运用类比法破解排列组合题
- 格式:pdf
- 大小:55.69 KB
- 文档页数:1
排列组合是组合数学中的一个重要概念,涉及到对一组对象进行排列或组合的方式。
下面列举几个经典的排列组合题型及解法:
1. 排列问题:
-题型:从n个不同元素中选取m个元素,有多少种排列方式?
-解法:使用排列数的公式P(n, m) = n! / (n-m)!,其中n!表示n 的阶乘。
2. 组合问题:
-题型:从n个不同元素中选取m个元素,有多少种组合方式?
-解法:使用组合数的公式C(n, m) = n! / (m!(n-m)!),其中n!表示n的阶乘。
3. 重复排列问题:
-题型:从n个元素中选取m个元素进行排列,允许元素重复,有多少种排列方式?
-解法:使用重复排列数的公式P'(n, m) = n^m,其中^n表示n的m次方。
4. 重复组合问题:
-题型:从n个元素中选取m个元素进行组合,允许元素重复,有多少种组合方式?
-解法:使用重复组合数的公式C'(n, m) = C(n+m-1, m),其中C(n, m)表示组合数。
5. 圆排列问题:
-题型:将n个不同的物体围成一个圆圈,有多少种不同的排列方式?
-解法:使用圆排列数的公式P(n) = (n-1)!。
以上是一些常见的排列组合题型及其解法。
在实际问题中,可能会出现更加复杂和变化的情况,需要根据具体问题进行分析和推导解法。
行政能力测验技巧系列之逻辑判断篇组合排列解题方法卓丽沙在历年的国家公务员考试中,行政职业能力测试分为五大模块,判断推理作为五大模块之一,近年来一直稳定在图形推理、逻辑判断(演绎推理)、类比推理和定义判断这四种题型,共35道题。
其中,逻辑判断往往是很多考生认为比较难做的。
作为一名培训师,笔者将针在对历年真题进行剖析的基础之上,为考生提供一个行之有效的解题方法。
逻辑判断也叫演绎推理,共十题,其中,有一类型我们可称其为组合排列。
所谓组合排列,就是题中给出一组对象(如甲、乙、丙、丁),再给出两种以上信息(如年龄、性别、身高、职业、专业等),最后需要考生对各种信息进行一一匹配。
例1:有三个小孩分别叫蓝蓝(女),红红(女)和虎虎。
孩子妈妈是卫国珍、姜家英、申仁丽。
邻居李奶奶说:冯一中和姜家英的孩子都参加了少年女子舞蹈队,陈二国的女儿不是红红,楚三仁、申仁丽不是一家人。
因此可以推断出下列为一家人的是: A.陈二国姜家英和红红,楚三仁卫国珍和蓝蓝B.楚三仁卫国珍和虎虎,冯一中申仁丽和红红C.陈二国申仁丽和红红,楚三仁姜家英和虎虎D.楚三仁申仁丽和红红,冯一中卫国珍和虎虎上面试一道典型的组合排列题,对于这样的题目,很多考生都无从下手,笔者在授课的过程中发现,一些考生只是将题中给出的信息一一罗列出来,之后完全没有一个正确的解题思路。
事实上,根据对真题的研究,我们发现,对于做组合排列型题目,首选的方法应该是排除法,有一些组合排列型的题目只看题干是没有办法选出答案的,因为一些题干中给出的信息较少,无法完成一一对应。
下面我们具体解答一下这道题目:[答案]B[解析]本题采用的是排除法,题中说到“陈二国的女儿不是红红”,因此,可以排除选项A、C;又因为“楚三仁、申仁丽不是一家人”,可排除选项D,因此,正确答案为B。
行政能力测验技巧系列之逻辑判断篇组合排列解题方法卓丽沙在历年的国家公务员考试中,行政职业能力测试分为五大模块,判断推理作为五大模块之一,近年来一直稳定在图形推理、逻辑判断(演绎推理)、类比推理和定义判断这四种题型,共35道题。
其中,逻辑判断往往是很多考生认为比较难做的。
作为一名培训师,笔者将针在对历年真题进行剖析的基础之上,为考生提供一个行之有效的解题方法。
逻辑判断也叫演绎推理,共十题,其中,有一类型我们可称其为组合排列。
所谓组合排列,就是题中给出一组对象(如甲、乙、丙、丁),再给出两种以上信息(如年龄、性别、身高、职业、专业等),最后需要考生对各种信息进行一一匹配。
例1:有三个小孩分别叫蓝蓝(女),红红(女)和虎虎。
孩子妈妈是卫国珍、姜家英、申仁丽。
邻居李奶奶说:冯一中和姜家英的孩子都参加了少年女子舞蹈队,陈二国的女儿不是红红,楚三仁、申仁丽不是一家人。
因此可以推断出下列为一家人的是: A.陈二国姜家英和红红,楚三仁卫国珍和蓝蓝B.楚三仁卫国珍和虎虎,冯一中申仁丽和红红C.陈二国申仁丽和红红,楚三仁姜家英和虎虎D.楚三仁申仁丽和红红,冯一中卫国珍和虎虎上面试一道典型的组合排列题,对于这样的题目,很多考生都无从下手,笔者在授课的过程中发现,一些考生只是将题中给出的信息一一罗列出来,之后完全没有一个正确的解题思路。
事实上,根据对真题的研究,我们发现,对于做组合排列型题目,首选的方法应该是排除法,有一些组合排列型的题目只看题干是没有办法选出答案的,因为一些题干中给出的信息较少,无法完成一一对应。
下面我们具体解答一下这道题目:[答案]B[解析]本题采用的是排除法,题中说到“陈二国的女儿不是红红”,因此,可以排除选项A、C;又因为“楚三仁、申仁丽不是一家人”,可排除选项D,因此,正确答案为B。
例2:高中同学聚会,甲、乙、丙在各自工作岗位上都做出了一定的成绩,成为了教授、作家和市长。
另外,(1)他们分别毕业于数学系、物理系和中文系•(2)作家称赞中文系毕业者身体健康•(3)物理系毕业者请教授写了一个条幅•(4)作家和物理系毕业者在一个市内工作•(5)乙向数学系毕业者请教过统计问题•(6)毕业后,物理系毕业者、乙都没再和丙联系过下列陈述哪项是真的()A.丙是作家,甲毕业于物理系B.乙毕业于数学系C.甲毕业于数学系D.中文系毕业者是作家[答案]A[解析]本题采用的也是排除法,题中说到“作家称赞中文系毕业者身体健康”,说明中文系毕业者不是作家,排除选项D;“乙向数学系毕业者请教过统计问题”说明乙不是数学系毕业,排除选项B,最后,“毕业后,物理系毕业者、乙都没再和丙联系过”,说明物理系毕业者是甲,排除选项C,因此,正确答案为A。
排列组合问题的20 种解法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
复习巩固分类计数原理 ( 加法原理 )完成一件事,有类办法,在第 1 类办法中有种不同的方法,在第 2 类办法中有种不同的方法,,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第 1 步有种不同的方法,做第 2 步有种不同的方法,,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。
3.确定每一步或每一类是排列问题 ( 有序 ) 还是组合 ( 无序 ) 问题 , 元素总数是多少及取出多少个元素 .4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一. 特殊元素和特殊位置优先策略例 1. 由 0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解: 由于末位和首位有特殊要求, 应该优先安排, 以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 , 若以元素分析为主 , 需先安排特殊元素 , 再处理其它元素 . 若以位置分析为主 , 需先满足特殊位置的要求 , 再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件练习题:7 种不同的花种在排成一列的花盆里, 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二. 相邻元素捆绑策略例 2. 7人站成一排, 其中甲乙相邻且丙丁相邻,共有多少种不同的排法.再解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合题二十种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1. 进一步理解和应用分步计数原理和分类计数原理。
2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3. 学会应用数学思想和方法解决排列组合问题. 复习巩固1. 分类计数原理(加法原理)完成一件事,有n 类办法,在第 1 类办法中有m 1 种不同的方法,在第 2 类办法中有m 2 种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第 1 步有m 1 种不同的方法,做第 2 步有m 2 种不同的方法,…,做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完 成整个事件.解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这N = m 1 ⨯ m 2 ⨯ ⨯ m nN = m 1 + m 2 + + m n344 4 3 4AC 5 2 2 5 6 5 6要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两两个位置.先排末位共有C 1 然后排首位共有C 1 最后排其它位置共有 A 3由分步计数原理得C 1C 1A 3 = 28844 3练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类办1法中有m种不同的方法,…,在第n类办法中有n m种不同的方法,那么完成2这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步有2m1种不同的方法,…,做第n步有m种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,个位置.先排末位共有1C3443然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
公务员考试逻辑判断技巧之:排列组合题型解题技巧第一篇:公务员考试逻辑判断技巧之:排列组合题型解题技巧公务员考试逻辑判断技巧之:排列组合题型解题技巧排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。
一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。
例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有() A6 B.9 C.11 D.23解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。
一共有9种填法,故选B二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
四、消序例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。
解析:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。
五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。
首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。