红桃,故抽到两种花色的可能性不相同,故错误;C 、从中抽取5张可能会有2张红桃,也可能不是,故错误;D 、从中抽取7张,不可能全是红桃,故错误.故选A .【点睛】本题考查概率的意义.6.C【分析】根据分式中分母不为零计算即可.【详解】由题意得x+3≠0,解得:x≠-3,故选:C .【点睛】本题考查了函数自变量的取值范围,掌握知识点是解题关键.7.D【分析】根据二次函数图象左加右减在自变量,上加下减在函数值的平移规律进行求解.【详解】.解:抛物线 22y x =- 向右平移3个单位,得()22-3y x =-,再向下平移2个单位,得:()2222y x =---.故答案为:D .【点睛】此题主要考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.A【分析】由主视图和左视图可得知几何体为锥体,再根据俯视图是三角形即可判断其为三棱锥.【详解】解:①主视图和左视图均为三角形①该几何体为椎体①俯视图为三角形①该几何体为三棱锥.故选:A.【点睛】本题主要考查了几何体的三视图,良好的空间想象能力是解答本题的关键.9.D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;++=个小正方体.①这个几何体最少需要用6219故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.10.A【分析】根据“概率”的意义进行判断即可.【详解】解:A.明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意;B.明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项B不符合题意;C.明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C不符合题意;D.明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项D不符合题意;故选:A.【点睛】本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键.11.C【分析】根据俯视图是指从几何体的上面观察得出的图形作答.【详解】解:几何体的俯视图是:【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.12.B【分析】根据题意可得当1x >-时,y 随x 的增大而增大,即可求解.【详解】解:①抛物线()()2120y a x a =++>,①抛物线的对称轴为直线1x =-,且开口向上,①当1x >-时,y 随x 的增大而增大,①当1x =-时,函数值最小,最小值为2,①点()()121,,2,A y B y 在抛物线()()2120y a x a =++>上, ①212y y >>.故选:B【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.13.C【分析】由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形,从而确定答案.【详解】解:由几何体的俯视图,可知从正面看这个几何体,会看到左边有2个小正方形,中间有2个小正方形,右边有1个小正方形.故选C .【点睛】本题主要考查由三视图判断几何体等知识点的理解和掌握,能正确画图是解此题的关键,难度不大.14.B【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(6, 0),则可对①进行判断;由对称轴方程得到b =-2a ,然后根据x =-1时函数值为0可得到3a +c =0,则可对①进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对①进行判断;根据二次函数的性质对①进行判断.【详解】解:①抛物线开口向下,顶点在x 轴上方,①抛物线与x 轴有两个交点,①①= b 2-4ac >0,①①正确;①抛物线的对称轴为直线x =2,与x 轴的一个交点坐标为(-2,0),①抛物线与x 轴的另一个交点坐标为(6,0),①方程ax 2+bx +c =0的两个根是x 1=2,x 2=6,①①正确; ①22b a-=, ①b =-4a ,①x =-2时,y =0,①4a -2b +c =0,①4a +8a +c =0,即12a +c=0,①①错误;当-2<x <6时,y >0,①①错误;当x <0时,y 随x 的增大而增大,①①正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时( 即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由①决定:①= b 2-4ac >0时,抛物线与x 轴有2个交点;①= b 2-4ac =0时,拋物线与x 轴有1个交点;①=b 2-4ac <0时,抛物线与x 轴没有交点.15.B【分析】根据三视图的形状即可判断.【详解】解:A 、圆柱的主视图是长方形,左视图是长方形,俯视图是圆,故此选项不符合题意;B 、几何体的主视图是长方形,左视图是小长方形,俯视图是三角形,故此选项符合题意;C 、长方体的主视图是长方形,左视图是小长方形,俯视图是长方形,故此选项不符合题意;D 、圆锥的主视图是三角形,左视图是三角形,俯视图是圆且中间有点,故此选项不符合题意,故选:B .【点睛】本题考查了根据三视图判断几何体的形状,解题的关键是掌握常见几何体的三视图特征.16.A【分析】根据二次函数的解析式y=2x 2-8x+6求得函数图象与y 轴的交点及对称轴,并作出选择.【详解】解:①当x=0时,y=6,及二次函数的图象经过点(0,6);①二次函数的图象的对称轴是:x=--822=2,即x=2; 综合①①,符合条件的图象是A ;故选A .【点睛】本题考查了二次函数的图象.解题时,主要从函数的解析式入手,求得函数图象与y 轴的交点及对称轴,然后结合图象作出选择.17.B【分析】根据图象有最高点可知a <0,把(-2,4)代入函数表达式可得4a -2b +c =4,根据最高点坐标可得到对称轴的表达式.【详解】解:①图象有最高点,①a <0,把(-2,4)代入21=++y ax bx c 得:4a -2b +c =4, ①最高点坐标(-2,4),①对称轴表达式:x =-2b a=-2,整理得:b =4a , 把b =4a 代入4a -2b +c =4得:b -c =-4<0,①a <0,且最高点坐标(-2,4),①21=++y ax bx c 与x 轴有两个交点,①∆=24b ac ->0,①一次函数22()4y b c x b ac =-+-在一二四象限.故选①B .【点睛】一次函数y =kx +b (k ≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.18.D【分析】首先将黄色区域平分成三部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在黄色区域的情况,再利用概率公式即可求得答案.【详解】解:将黄色区域平分成三部分,如图:画树状图得:①共有16种等可能的结果,两次指针都落在黄色区域的只有9种情况,①两次指针都落在黄色区域的概率为916; 故选D .【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.C【分析】根据表格数据确定出二次函数的顶点坐标,开口方向,与x 轴的交点坐标,然后再逐一进行判断即可得解.【详解】解:由表格得:二次函数顶点坐标为(1,﹣4),开口向上,与x 轴交点坐标为(﹣1,0)与(3,0),则(1)二次函数y=ax 2+bx+c 最小值为﹣4,正确;(2)若y <0,则x 的取值范围是﹣1<x <3,错误;(3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧,正确, 故选C .【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.20.D【分析】设A 点坐标为(0,a ),利用两个函数解析式求出点B 、C 的坐标,然后求出AB 的长度,再根据CD ∥y 轴,利用y 1的解析式求出D 点的坐标,然后利用y 2求出点E 的坐标,从而得到DE 的长度,然后求出比值即可得解.【详解】解:设A 点坐标为(0,a ),(a >0),则x 2=a ,解得x①点B a ),23x =a ,则x①点C a ),①CD ∥y 轴,①点D 的横坐标与点C①y 1=2=3a ,①点D ,3a ),①DE ∥AC ,①点E 的纵坐标为3a , ①23x =3a ,①x①点E 的坐标为(3a ),①DE ,①则3DE AB == 故选:D .【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据平行于x 轴的点的纵坐标相同,平行于y 轴的点的横坐标相同,用点A 的纵坐标表示出各点的坐标是解题的关键.21.12【分析】直接利用概率公式计算即可.【详解】根据题意可知:这些卡片中标有数字是偶数的卡片有3张. 故抽到标有的数字是偶数的概率是3162=. 故答案为:12.【点睛】本题考查简单的概率计算,掌握概率的计算公式是解答本题的关键. 22.a <1【分析】根据题意列出不等式并解答即可.【详解】解:①抛物线y =(a −1)x 2−2x +3在对称轴左侧,y 随x 的增大而增大,①a −1<0,解得a <1,故答案为:a <1.【点睛】本题考查了二次函数图象与系数的关系,解题时,需要熟悉抛物线的对称性和增减性.23.20【分析】根据概率的意义解答即可.【详解】解:①事件A 发生的概率为15,①大量重复做这种试验事件A 平均每100次发生的次数是100×15=20.故答案为:20.【点睛】本题考查了概率意义,熟记概率意义是在大量重复试验下事件发生的频率会趋近于某个数(即概率)附近是解题关键. 24.27【分析】先求出A ,B ,C 的坐标,再以AB 为底边,求出三角形ABC 的高,即可求出面积.【详解】解:当y =0时,2450x x --=, 解得11x =-,25x =,①A ,B 的坐标为(1-,0),(5,0), ①AB =6,①2245(2)9y x x x =--=--, ①C (2,9-), ①C 到AB 的距离为9, ①169272ABCS=⨯⨯=. 故答案为:27.【点睛】本题主要考查二次函数的性质,关键是要能根据解析式求出图象与坐标轴的交点. 25.13【分析】用树状图表示所有可能出现的结果,再求出两个景点相同的概率. 【详解】解:用树状图表示如下:共有9种可能的结果,其中甲、乙两人选择的2个景点恰好相同的有3种结果, ①甲、乙两人选择的2个景点恰好相同的概率是3193P ==, 故答案为:13.【点睛】本题考查了用树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是解决本题的关键.26.14【分析】根据10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2;求抽取的素数是偶数的可能性,就相当于求1是4的几分之几,用除法计算,据此解答. 【详解】解解:10以内的素数有4个,分别是:2、3、5、7;其中偶素数只有1个即2; ①1144÷=, 故答案为:14.【点睛】本题考查了简单事件发生的可能性的求解,即用可能性=所求情况数÷总情况数或求一个数是另一个数的几分之几用除法计算,注意:在所有的素数中只有一个偶素数即2.27.直三棱柱.【详解】解:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱. 故答案为:直三棱柱.【点睛】本题考查由三视图判断几何体,难度不大. 28.32【分析】根据反比例函数k 的几何意义即可求解. 【详解】解:①P 是反比例函数y = 3x图象上一点P A ⊥x 轴于点A , ①PAOS=32, 故答案为:32.【点睛】本题考查了反比例函数k 的几何意义,掌握反比例函数k 的几何意义是解题的关键.29.(2,2),(0,2)(答案不唯一)【分析】由函数y=2(x﹣1)2可得函数的对称轴,任取函数上一点,求出其关于对称轴对称的点可得答案.【详解】解:由抛物线y=2(x﹣1)2,可得其对称轴为x=1,可取一点(0,2),则其关于x=1的对称点位(2,2),故答案:(2,2),(0,2)(答案不唯一).【点睛】本题主要考查二次函数的性质及二次函数关于对称轴对称的点的特征.30.4 9【分析】由白色区域是240度,黑色区域是120度,指针落在它们的可能性不相同;所以将白色区域分成相等的两部分,那么指针落在三个部分的可能性相同,则可由列表法或树状图列出所有可能的结果,利用概率公式即可求解.【详解】解:将白色扇形分成相等的两部分,分别记为白1和白2,所以转盘自由转动1次,指针落在白1,白2,黑三部分的可能性相同,如下表,所有等可能的结果有9种,其中一次落在白色区域,一次落在黑色区域的有4种,所以P(指针一次落在白色区域,另一次落在黑色区域)= 4 9 .故答案为4 9 .【点睛】本题考查了几何概率的求法,将白色扇形分成相等的两部分,再利用列表法(或树状图法)求解是解决本题的基本思路.31.5 4【分析】根据已知求出B与C点坐标,再表示出相应的平移后A与C坐标,将之代入反比例函数表达式即可求解;【详解】解:①52AB AC ==,4BC =,点()A 3,5. ①71,2B ⎛⎫⎪⎝⎭,75,2C ⎛⎫ ⎪⎝⎭,将ABC ∆向下平移m 个单位长度, ①()3,5A m -,75,2C m ⎛⎫- ⎪⎝⎭,①,A C 两点同时落在反比例函数图象上, ①73(5)52m m ⎛⎫-=- ⎪⎝⎭,①54m =;故答案为54;【点睛】本题考查反比例函数的图象及性质;熟练掌握等腰三角形的性质,通过等腰三角形求出点的坐标是解题的关键. 32.65π【详解】试题分析:首先确定圆锥的母线长和圆锥的底面半径,利用侧面积计算公式直接求得圆锥的侧面积即可.试题解析:①①C=90°,AB=13,AC=12, ①BC=5,以AC 所在直线为轴旋转一周,所得圆锥的底面周长=10π,侧面积=12×10π×13=65π. 考点:1.圆锥的计算;2.点、线、面、体. 33.11【分析】根据二次函数解析式求出函数的顶点坐标,代入即可解题. 【详解】解:①函数2y x 6x k =-+的对称轴是x=3, ①当x=3时,函数有最小值2, 即9-18+k=2, 解得:k=11.【点睛】本题考查了二次函数的图像和性质,属于简单题,求出二次函数的顶点坐标是解题关键. 34.①【分析】易得此几何体为两个底面相同且相连的圆锥的组合体,主视图是从几何体正面看【详解】解:Rt △ABC 绕斜边AB 旋转一周所得的几何体是两个底面相等相连的圆锥,圆锥的主视图是等腰三角形,所以该几何体的左视图是两个底边相等的等腰三角形相连,并且上面的等腰三角形较大,故为图①. 故答案为①.【点睛】本题考查了空间想象能力及几何体的三视图;发挥空间想象能力,确定旋转一周所得的几何体形状是关键. 35.12.【分析】利用反比例函数k 的几何意义求解即可.【详解】①延长BA 交y 轴于点E ,顶点A ,B 分别在反比例函数y=4x 和y=16x的图象上, ①ADOE S 矩形=4,OE S 矩形BC =16, ①矩形ABCD 的面积为:OE S 矩形BC -ADOE S 矩形=16-4=12;故答案为:12.【点睛】本题考查了反比例函数的k 的几何意义,熟练将k 的几何意义与图形的面积有机结合,灵活解题是解题的关键. 36.﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,所以函数图象分支在二、四象限。
中考基础题训练中考基础训练1一、选择题1.2的相反数是 ( ) A .2B .-2C .21D .22.y=(x -1)2+2的对称轴是直线 ( ) A .x=-1B .x=1C .y=-1D .y=13.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:44.函数11y x =+中自变量x 的取值范围是 ( ) A .x ≠-1B .x>-1C .x ≠1D .x ≠05.下列计算正确的是 ( ) A .a 2·a 3=a 6B .a 3÷a=a 3C .(a 2)3=a 6D .(3a 2)4=9a 46.在下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A .等腰三角形B .圆C .梯形D .平行四边形7.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .7cmB .16cmC .21cmD .27cm8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )A B C D 二、填空题9.写出一个3到4之间的无理数 . 10.分解因式:a 3-a= .B ACED坐标为(0,3)的抛物线的解析式.13.亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。
请你帮他计算这块铁皮的半径为cm.三、解答题14计算:0(2)2cos60-+15. 先化简,再求值:212(1)11xx x+÷--,其中3x=-.16. 在如图所示的直角坐标系中,O为原点,直线y=-12x+m与x轴、y轴分别交于A、B两点,且点B的坐标为(0,8).(1)求m的值;(2)设直线OP与线段AB相交于P点,且S△AOPS△BOP=13,试求点P的坐标.中考基础训练21. 下列事件中是必然事件的是A. 打开电视机,正在播广告.B. 从一个只装有白球的缸里摸出一个球,摸出的球是白球.C. 从一定高度落下的图钉,落地后钉尖朝上.D. 今年10月1日 ,厦门市的天气一定是晴天.2. 如图1,在直角△ABC 中,∠C =90°,若AB =5,AC =4,则sin ∠B = A. 35B. 45C. 34D. 433. “比a 的32大1的数”用代数式表示是A. 32a +1B. 23a +1C. 52aD. 32a -14. 已知:如图2,在△ABC 中,∠ADE =∠C ,则下列等式成立的是 A.AD AB =AE AC B. AE BC =AD BDC. DE BC =AE ABD. DE BC =AD AB5. 已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是 A. 6 B. 2 m -8 C. 2 m D. -2 m 二、填空题6. -3的相反数是 .7. 分解因式:5x +5y = .8. 如图3,已知:DE ∥BC ,∠ABC =50°,则∠ADE = 度. 9. 25÷23= .10. 某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是 .11. 如图4,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则OD = 厘米.12. 如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,E 图 3D CBA 图 1CBA图 4乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为 (填“甲”或“乙”)获胜的可能性更大.13.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f满足关系式:1u +1v =1f. 若f =6厘米,v =8厘米,则物距u = 厘米.14. 已知函数y =-3x -1-2 2 ,则x 的取值范围是 . 若x 是整数,则此函数的最小值是 .15. 已知平面直角坐标系上的三个点O (0,0)、A (-1,1)、B (-1,0),将△ABO绕点O 按顺时针方向旋转135°,则点A 、B 的对应点A 1、B 1的坐标分别是A 1( , ) ,B 1( , ) . 三、解答题16.计算: 22+(4-7)÷32+(3)017. 我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交. 如图,在平面直角坐标系中,正方形OABC 的顶点为O (0,0)、A (1,0)、B (1,1)、C (0,1).(1)判断直线y = 1 3x + 56与正方形OABC 是否相交,并说明理由;(2)设d 是点O 到直线y =-3x +b 的距离,若直线y =-3x +b 与正方形OABC 相交,求d 的取值范围.中考基础训练31、6 的倒数是 。
2、分解因式:=++122x x 。
3、据泉州统计局网上公布的数据显示,2005年第一季度我市完成工业总产值约为 61 400 000 000元,用科学记数法表示约为 元。
4、函数31-=x y 中,自变量x 的取值范围是 。
5、计算:=+2223 。
6、如图,点A 、B 、C 、D 在⊙O 上,若∠BDC=30°,则∠BAC= 度。
7、五边形的内角和等于 度。
8、请你在右图的正方形格纸中,画出线段AB 关于点O 成中心对称的图形。
9、在△ABC 中,AB=AC ,若∠B=50°,则∠C= 度。
10、已知圆柱底面半径为4cm ,母线长为10cm ,则其侧面展开图的面积是 cm 211、写出不等式05<-x 的一个整数解: 。
12、我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右下表,此表揭示了nb a )(+(n 为非负整数)展开式的各项系数的规律,例如:1)(0=+b a ,它只有一项,系数为1;b a b a +=+1)(,它有两项,系数分别为1,1;2222)(b ab a b a ++=+,它有三项,系数分别为1,2,1;3223333)(b ab b a a b a +++=+,它有四项,系数分别为1,3,3,1;……根据以上规律,4)(b a +展开式共有五项,系数分别为 。
13、计算102·103的结果是( )A 、104B 、105C 、106D 、10814、一元二次方程0132=-+x x 的根的情况为( )A 、有两个不相等的实数根B 、有两个相等的实数根ABFEDCC 、只有一个实数根D 、没有实数根15、样本6,7,8,9,10,10,10的中位数和众数分别是( )A 、9,3B 、8,10C 、10,10D 、9,1016、⊙O 1与⊙O 2的半径分别为2、3,圆心距O 1O 2=5,这两圆的位置关系是( )A 、内切B 、相交C 、外切D 、外离17、下面命题错误..的是( ) A 、等腰梯形的两底平行且相等B 、等腰梯形的两条对角线相等C 、等腰梯形在同一底上的两个角相等D 、等腰梯形是轴对称图形18、一辆客车从泉州出发开往宁德,设客车出发t 小时后与宁德的距离为s 千米,下列图象能大致反映s 与t 之间的函数关系的是( )A 、B 、C 、D 、19、如图,已知梯形ABCD ,AD ∥BC ,AF 交CD 于E ,交BC 的延长线于F .(1)若∠B +∠DCF =180º,求证:四边形ABCD 是等腰梯形;(2)若E 是线段CD 的中点,且CF ∶CB =1∶3,AD =6,求梯形ABCD 中位线的长.中考基础训练41.计算:-2×3= 。
2.单项式322x y 7-的次数是 。
3.小明在中考前到文具店买了2支2B 铅笔和一副三角板,2B 铅笔每支x 元,三角板每副2元,小明共花了 元。
4.分解因式:2a 4-= 。
5.函数xy x 2=-的自变量x 的取值范围是 。
6.我市今年参加中考的学生数为64397人,把这个数保留两个有效数字可记为 。
7.请你写出一个点坐标,使这点在反比例函数2y x=-的图象上,则这个点的坐标为 。
8.写出一个你所学过的既是轴对称又是中心对称图形 。
9.如图,PA 切⊙O 于点A ,PBC 是⊙O 的割线,若PB=BC=2,则PA= 。
10.在比例尺为1∶500 000的福建省地图上,量得省会福州到漳州的距离约为46厘米,则福州到漳州实际距离约为 千米。
11.方程2x =2x 的解是 。
12.如图,一铁路路基的横截面是等腰梯形,根据图中数据计算路基的高为 m 。
13.如图,由Rt △ABC 的三边向外作正方形,若最大 正方形的边长为8cm ,则正方形M 与正方形N 的面积 之和为 2cm 。
14.观察分析下列数据,按规律填空:2,2,6,22,10,…, (第n 个数)为 。
15.下列计算正确的是( )A 222y 6y 4-=- B 339x x x ⋅= C326x x (-)= D 632x x x ÷= 16.菱形和矩形一定都具有的性质是( )A 对角线相等B 对角线互相平分C 对角线互相垂直D 每条对角线平分一组对角17.用换元法把方程222x 16x 17x 1x 1(+)(+)+=++化为关于y 的方程62y 7y+=,那么下列换元正确的是( )A1y x 1=+ B 21y x 1=+ C 2x 1y x 1+=+ D 2x 1y x 1+=+18.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是( )A 北偏西52°B 南偏东52°C 西偏北52°D 北偏西38°19.关于x 的一元二次方程2x 2x 40--=的两根为12x x 、,那么代数式1211x x +的值为( )A12B 12-C 2D -220.小明骑自行车上学,从家里出发后以某一速度匀速前进,中途由于自行车出了故障,停下修车耽误了一段时间。
为了按时到校,小明加快速度 (仍保持匀速)前进,结果准时到达学校。