2017年秋季新版北师大版八年级数学上学期第7章、平行线的证明单元复习试卷24
- 格式:doc
- 大小:131.00 KB
- 文档页数:7
北师大版八年级数学上册第七单元《平行线的证明》单元练习题(含答案)一、单选题1.如图,AB∥CD,AD与BC 相交于点E,若∠A=40°,∠C=35°,则∠BED=()A.70°B.75°C.80°D.85°2.下列四个命题中:①两条直线被第三条直线所截,同位角相等;②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;③相等的两个角是对顶角;④垂直于同一条直线的两条直线相互垂直. 真命题有()A.0个 B.1个 C.2个 D.3个3.如图,把一张长方形纸片ABCD沿EF折叠后,点C、D分别落在C'、D'的位置上,ED'的延长线与BC的交点为G,若∠EFG=50°,那么∠1=()A.50°B.60°C.70°D.80°4.如图所示,如果∠D=∠EFC,那么()A.AD∥BC B.EF∥BC C.AB∥DC D.AD∥EF5.在△ABC中,已知∠A=∠B=12∠C,则三角形是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形6.下列语句中,是命题的是( )①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤7.如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CDB.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BCD.由AD∥BC得到∠3=∠48.如图,AB∥CD,∠B=20°,∠D=60°,则∠BED的度数为( )A.40°B.80°C.90°D.l00°9.下列结论中。
第7章平行线的证明一.选择题(共10小题)1.下列命题为假命题的是()A.直角都相等B.对顶角相等C.同位角相等D.同角的余角相等2.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个3.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个4.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为()A.5 B.6 C.7 D.85.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG =2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正确的结论是()A.①③B.②④C.①③④D.①②③④6.已知△ABC的三个内角为A,B,C且α=A+B,β=C+A,γ=C+B,则α,β,γ中,锐角的个数最多为()A.1 B.2 C.3 D.07.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°9.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15 B.20 C.25 D.3010.A,B,C,D四个队赛球,比赛之前,甲和乙两人猜测比赛的成绩次序:甲:从第一名开始,名次顺序是A,D,C,B;乙:从第一名开始,名次顺序是A,C,B,D,比赛结果,两人都猜对了一个队的名次,已知第一名是B队,请写出四个队的名次顺序是()A.B,A,C,D B.B,C,A,D C.D,B,A,C D.B,A,D,C 二.填空题(共6小题)11.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人“项目比赛,该项目只设置一个一等奖,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学只有两位预测结果是对的,则获得一等奖的团队是.12.顾客请一位工艺师把A、B两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:工序时间原料粗加工精加工原料A9 15原料B 6 21 那么最短交货期为工作日.13.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.14.如果两条直线被第三条直线所截,一组同旁内角的度数比为3:2,差为36°,那么这两条直线的位置关系是,这是因为.15.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,则∠BFE=.16.如图,把△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时,则∠A与∠1、∠2之间有一种数量关系始终保持不变,请试着找出这个规律为.三.解答题(共4小题)17.画图题:(1)在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线EF和平行线GH.(2)判断EF、GH的位置关系是.(3)连接AC和BC,则三角形ABC的面积是.18.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.19.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.20.如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.参考答案与试题解析一.选择题(共10小题)1.【解答】解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.2.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④同一平面内,过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.3.【解答】解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.4.【解答】解:∵FM平分∠EFD,∴∠EFM=∠DFM=∠CFE,∵EG平分∠AEF,∴∠AEG=∠GEF=∠AEF,∵EM平分∠BEF,∴∠BEM=∠FEM=∠BEF,∴∠GEF+∠FEM=(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=(∠BEF+∠CFE),∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF∴∠FEM+∠EFM=(∠BEF+∠CFE)=(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选:C.5.【解答】解:∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB故③正确.故选:C.6.【解答】解:∵α,β,γ的度数不能确定,∴α,β,γ可能都是锐角也可能有两个是锐角或一个是锐角,①假设α、β、γ三个角都是锐角,即α<90°,β<90°,γ<90°,∵α=A+B,β=C+A,γ=C+B,∴A+B<90°,B+C<90°,C+A<90°.∴2(A+B+C)<270°,∴A+B+C<135°与A+B+C=180°矛盾.∴α、β、γ不可能都是锐角.②假设α、β、γ中有两个锐角,不妨设α、β是锐角,那么有A+B<90°,C+A<90°,∴A+(A+B+C)<180°,∴A+180°<180°,∵A<0°不可能,∴α、β、γ中至多只有一个锐角,如A=20°,B=30°,C=130°,α=50°,故选:A.7.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.【解答】解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选:B.9.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选:B.10.【解答】解:由于甲、乙两队都猜对了一个队的名次,且第一名是B队.那么甲、乙的猜测情况可表示为:甲:错、错、对、错;乙:错、错、错、对.因此结合两个人的猜测情况,可得出正确的名次顺序为B、A、C、D.故选:A.二.填空题(共6小题)11.【解答】解:①若获得一等奖的团队是甲团队,则小张、小王、小赵预测结果是对的,与题设矛盾,即假设错误,②若获得一等奖的团队是乙团队,则小王预测结果是对的,与题设矛盾,即假设错误,③若获得一等奖的团队是丙团队,则四人预测结果都是错的,与题设矛盾,即假设错误,④若获得一等奖的团队是丁团队,则小李、小赵预测结果是对的,与题设相符,即假设正确,即获得一等奖的团队是:丁.故答案为:丁.12.【解答】解:当徒弟先加工原料A时,所需时间为9+15+21=45(工作日);当徒弟先加工原料B时,所需时间为6+21+15=42(工作日).∵45>42,∴最短交货期为42个工作日.故答案为:42.13.【解答】解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线和已知直线平行),故答案为:过直线外一点有且只有一条直线平和已知直线平行.14.【解答】解:∵一组同旁内角的度数比为3:2,差为36°∴设较小的角为:x,则较大的为x+36°∴(x+36°):x=3:2∴x=72°,x+36°=108°∵72°+108°=180°即同旁内角互补.∴这两条直线的位置关系是平行∴答案为:平行,同旁内角互补.15.【解答】解:∵AE是角平分线,∠BAE=26°,∴∠FAD=∠BAE=26°,∵DB是△ABC的高,∴∠AFD=90°﹣∠FAD=90°﹣26°=64°,∴∠BFE=∠AFD=64°.故答案为:64°.16.【解答】解:∵在△ADE中:∠A+∠ADE+∠AED=180°,∴∠A=180°﹣∠ADE﹣∠AED,由折叠的性质得:∠1+2∠ADE=180°,∠2+2∠AED=180°,∴∠1+2∠ADE+∠2+2∠AED=360°,∴∠1+∠2=360°﹣2∠ADE﹣2∠AED=2(180°﹣∠ADE﹣∠AED)=2∠A,∴2∠A=∠1+∠2.即当△ABC的纸片沿DE折叠,当点A落在四边形BCED内部时2∠A=∠1+∠2这种数量关系始终保持不变.三.解答题(共4小题)17.【解答】解:(1)如图(2)EF与GH的位置关系是:垂直;(3)设小方格的边长是1,则AB=2,CH=2,∴S△ABC=×2×2=10.18.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.19.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.20.【解答】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AE是角平分线,∴∠BAE=30°∵AD是高,∴∠BAD=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10.。
北师大版数学八年级上第7单元《平行线的证明》同步练习附单元测试卷7.1 为什么要证明7.2 定义与命题第1课时定义与命题第2课时定理与证明7.3 平行线的判定7.4 平行线的性质7.5 三角形内角和定理第1课时三角形内角和定理第2课时三角形外角和平行线的证明单元测试第七章平行线的证明7.1 为什么要证明1.下列图案均由边长为单位长度的小正方形按一定的规律拼接而成.依此规律,第5个图案中小正方形的个数为__________.2. 有红、黄、蓝三个箱子,一个苹果放入其中某个箱子内,并且:①红箱子盖上写着:“苹果在这个箱子里.”②黄箱子盖上写着:“苹果不在这个箱子里.”③蓝箱子盖上写着:“苹果不在红箱子里.”已知①②③中只有一句是真的,那么苹果在哪个箱子里?3.观察下图,左图中间的圆圈大还是右图中间的圆圈大?4.我们知道:2×2=4,2+2=4.试问:对于任意数a与b,是否一定有结论a×b=a+b?5.如图,在▱ABCD中,DF⊥AC于点F,BE⊥AC于点E,试问DF与BE的位置关系和数量关系如何?你能肯定吗?请说明理由.7.2 定义与命题第1课时定义与命题1.下列句子中,不是命题的是( )A.三角形的内角和等于180度B.对顶角相等C.过一点作已知直线的平行线D.两点确定一条直线2.下列句子中,是命题的是( )A.今天的天气好吗B.作线段AB∥CDC.连接A、B两点D.正数大于负数3.下列命题是真命题的是( )A.如果两个角不相等,那么这两个角不是对顶角B.两互补的角一定是邻补角C.如果a2=b2,那么a=bD.如果两角是同位角,那么这两角一定相等4.下列命题是假命题的是( )A.如果a∥b,b∥c,那么a∥cB.锐角三角形中最大的角一定大于或等于60°C.两条直线被第三条直线所截,内错角相等D.矩形的对角线相等且互相平分5.下列叙述错误的是( )A.所有的命题都有条件和结论B.所有的命题都是定理C.所有的定理都是命题D.所有的公理都是真命题6.下列命题中,真命题有( )①如果△A1B1C1∽△A2B2C2,△A2B2C2∽△A3B3C3,那么△A1B1C1∽△A3B3C3;②直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离;③如果242xx--=0,那么x=±2; ④如果a=•b,那么a3=b3A.1个B.2个C.3个D.4个7.写出下列命题的条件和结论:(1)两条直线被第三条直线所截,同旁内角互补;(2)如果两个三角形全等,那么它们对应边上的高也相等.8.判断下列命题的真假:(1)一个三角形如果有两个角互余,那么这个三角形是直角三角形;(2)如果│a│=│b│,那么a3=b3.9.举出反例说明“如果AB=BC,那么点C是AB的中点”是个假命题.7.2 定义与命题第2课时定理与证明1指出下列命题的条件和结论.(1)若a>0,b>0,则ab>0.(2)如果a∥b,b∥c,那么a∥c.(3)同角的补角相等.(4)内错角相等,两直线平行.2举出反例说明下列命题是假命题.(1)大于90°的角是钝角;(2)如果一个角的两条边分别平行于另一个角的两条边,那么这两个角相等.7.3 平行线的判定1.如图,下列说法中,正确的是().A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD.因为∠A+∠C=180°,所以AB∥CD2.如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.3.如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).4.如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.5.如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.6.工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?7.4 平行线的性质1.如图,DE ∥BC ,分别交AB 、AC 于点D 、E ,求证:BCDEAC AE AB AD ==。
八年级上册数学第七章单元测试一、选择题(每题3分,共30分)1.命题“负数没有平方根”的条件是()A.如果一个数是正数B.如果一个数没有平方根C.如果一个数是负数D.如果一个数是非负数2.如图,下列能判定AB∥CD的条件有()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个3.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG的度数是()A.70°B.20°C.35°D.40°4.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′5.如图,下列选项中,不可以得到l1∥l2的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.如图,把△ABC纸片沿DE折叠,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE为()A.80°B.60°C.50°D.40°9.如图,在△ABC中,∠B=38°,∠C=54°,AD是BC边上的高,AE是∠BAC 的平分线,则∠DAE的度数为()A.8°B.10°C.12°D.14°10.在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为()A.65°B.75°C.105°D.115°二、填空题(每题3分,共15分)11.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠A为________度.12.如图,AB∥CD,∠1=58°,FG平分∠EFD交AB于G,则∠FGB的度数为________.13.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是________.14.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于________.15.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC =________度.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.如图,点A、B、C、D在同一条直线上,EC∥FD,∠F=∠E,求证:AE ∥BF.将证明过程补充完整,并在括号内填写推理依据.证明:∵EC∥FD,()∴∠________=∠1.()∵∠F=∠E,(已知)∴∠________=∠________,()∴AE∥BF.()17.如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=100°,DF平分∠BDE,求∠C的度数.18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.19.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.20.如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF∥DO.21.如图,AD为△ABC的角平分线,DE∥AB,DE交AC于点E.若∠B=57°,∠C=65°,求∠ADE的度数.22.已知如图,点E在△ABC的边BC上,AD∥BC,∠DAE=∠BAC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠2的度数.23.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.答案一、1.C 2.C 3.C 4.D 5.C 6.B7.B8.D9.A10.C二、11.3012.151°13.51°或93°14.230°15.122.5三、16.已知;F;两直线平行,内错角相等;E;1;等量代换;内错角相等,两直线平行17.解:(1)∵DE∥AB,∴∠A=∠2.∵∠1+∠2=180°,∴∠A+∠1=180°,∴DF∥AC.(2)∵∠1=100°,∠1+∠2=180°,∴∠2=80°.∵AC∥DF,∴∠FDE=∠2=80°,∠C=∠BDF.∵DF平分∠BDE,∴∠BDF=80°,∴∠C=∠BDF=80°.18.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3.∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE.(2)∵BF⊥AC,∴∠BF A=90°.∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°-35°=55°.19.证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∴∠ABC=∠BCD,∴AB∥CD.20.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO,∴∠EDO=∠BOD.又∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO.21.解:∵∠B=57°,∠C=65°,∴∠BAC=180°-57°-65°=58°.∵AD为△ABC的角平分线,∴∠BAD=∠DAC=29°.∵DE∥AB,∴∠ADE=∠BAD=29°.22. (1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1.∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE.(2)解:∵∠DAE=∠BAC,∴∠BAE=∠DAC.∵AE平分∠BAC,∴∠EAC=∠BAE=∠DAC.∵AD∥BC,∴∠C=∠DAC=35°,∴∠EAC=∠DAC=35°,∴∠AEC=180°-∠EAC-∠C=110°,∴∠2=180°-∠AEC=70°.23.解:(1)135°(2)90°+12n°(3)∵BC、BD分别是∠OBA和∠NBA的平分线,∴∠ABC=12∠OBA,∠ABD=12∠NBA,∴∠ABC+∠ABD=12∠OBA+12∠NBA=12(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°.∵四边形内角和等于360°,∴∠ACB+∠ADB=360°-90°-90°=180°,由(2)知:∠ACB=90°+12n°,∴∠ADB=180°-(90°+12n°)=90°-12n°,∴∠ACB+∠ADB=180°,∠ADB=90°-12n°.(4)∠E的度数不会变,∠E=40°.求解如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA-∠AOB.∵AE、BC分别是∠OAB和∠NBA的平分线,∴∠BAE=12∠OAB,∠CBA=12∠NBA,∵∠CBA=∠E+∠BAE,∴12∠NBA=∠E+12∠OAB,∵12∠NBA=∠E+12(∠NBA-80°),即12∠NBA=∠E+12∠NBA-40°,∴∠E=40°.。
一、选择题1.下列说法正确的是( )A .一组数据6,5,8,8,9的众数是8B .甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙.则甲组学生的身高较整齐C .命题“若||1a =,则1a =”是真命题D .三角形的外角大于任何一个内角2.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”;小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”.则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误 3.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°4.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等5.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个6.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .387.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .48.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角9.下列说法:①同位角相等;②任意三角形的三条中线交于一点;③钝角三角形只有一条高;④三角形的两边长分别为6和9,则这个三角形的第三边长不可能为16;⑤面积相等的两个三角形是全等图形;⑥两个直角一定互补其中,正确的有( )A .4个B .3个C .2个D .1个10.如图,现给出下列条件:①1B ∠=∠,②25∠=∠,③34∠=∠,④180BCD D ︒∠+∠=.⑤180B BCD ︒∠+∠=,其中能够得到//AB CD 的条件有( )A .①②④B .①③⑤C .①②⑤D .①②④⑤ 11.已知四边形ABCD 是长方形,点,EF 分别为线段BC ,AD 上的两点,将四边形CDFE 沿EF 折叠得到四边形C D FE '',若40BEC '∠=︒,则EFD ∠等于( )A .50︒B .65︒C .60︒D .70︒12.下列说法正确的是( )A .无限小数都是无理数B .有最小的正整数,没有最小的整数C .a ,b ,c 是直线,若 a ⊥b ,b ⊥c ,则 a ⊥cD .内错角相等二、填空题13.如图,在△ABC 中,∠A =50°,BE 平分∠ABC ,CE 平分外角∠ACD ,则∠E 的度数为________.14.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 15.命题“等边三角形的每个内角都等于60°”的逆命题是_____命题.(填“真”或“假”) 16.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.17.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.18.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ),∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD=.∵∠2+∠CBD+∠BCD=(),∴∠2=.19.命题“面积相等的三角形全等”的逆命题是__________.20.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=_____.三、解答题21.如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.22.如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2=°(两直线平行,同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠(同角的补角相等),∴AB∥DG(),∴∠GDC=∠B().23.如图,AD BC ⊥于点D ,EG BC ⊥于点G ,若1E ∠=∠,试说明:23∠∠=.下面是推理过程,请将推理过程补充完整.∵AD BC ⊥于点D ,EG BC ⊥于点G (已知),∴90ADC EGC ∠=∠=︒∴//AD EG ( )∴12∠=∠( )∵1E ∠=∠(已知),∴E ∠=_______(等量代换)又∵//AD EG (已证),∴______3=∠( )∴23∠∠=(等量代换).24.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.25.综合与实践问题情境:在数学活动课上,全班同学分组进行了一副三角尺上角的探究活动,如图所示,放置一副三角尺,两个三角尺的顶点O 重合,边CD 与边AB 重合,试求AOC ∠的度数.(1)探究展示勤奋小组展示了如下的解决方法(请结合图形1,完成填空)解:∵45OCD ∠=︒,60OBC ∠=︒∴BOC ∠=__________(___________________)又∵90AOB ∠=︒,∴AOC ∠=__________.(2)反思交流:创新小组受勤奋小组的启发,继续进行探究,如图2所示,绕顶点O 逆时针旋转DOC △,当DC AO //时,求得AEO ∠的度数.(请你写出解答过程)(3)探索发现:小明受到旋转的启发,继续进行探究(如图3),继续绕顶点O 逆时针旋转DOC △,使点B 落在边DC 上,此时发现1∠与2∠之间的数量关系.以下是他的解答过程,请补充完整解:在AOE △与BCE 中,∵12AEO A CEB C ∠+∠+∠=∠+∠+∠又∵AEO CEB ∠=∠(___________________)A ∠=__________,C ∠=__________,∴12A C ∠+∠=∠+∠12∠-∠=__________.26.已知在DEF ∆中,70E F ∠+∠=︒,现将DEF ∆放置在ABC ∆上,使得D ∠的两条边DE ,DF 分别经过点B 、C .(1)如图①所示,若50A ∠=︒,且//BC EF 时,ABC ACB ∠+∠= 度,DBC DCB ∠+∠= 度,ABD ACD +=∠∠ 度;(2)如图②,改变ABC ∆的位置,使得点D 在ABC ∆内,且BC 与EF 不平行时,请探究ABD ACD ∠+∠与A ∠之间存在怎样的数量关系,并验证你的结论;(3)如图③,改变ABC ∆的位置,使得点D 在ABC ∆外,且BC 与EF 不平行时,请探究ABE ∠、ACF ∠、A ∠之间存在怎样的数量关系,请直接写出你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别根据众数、方差、真命题、三角形外角定理等知识逐项判断即可求解.【详解】解:A.“一组数据6,5,8,8,9的众数是8”,判断正确,符合题意;B. “甲、乙两组学生身高的方差分别为2 2.3S =甲,2 1.8S =乙,则甲组学生的身高较整齐”,因为22S S 甲乙> ,所以乙组学生的身高较整齐,原判断错误,不合题意;C. 命题“若||1a =,则1a =±”,所以原判断错误,不合题意;D.“三角形的外角大于任何一个不相邻的内角”,所以原判断错误,不合题意.故选:A .【点睛】本题考查了众数,方差,真假命题,三角形的外角等知识,熟知相关定理是解题关键. 2.A解析:A【分析】由EF ⊥AB ,CD ⊥AB ,知CD ∥EF ,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF ⊥AB ,CD ⊥AB ,∴CD ∥EF ,若∠CDG=∠BFE ,∵∠BCD=∠BFE ,∴∠BCD=∠CDG ,∴DG ∥BC ,∴∠AGD=∠ACB ,故小明说法正确;∵FG ∥AB ,∴∠B=∠GFC ,故得不到∠GFC=∠ADG ,故小亮说法错误,故选:A .【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定. 3.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∠BAC=31°,∴∠DAC=12∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.4.D解析:D【分析】根据三角形全等的判定方法对A、D进行判断;利用三角形高的位置不同可对B、C进行判断.【详解】A、有两边和它们的夹角对应相等的两个三角形全等,所以A选项错误;B、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B选项错误;C、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C选错误;D、有两边和第三边上的中线对应相等的两个三角形全等,所以D选项正确;故选:D.【点睛】本题考査了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.5.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=2:3:5,设∠A=2x,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠B ﹣∠C=90°,则∠B=90°+∠C ,所以三角形为钝角三角形.所以能确定△ABC 是直角三角形的有①②③.故选:C .【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC 是直角三角形.6.B解析:B【分析】过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP ,求出∠PGF ,根据平行线的性质、平角的概念计算即可.【详解】解:过点G 作AB 平行线交EF 于P ,由题意易知,AB ∥GP ∥CD ,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B .【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.7.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD=180°;共3个.故选:C.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.【详解】A选项中,两直线平行,同位角相等,说法正确,是真命题;B选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C选项中,只有两直线平行时,同旁内角才互补,是假命题;D选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题.故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.9.B解析:B【分析】根据相关性质依次判定各个说法即可.【详解】①错误,仅当两直线平行时,同位角才相等;②正确,三角形的中线一定会交于一点;③错误,钝角三角形也有三条高,其中有两条高在三角形外部;④正确,三角形两边长分别为6和9,则3<第三边长<15;⑤错误,不可通过面积判定全等;⑥正确,两个直角相加为180°,互补故选:B.【点睛】本题考查一系列性质,解题时需要注意一些性质或定理成立的前提条件,若遗失前提条件,则不成立.10.C解析:C【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB ∥CD ,故本小题正确;③∵∠3=∠4,∴AD ∥BC ,故本小题错误;④∵∠BCD+∠D=180°,∴AD ∥CB ,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB ∥CD ,故本小题正确.综上,正确的有①②⑤.故选:C .【点睛】本题考查了平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.11.D解析:D【分析】先根据平行线的性质的得出40'∠=∠=︒FME BEC ,DFE BEF ∠=∠,结合折叠的性质得出∠DFE=∠MFE ,即可得出结论【详解】解:∵四边形ABCD 是长方形,∴AD//BC ,//''D F C E∴40'∠=∠=︒FME BEC ,DFE BEF ∠=∠,∵四边形CDFE 沿EF 折叠得到四边形C D FE '',∴∠DFE=∠MFE ,MFE MEF ∴∠=∠∴∠EFD=∠MFE=()118040702⨯-=, 故选D .【点睛】本题考查了折叠的性质、平行线的性质、三角形的内角和定理,解决本题的关键是综合运用以上知识.12.B解析:B【分析】A 、根据无理数的定义即可判定;B 、根据整数的定义可以判断;C、根据在同一平面内,垂直同一直线的两直线互相平行可判断;D、根据平行线的性质可以判断.【详解】解:A、无限小数包含无限循环小数和无限不循环小数,无限不循环小数才是无理数,故选项错误;B、有最小的正整数是1,没有最小的整数,故选项正确;C、在同一平面内,a,b,c 是直线,若 a⊥b,b⊥c,则 a∥c,故选项错误;D、两直线平行,内错角相等,故选项错误.故选:B.【点睛】本题考查数、直线、角的若干基本概念,深刻理解有关基本概念是解题关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.25°【分析】根据角平分线定义得出∠ABC=2∠EBC∠ACD=2∠DCE根据三角形外角性质得出2∠E+∠ABC=∠A+∠ABC求出∠A=2∠E即可求出答案【详解】解:∵BE平分∠ABCCE平分∠A解析:25°【分析】根据角平分线定义得出∠ABC=2∠EBC,∠ACD=2∠DCE,根据三角形外角性质得出2∠E +∠ABC=∠A+∠ABC,求出∠A=2∠E,即可求出答案.【详解】解:∵BE平分∠ABC,CE平分∠ACD,∴∠ABC=2∠EBC,∠ACD=2∠DCE,∵∠ACD=2∠DCE=∠A+∠ABC,∠DCE=∠E+∠EBC,∴2∠DCE=2∠E+2∠EBC,∴2∠E+∠ABC=∠A+∠ABC,∴∠A=2∠E,∵∠A=50°,∴∠E=25°,故答案为:25°.【点睛】本题考查的是三角形外角的性质,三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.14.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD=∠CAE=18°,∴∠CAD=∠DAE+∠CAE=66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.15.真【分析】逆命题就是原命题的假设和结论互换找到原命题的题设为等边三角形结论为每个内角都是60°互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°∴逆命题为:三个内角都是60解析:真【分析】逆命题就是原命题的假设和结论互换,找到原命题的题设为等边三角形,结论为每个内角都是60°,互换即可判断命题是真是假;【详解】∵原命题为:等边三角形的每个内角都是60°,∴逆命题为:三个内角都是60°的三角形是等边三角形∴逆命题为真命题;故答案为:真.【点睛】本题考查了命题的真假,正确掌握原命题与逆命题之间的关系是解题的关键;16.【分析】先根据三角形的内角和求出∠PBC+∠PCB=故可得到∠ABC+∠ACB=即可得出答案【详解】在△BPC中∠BPC=∴∠PBC+∠PCB=∵P是三角形三条角平分线的交点∴∠ABC=2∠PBC ∠解析:20︒【分析】先根据三角形的内角和求出∠PBC+∠PCB=80︒,故可得到∠ABC+∠ACB=160︒,即可得出答案.【详解】在△BPC 中,∠BPC=100︒,∴∠PBC+∠PCB=80︒,∵P 是三角形三条角平分线的交点,∴∠ABC=2∠PBC ,∠ACB=2∠PCB ,∴∠ABC+∠ACB=2∠PBC+2∠PCB=160︒,∴∠BAC=180()20ABC ACB ︒-∠+∠=︒,故答案为:20︒.【点睛】此题考查三角形的内角和定理,角平分线的有关计算,熟练应用定理解决问题是解题的关键.17.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键. 18.已知;两直线平行同位角相等;90°;180°;三角形内角和定理;50°【分析】由平行线的性质和垂线的定义可得∠1=∠BCD =40°∠CBD =90°由三角形内角和定理可求∠2的度数【详解】∵AB ∥CD解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【分析】由平行线的性质和垂线的定义可得∠1=∠BCD =40°,∠CBD =90°,由三角形内角和定理可求∠2的度数.【详解】∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.19.全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题【详解】解:∵原命题的条件是:三角形的面积相等结论是:该三角形是全等三角形∴其逆命题是:全等三角形的面积相等故答案为:全等三角形的解析:全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:三角形的面积相等,结论是:该三角形是全等三角形.∴其逆命题是:全等三角形的面积相等.故答案为:全等三角形的面积相等.【点睛】本题考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题.20.60°【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数再根据角平分线的定义求出∠OBC+∠OCB的度数然后利用三角形的内角和等于180°列式计算即可得解【详解】解:∵∠ABC+∠A解析:60°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.【详解】解:∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=90°﹣12∠A,∴在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A=120°,∴∠A=60°,故答案为:60°.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题21.EC∥BF,DG∥BF,DG∥EC,见解析【分析】根据同角的补角相等,和平行线的判定定理即可作出判断.【详解】解:EC∥BF,DG∥BF,DG∥EC.理由:∵∠EOD+∠OBF=180°,又∠EOD+∠BOE=180°,∴∠BOE=∠OBF,∴EC∥BF;∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB,又∵EC∥BF,∴∠ECB=∠CBF,∴∠DBC=∠CBF,又∵∠DBC=∠G,∴∠CBF=∠G,∴DG∥BF;∵EC∥BF,DG∥BF,∴DG∥EC.【点睛】本题考查平行线的判定和性质,熟练掌握平行线的判定方法和性质定理及补角定理是解题关键.22.180;3;内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的性质定理和判定定理即可解答.【详解】解:∵AD ⊥BC ,EF ⊥BC (已知),∴AD ∥ EF (在同一平面内,垂直于同一条直线的两条直线平行),∴∠1+∠2=180°两直线平行,同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠ 3(同角的补角相等),∴AB ∥DG ( 内错角相等,两直线平行 ),∴∠GDC =∠B ( 两直线平行,同位角相等 ).故答案为:180;3;内错角相等,两直线平行;两直线平行,同位角相等【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.23.见解析【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD ∥EG ,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.【详解】∵AD ⊥BC 于点D ,EG ⊥BC 于点G (已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD ∥EG (同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∵∠E=∠1(已知)∴∠E=∠2(等量代换)∵AD ∥EG ,∴∠E=∠3(两直线平行,同位角相等).∴∠2=∠3(等量代换).【点睛】考查了平行线的性质、垂直的定义,解题关键是熟练掌握平行线的性质.24.(1)证明见解析;(2)100°;(3)12°.【分析】(1)根据平行线的判定及其性质即可求证结论;(2)过E 作//EK AB 可得//CF AB ∥EK ,再根据平行线的性质即可求解;(3)根据题意设7EBC x ∠=︒,则13ECB x ∠=︒,根据∠AED +∠DEB +BEC =180°,可得关于x 的方程,解方程即可求解.【详解】(1)证明:∵DE ∥BC ,∴ADE B ∠=∠,又∵∠BCF +∠ADE =180°,∴180BCF B ∠+∠=︒,∴//CF AB ,(2)解:过E 作//EK AB ,∵//CF AB ,∴//CF EK ,∵//EK AB ,40ABE ∠=︒,∴40BEK ABE ∠=∠=︒,∵//CF EK ,60ACF ∠=︒,∴60CEK ACF ∠=∠=︒,又∵BEC BEK CEK ∠=∠+∠,∴4060100BEC ∠=︒+︒=︒,答:BEC ∠的度数是100°,(3)解:∵BE 平分ABG ∠, 40ABE ∠=︒,∴40EBG ABE ∠=∠=︒,∴:7:13EBC ECB ∠∠=,∴设7EBC x ∠=︒,则13ECB x ∠=︒,∵DE ∥BC ,∴7DEB EBC x ∠=∠=︒,13AED ECB x ∠=∠=︒,∵180AED DEB BEC ∠+∠+∠=︒,∴137100180x x ++=,∴4x =,∴728EBC x ∠=︒=︒,又∵EBG EBC CBG ∠=∠+∠,∴CBG EBG EBC ∠=∠-∠,∴402812CBG ∠=-=︒,答:CBG ∠的度数是12°.【点睛】本题考查平行线的判定及其性质,解题的关键是熟练掌握平行线的判定及其性质的有关知识.25.(1)75︒;三角形内角和是180︒;15︒;(2)105︒;见解析;(3)对顶角相等;30;45︒;15︒【分析】(1)利用三角形内角和定理求解即可;(2)利用平行线的性质求得∠AOC=45°,再利用三角形内角和定理求解即可;(3)在△AOE 与△BCE 中,利用三角形内角和定理得到∠1+∠A=∠2+∠C ,计算即可求解.【详解】解:∵∠OCD=45°,∠OBC=60°,∴∠BOC=75°(三角形内角和是180°),又∵∠AOB=90°,∴∠AOC=15°;(2)解:∵DC ∥AO ,∠OCD=45°,∴∠AOC=45°(两直线平行,内错角相等),又∵∠BAO=30°,∴∠AEO=180°−∠AOC−∠BAO=180°−45°−30°=105°(三角形内角和是180°);(3)在△AOE 与△BCE 中,∵∠AEO+∠1+∠A=∠CEB+∠2+∠C ,又∵∠AEO=∠CEB (对顶角相等),∠A=30°,∠C=45°,∴∠1+∠A=∠2+∠C ,∠1−∠2=15°.【点睛】本题考查了三角形内角和定理,平行线的性质,正确的识别图形是解题的关键. 26.(1)130;70;60;(2)110ABD ACD A ∠+∠=︒-∠,见解析;(3)110ABE ACF A ∠+∠=︒+∠【分析】(1)根据三角形的内角和即可求出ABC ACB ∠+∠的度数,根据平行线的性质可得到DBC DCB ∠+∠的度数,利用角度的和差关系即可求出ABD ACD ∠+∠的度数;(2)同(1)分别求出ABC ACB ∠+∠,DBC DCB ∠+∠和ABD ACD ∠+∠的度数,故可求解;(3)先求出ABC ACB ∠+∠,DBC DCB ∠+∠,再根据平角的性质即可计算求解.【详解】(1)∵50A ∠=︒,在△ABC 中,ABC ACB ∠+∠=180°-50°=130°,∵//BC EF∴DBC E ∠=∠,DCB F ∠=∠∴DBC DCB ∠+∠=70E F ∠+∠=︒∴ABD ACD +=∠∠(ABC ACB ∠+∠)-()DBC DCB ∠+∠=60°故答案为:130;70;60;(2)由题意,得()180110D E F ∠=︒-∠+∠=︒所以18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴()()18070110ABD ACD ABC ACB DBC DCB A A ∠+∠=∠+∠-∠+∠=︒-∠-︒=︒-∠即110ABD ACD A ∠+∠=︒-∠(3)由题意,得()180110D E F ∠=︒-∠+∠=︒∴18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴360ABE ACF ∠+∠=︒-(DBC DCB ∠+∠)-(ABC ACB ∠+∠)=110A ︒+∠ 即110ABE ACF A ∠+∠=︒+∠.【点睛】此题主要考查三角形的内角和及平行线的性质,解题的关键是熟知三角形的内角和为180°.。
一、选择题1.如图,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、分别是边AB AC 、上的点,将ABC ∆沿着DE 折叠压平,A 与A '重合,若50A ∠=︒,则12∠+∠=( )A .90︒B .100︒C .110︒D .120︒ 2.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 3.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE∠的度数是( )A .50°B .25°C .30°D .35° 4.满足下列条件的三角形中,不是直角三角形的是( ) A .∠A -∠B =∠CB .∠A :∠B :∠C =3:4:7 C .∠A =2∠B =3∠CD .∠A =9°,∠B =81°5.如图,已知ACF DBE?△≌△,下列结论:① AC DB =;② AB DC =;③ DCF ABE ∠∠=;④AF//DE ;⑤ACF DBES S =△△;⑥BC AF =;⑦CF //BE .其中正确的有( )A .4?个B .5?个C .6?个D .7个6.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 7.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数 B .m 为整数 C .m 为负数或零 D .m 为非负数 8.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于09.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角10.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒ 11.如图,现给出下列条件:①1B ∠=∠,②25∠=∠,③34∠=∠,④180BCD D ︒∠+∠=.⑤180B BCD ︒∠+∠=,其中能够得到//AB CD 的条件有( )A .①②④B .①③⑤C .①②⑤D .①②④⑤ 12.如图,在ABC ∆中,CD 是ACB ∠的平分线,80A ∠=︒,40ABC ∠=︒,那么BDC ∠=( )A .80︒B .90︒C .100︒D .110︒二、填空题13.如图,Rt △ABC 中,∠ACB =90°,∠A =52°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为_____.14.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 15.如图,将△ABC 沿着DE 对折,点A 落到A ′处,若∠BDA ′+∠CEA ′=70°,则∠A =_____.16.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.17.把“同角的补角相等”改成“如果···那么···”的形式_________________.18.在△ABC 中,∠A=60°,∠B=∠C ,则∠B=______.19.下列命题中,其逆命题成立的是_____.(填上正确的序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④在角的内部,到角的两边距离相等的点在角的平分线上;⑤等边三角形是锐角三角形.20.如图,已知△ABC,∠B 的角平分线与∠C 的外角角平分线交于点 D,∠B 的外角角平分线与∠C 的外角角平分线交于点 E,则∠E+∠D=_____.三、解答题21.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,点A、B、P均在格点上.(请利用网格作图,画出的线用铅笔描粗描黑)(1)过点P画直线AB的平行线;(2)连接PA、PB,则三角形PAB的面积= ;(3)若三角形QAB面积与三角形PAB的面积相等,且格点Q与P不重合,则格点Q有个.22.如图,AD平分∠BAC,点E,F分别在边BC,AB上,且∠BFE=∠DAC,延长EF,CA 交于点G,求证:∠G=∠AFG.23.如图,AB∥CD,点E是CD上一点,连结AE.EB平分∠AED,且DB⊥BE,AF⊥AC,AF与BE交于点M.(1)若∠AEC =100°,求∠1的度数;(2)若∠2=∠D ,则∠CAE =∠C 吗?请说明理由.24.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.25.如图,直线MN 与直线PQ 垂直相交于点Q ,点A 在射线OP 上运动,点B 在射线OM 上运动.(1)如图1,已知AF 、BF 分别是BAO ∠和ABO ∠的平分线,点A 、B 在运动的过程中,AFB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由,并求AFB ∠的大小;(2)如图2,点F 是BAP ∠和ABM ∠的角平分线的交点,点A 、B 在运动过程中,F ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由;(3)如图 3,在(2)的条件下将FCD 沿直线CD 翻折,使点F 落在点E 处,已知AB 不平行于CD ,直接写出E ∠、BCE ∠、ADE ∠之间的数量关系.26.已知在DEF ∆中,70E F ∠+∠=︒,现将DEF ∆放置在ABC ∆上,使得D ∠的两条边DE ,DF 分别经过点B 、C .(1)如图①所示,若50A ∠=︒,且//BC EF 时,ABC ACB ∠+∠= 度,DBC DCB ∠+∠= 度,ABD ACD +=∠∠ 度;(2)如图②,改变ABC ∆的位置,使得点D 在ABC ∆内,且BC 与EF 不平行时,请探究ABD ACD ∠+∠与A ∠之间存在怎样的数量关系,并验证你的结论;(3)如图③,改变ABC ∆的位置,使得点D 在ABC ∆外,且BC 与EF 不平行时,请探究ABE ∠、ACF ∠、A ∠之间存在怎样的数量关系,请直接写出你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形的内角和等于180°求出∠ADE+∠AED ,再根据翻折变换的性质可得∠A′DE=∠ADE ,∠A′ED=∠AED ,然后利用平角等于180°列式计算即可得解.【详解】∵∠A=50°,∴∠ADE+∠AED=180°-50°=130°,∵△ABC 沿着DE 折叠压平,A 与A′重合,∴∠A′DE=∠ADE ,∠A′ED=∠AED ,∴∠1+∠2=180°-(∠A′ED+∠AED )+180°-(∠A′DE+∠ADE )=360°-2×130°=100°. 故选:B .【点睛】本题考查了三角形的内角和定理,翻折变换的性质,整体思想的利用求解更简便. 2.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.3.C解析:C【分析】根据三角形内角和求出∠ABC 的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC 中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∵BD 平分ABC ∠,∴∠ABD=∠CBD=12∠ABC=30°, ∵//DE BC ,∴BDE ∠=∠CBD=30°,故选C .【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.4.C解析:C【分析】依据三角形内角和定理,求得三角形的最大角是否大于90°,进而得出结论.【详解】解:A .∵∠A-∠B=∠C ,∴∠A=∠B+∠C=90°,∴该三角形是直角三角形;B .∵∠A :∠B :∠C=3:4:7,∴∠C=180°×714=90°,∴该三角形是直角三角形; C .∵∠A=2∠B=3∠C ,∴∠A=180°×611>90°,∴该三角形是钝角三角形; D .∵∠A=9°,∠B=81°,∴∠C=90°,∴该三角形是直角三角形;故选:C .【点睛】本题考查了三角形内角和定理.解题的关键是灵活利用三角形内角和定理进行计算. 5.C解析:C【分析】利用ACF DBE △≌△得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵ACF DBE △≌△∴ AC DB =故①正确;②∵ AC DB =∴ AC-BC DB-BC =即: AB DC =,故②正确;③∵ACF DBE △≌△∴ ACF DBE ∠∠=;∴ 180-ACF 180-DBE ︒∠=︒∠即: DCF ABE ∠∠=,故③正确;④∵ACF DBE △≌△∴ A D ∠=∠;∴AF//DE ,故④正确;⑤∵ACF DBE △≌△∴ACF DBES S =△△,故⑤正确; ⑥根据已知条件不能证得BC AF =,故⑥错误;⑦∵ACF DBE △≌△∴ EBD FCA ∠=∠;∴CF //BE ,故⑦正确;故①②③④⑤⑦,正确的6个.故选C .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.6.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.7.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 8.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.【详解】A选项中,两直线平行,同位角相等,说法正确,是真命题;B选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C选项中,只有两直线平行时,同旁内角才互补,是假命题;D选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题.故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.10.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求 的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.11.C解析:C【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠BCD+∠D=180°,∴AD∥CB,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.综上,正确的有①②⑤.故选:C.【点睛】本题考查了平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.D解析:D【分析】根据三角形的内角和得出∠ACB的度数,再根据角平分线的性质求出∠DCA的度数,再根据三角形内角与外角的关系求出∠BDC的度数.【详解】解:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠ACB=180°-∠A-∠B=180°-80°-40°=60°,∵CD是∠ACB的平分线,∠ACB=30°(角平分线的性质),∴∠ACD=12∴∠BDC=∠ACD+∠A=30°+80°=110°(三角形外角的性质).故选:D.【点睛】本题主要考查了三角形的内角和定理,角平分线的定义及三角形外角的知识,三角形的一个外角等于与它不相邻的两个内角的和,难度适中.二、填空题13.14°【分析】根据∠A=52°可求∠B由折叠可知∠DA′C=52°利用外角性质可求【详解】解:∵∠ACB=90°∠A=52°∴∠B=90°-52°=38°由折叠可知∠DA′C=∠A=52°∠A′DB【分析】根据∠A=52°,可求∠B,由折叠可知∠D A′C=52°,利用外角性质可求.【详解】解:∵∠ACB=90°,∠A=52°,∴∠B=90°-52°=38°,由折叠可知∠D A′C=∠A=52°,∠A′DB=∠D A′C-∠B=52°-38°=14°,故答案为:14°.【点睛】本题考查了直角三角形的性质、轴对称的性质、三角形外角的性质,解题关键是灵活运用三角形的性质和轴对称性质建立角之间的联系.14.66【分析】在线段CD上取点E使CE=BD再证明△ADB≅△AEC即可求出【详解】在线段DC取点ECE=BD连接AE∵CE=BD∴BE=CD∵AB=CD∴AB=BE∠BAE=∠BEA=(180°-4解析:66【分析】在线段CD上取点E使CE=BD,再证明△ADB≅△AEC即可求出.【详解】在线段DC取点E,CE=BD,连接AE,∵CE=BD,∴BE=CD,∵AB=CD,∴AB=BE,∠BAE=∠BEA=(180°-48°)÷2=66°,∴∠DAE=48°,∠AED=66°,∴△ADB≅△AEC,∴∠BAD=∠CAE=18°,∴∠CAD=∠DAE+∠CAE=66°.故答案为:66.【点睛】本题考察了全等三角形的证明和三角形内角和定理,解题的关键是做出辅助线找到全等三角形.15.35°【分析】先根据折叠性质可求得∠A′DE=∠ADE∠A′ED=∠AED再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED=145°然后利用三角形的内角和定理即可求得∠A的度数【详解】解解析:35°【分析】先根据折叠性质可求得∠A′DE=∠ADE,∠A′ED=∠AED,再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED=145°,然后利用三角形的内角和定理即可求得∠A的度数.【详解】解:∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=180°-(∠ADE+∠AED)=180°-145°=35°,故答案为:35°.【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.16.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P的度数【详解】∵BP是∠ABC的平分线CP是∠ACM的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.17.如果两个角是同一个角的补角那么这两个角相等【分析】把命题的题设写在如果的后面把命题的结论写在那么的后面即可【详解】解:命题同角的补角相等改成如果…那么…的形式为:如果两个角是同一个角的补角那么这两个解析:如果两个角是同一个角的补角,那么这两个角相等【分析】把命题的题设写在如果的后面,把命题的结论写在那么的后面即可.【详解】解:命题“同角的补角相等”改成“如果…,那么…”的形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案为:如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°∠B=∠C进而得到∠B的度数【详解】解:∵∠A∠B∠C是△ABC的三个内角∴∠A+∠B+∠C=180°∵∠A解析:60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.19.①④【分析】分别写出原命题的逆命题然后判断正误即可【详解】①同旁内角互补两直线平行的逆命题是两直线平行同旁内角互补成立符合题意;②如果两个角是直角那么它们相等的逆命题为相等的两个角都是直角不成立不符解析:①④【分析】分别写出原命题的逆命题,然后判断正误即可.【详解】①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,成立,符合题意;②如果两个角是直角,那么它们相等的逆命题为相等的两个角都是直角,不成立,不符合题意;③如果两个实数相等,那么它们的平方相等的逆命题为平方相等的两个实数相等,不成立,不符合题意;④在角的内部,到角的两边距离相等的点在角的平分线上的逆命题为角平分线上的点到角的两边的距离相等,成立,符合题意;⑤等边三角形是锐角三角形的逆命题为锐角三角形是等边三角形,不成立,不符合题意;成立的有①④,故答案为:①④.【点睛】本题考查了命题与定理的知识,解题的关键是正确的写出一个命题的逆命题,难度不大.20.90°【分析】利用角平分线的性质和三角形的内角和定理解答即可【详解】解:∵BDBE分别是∠B的角平分线和外角平分线∴∠DBE=×180°=90°∴∠D+∠E=180°-∠DBE=180°-90°=9解析:90°.【分析】利用角平分线的性质和三角形的内角和定理解答即可.【详解】解:∵BD,BE分别是∠B的角平分线和外角平分线,∴∠DBE=12×180°=90°,∴∠D+∠E=180°-∠DBE=180°-90°=90°.故答案为:90°.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练掌握定理是解答此题的关键.三、解答题21.(1)见解析;(2)6.5;(3)3【分析】(1)连结AP,过点P作∠APQ=∠PAB,利用内错角相等,两直线平行可得PQ∥AB即可;(2)连PB,割补法利用网格正方形面积减去三个三角形面积即可;(3)由三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB 或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ即可.【详解】(1)连结AP,过点P作∠APQ=∠PAB,∴PQ∥AB,则PQ为所求;(2)连PB,S△PAB=4×4-12×4×3-12×1×3-12×4×1=16-6-1.5-2=6.5,故答案为:6.5;(3)三角形QAB面积与三角形PAB的面积相等,在AB的平行线PQ上,截取PQ=AB或PQ1=AB,连结AQ,延长QA,在QA的延长线上截取AQ2=AQ,则Q、Q1、Q2三点为所求,则格点Q有3个,故答案为:3.【点睛】本题考查平行线的作法,网格三角形面积,面积相等的三角形格点问题,掌握平行线的作法,网格三角形面积求法,面积相等的三角形格点确定方法是解题关键.22.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.23.(1)40°;(2)∠CAE =∠C ,理由见解析.【分析】(1)根据邻补角的定义可求∠AED ,再根据角平分线的定义和平行线的性质可求∠1的度数;(2)根据三角形内角和定理可求∠BED =∠C ,根据平行线的判定可知AC ∥BE ,根据平行线的性质可得∠CAE =∠AEB ,根据角平分线的定义和等量关系即可求解.【详解】(1)∵∠AEC =100°,∴∠AED =80°,∵EB 平分∠AED ,∴∠BED =40°,∵AB ∥CD ,∴∠1=∠BED =40°;(2)∵DB ⊥BE ,AF ⊥AC ,∴∠EBD =∠CAF =90°,∵∠2=∠D ,∴∠BED =∠C ,∴AC ∥BE ,∴∠CAE =∠AEB ,∵EB 平分∠AED ,∴∠AEB =∠BED ,∴∠CAE =∠C .【点睛】本题考查平行线的判定和性质,邻补角的定义,角平分线的定义,三角形内角和定理.熟悉相应的性质和定义是解答本题的关键.24.(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.25.(1)AFB ∠的大小不变,135AFB ∠=︒;(2)F ∠的大小不变,理由见解析;(3)2BCE ADE E ∠+∠=∠【分析】(1)∠AFB 的大小不变.根据三角形内角和定理,角平分线的定义计算即可;(2)∠AFB 的大小不变.根据三角形内角和定理,邻补角的定义,角平分线的定义计算即可;(3)利用折叠的性质,邻补角的定义,三角形内角和定理,角平分线的定义即可求解.【详解】(1)结论:∠AFB 的大小不变.理由:∵∠AOB=90°,∴∠OAB+∠OBA=90°,∵AF 、BF 分别是∠BAO 和∠ABO 角的平分线,∴∠FAB=12∠OAB ,∠FBA=12∠OBA ,∴∠FAB+∠FBA=12(∠OAB+∠OBA)=45°, ∴∠AFB=180°-45°=135°;(2)结论:∠AFB 的大小不变.理由:∵∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠BAP+∠ABM=360︒-90°=270°, ∵AF 、BF 分别是∠BAO 和∠ABO 的外角的平分线,∴∠FAB=12∠PAB ,∠FBA=12∠MBA , ∴∠FAB+∠FBA=12(∠PAB+∠MBA)=135°, ∴∠AFB=180°-135°=45°;(3)在△FDC 中,∠F=180︒-∠FCD-∠FDC ,∴∠FCD+∠FDC=180︒-∠F=180︒-∠E , 根据折叠的性质得:∠FCD=∠ECD ,∠FDC=∠EDC ,∠F=∠E ,∴∠BCE=180︒-∠FCD-∠ECD=180︒-2∠FCD ,∠ADE=180︒-∠FDC -∠EDC =180︒-2∠FDC ,∴∠BCE+∠ADE=360︒-2(∠FCD+∠FDC),在△FDC 中,∠F=180︒-∠FCD-∠FDC ,∴∠FCD+∠FDC=180︒-∠F=180︒-∠E ,∴∠BCE+∠ADE=360︒-2(180︒-∠E)=2∠E .【点睛】本题考查了折叠的性质,邻补角的定义,三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.注意:三角形内角和等于180°.26.(1)130;70;60;(2)110ABD ACD A ∠+∠=︒-∠,见解析;(3)110ABE ACF A ∠+∠=︒+∠【分析】(1)根据三角形的内角和即可求出ABC ACB ∠+∠的度数,根据平行线的性质可得到DBC DCB ∠+∠的度数,利用角度的和差关系即可求出ABD ACD ∠+∠的度数;(2)同(1)分别求出ABC ACB ∠+∠,DBC DCB ∠+∠和ABD ACD ∠+∠的度数,故可求解;(3)先求出ABC ACB ∠+∠,DBC DCB ∠+∠,再根据平角的性质即可计算求解.【详解】(1)∵50A ∠=︒,在△ABC 中,ABC ACB ∠+∠=180°-50°=130°,∵//BC EF∴DBC E ∠=∠,DCB F ∠=∠∴DBC DCB ∠+∠=70E F ∠+∠=︒∴ABD ACD +=∠∠(ABC ACB ∠+∠)-()DBC DCB ∠+∠=60°故答案为:130;70;60;(2)由题意,得()180110D E F ∠=︒-∠+∠=︒所以18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴()()18070110ABD ACD ABC ACB DBC DCB A A ∠+∠=∠+∠-∠+∠=︒-∠-︒=︒-∠即110ABD ACD A ∠+∠=︒-∠(3)由题意,得()180110D E F ∠=︒-∠+∠=︒∴18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴360ABE ACF ∠+∠=︒-(DBC DCB ∠+∠)-(ABC ACB ∠+∠)=110A ︒+∠ 即110ABE ACF A ∠+∠=︒+∠.【点睛】此题主要考查三角形的内角和及平行线的性质,解题的关键是熟知三角形的内角和为180°.。
第7章《平行线的证明》单元测试一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗2.下列命题中是真命题的为().A.两锐角之和为钝角B.两锐角之和为锐角C.钝角大于它的补角D.锐角大于它的余角3.“两条直线相交,有且只有一个交点”的题设是().A.两条直线B.交点C.两条直线相交D.只有一个交点4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是().A.相等B.互余或互补C.互补D.相等或互补5.若三角形的一个外角等于与它不相邻的一个内角的4倍,等于与它相邻的内角的2倍,则三角形各角的度数为().A.45°,45°,90°B.30°,60°,90°C.25°,25°,130°D.36°,72°,72°6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,则与∠FCD相等的角有().A.1个B.2个C.3个D.4个7.下列四个命题中,真命题有().(1)两条直线被第三条直线所截,内错角相等.(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个角的余角一定小于这个角的补角.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个8.如图所示,∠B=∠C,则∠ADC与∠AEB的大小关系是().A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定9.如图所示,AD平分∠CAE,∠B=30°,∠CAD=65°,则∠ACD=().A.50°B.65°C.80°D.95°10.如图所示,已知AB∥CD,AD和BC相交于点O,若∠A=42°,∠C=58°,则∠AOB 的度数为().A.45°B.60°C.80°D.90°二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=__________.12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于点F,则∠D=__________.13.如图所示,AB∥CD,∠1=115°,∠3=140°,则∠2=__________.14.如果一个三角形三个内角的比是1∶2∶3,那么这个三角形是__________三角形.15.一个三角形的三个外角的度数比为2∶3∶4,则与此对应的三个内角的比为__________.16.如图所示,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=65°,则∠BFC=__________.17.“同角的余角相等”的题设是__________,结论是__________.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为__________.19.如果一个等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于__________.20.过△ABC的顶点C作AB的垂线,如果该垂线将∠ACB分为40°和20°的两个角,那么∠A,∠B中较大的角的度数是__________.三、解答题(本大题共5小题,共30分)21.(5分)如图所示,已知∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.22.(5分)如图所示,已知直线BF∥DE,∠1=∠2,求证:GF∥BC.23.(6分)如图所示,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.24.(6分)如图所示,已知直线AB∥CD,∠AEP=∠CFQ,求证:∠EPM=∠FQM.25.(8分)在△ABC中,BE平分∠ABC,AD为BC边上的高,且∠ABC=60°,∠BEC =75°,求∠DAC的度数.参考答案1答案:B2答案:C3答案:C4答案:D5答案:B6答案:B7答案:C8答案:B9答案:C10答案:C11答案:80°∴∠4=∠3=80°.12答案:53°20′13答案:75°14答案:直角15答案:5∶3∶116答案:122.5°17答案:两个角是同一个角的余角这两个角相等18答案:90°19答案:90°20答案:70°21证明:∵AE∥BC,(已知)∴∠2=∠C,(两直线平行,内错角相等)∠1=∠B.(两直线平行,同位角相等)∵∠1=∠2,(已知)∴∠B=∠C.(等量代换)∴AB=AC,△ABC是等腰三角形.(等角对等边)22证明:∵BF∥DE,(已知)∴∠2=∠FBC.(两直线平行,同位角相等)∵∠2=∠1,(已知)∴∠FBC=∠1.(等量代换)∴GF∥BC.(内错角相等,两直线平行)23解:∵AB∥CD,∴∠AEF=∠EFD=62°,∠CFE=180°-∠AEF=118°.又FH平分∠EFD,∴∠EFH=31°.又GF⊥FH,∴∠EFG=90°-31°=59°.∴∠GFC=∠CFE-∠EFG=59°24证明:∵AB∥CD,(已知)∴∠AEF=∠CFM.(两直线平行,同位角相等)又∵∠PEA=∠QFC,(已知)∴∠AEF+∠PEA=∠CFM+∠QFC,(等式性质)即∠PEF=∠QFM.∴PE∥QF.(同位角相等,两直线平行)∴∠EPM=∠FQM.(两直线平行,同位角相等)25解:∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°.∴∠C=180°-∠EBC-∠BEC=180°-30°-75°=75°. 又∵∠C+∠DAC=90°,∴∠DAC=90°-∠C=90°-75°=15°.。
一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.甲、乙、丙、丁四个同学在玩推理游戏,要找出谁在数学测评中获奖.甲说:“是乙获奖.”乙说:“是丙获奖.”丙说:“乙说的不是实话.”丁说:“反正我没有获奖.”如果这四个同学中只有一个人说了实话,请问是谁获奖( )A .甲B .乙C .丙D .丁3.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =4.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个5.如图,将ABC 绕点C 顺时针旋转90︒得到EDC △,点A 、D 、E 在同一条直线上.若20ACB ∠=︒,则ADC ∠的度数是( )A .60︒B .65︒C .70︒D .75︒6.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b == B .1,2a b ==- C .2,1a b =-= D .2,1a b ==- 7.一个三角形的三个内角中( )A .至少有一个等于90°B .至少有一个大于90°C .不可能有两个大于89°D .不可能都小于60°8.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0和1B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0和1D .如果一个数的算术平方根等于这个数本身,那么这个数一定是09.已知下列命题(1)等边三角形的三个内角都相等;(2)平行四边形相邻的两个角都相等;(3)线段垂直平分线上的点到这条线段两个端点距离相等;(4)底角相等的两个等腰三角形全等.其中原命题和逆命题均为真命题的有( )A .1个B .2个C .3个D .4个10.下列说法:①同位角相等;②任意三角形的三条中线交于一点;③钝角三角形只有一条高;④三角形的两边长分别为6和9,则这个三角形的第三边长不可能为16;⑤面积相等的两个三角形是全等图形;⑥两个直角一定互补其中,正确的有( )A .4个B .3个C .2个D .1个11.如图,给出下列条件中的一个:①12∠=∠;②180D BAD ∠+∠=︒;③34∠=∠;④BCE D ∠=∠.则一定能判定//AD BC 的条件是( )A .①②④正确B .①③正确C .②③④正确D .①④正确 12.下列说法正确的是( )A .无限小数都是无理数B .有最小的正整数,没有最小的整数C .a ,b ,c 是直线,若 a ⊥b ,b ⊥c ,则 a ⊥cD .内错角相等二、填空题13.下列命题,①对顶角相等;②两直线平行,同位角相等;③全等三角形的对应角相等.其中逆命题是真命题的命题共有_________个.14.证明“若a b >,则22a b >.”是假命题,可举出反例:_________.15.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.16.如图,将△ABC 沿着DE 对折,点A 落到A ′处,若∠BDA ′+∠CEA ′=70°,则∠A =_____.17.如图,已知AD BC ⊥,EF BC ⊥,3C ∠∠=,试说明:12∠∠=.请将以下不完整的推理过程补充完整:解:因为AD BC ⊥,EF BC ⊥,所以90ADC EFC ∠∠︒==,根据“同位角相等,两直线平行”,所以//AD EF , 根据“ ”,所以1CAD ∠∠=.因为3C ∠∠=,根据“ ”,所以//DG ,根据“ ”,所以2CAD ∠∠=.所以12∠∠=.18.把“同角的补角相等”改成“如果···那么···”的形式_________________.19.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点()P x,y 的坐标满足xy 0<,那么点 P 一定在第二象限.其中正确命题的序号为 ___.20.如图,在ABC 中,AD 是BC 边上的高,AE 是BAC ∠的平分线,15EAD ∠=︒,40B ∠=︒,则C ∠=_________︒.三、解答题21.如图①,在ABC 中,,CD CE 分别是ABC 的高和角平分线,(),BAC B αβαβ∠=∠=∠>(1)若70,40BAC B ︒︒∠=∠=,求DCE ∠的度数(2)若(),BAC B αβαβ∠=∠=∠>,则DCE ∠= (用含,αβ的代数式表示); (3)若将ABC 换成钝角三角形,如图②,其他条件不变,试用含,αβ的代数式表示DCE ∠的度数,并说明理由;(4)如图③,若CE 是ABC 外角ACF ∠的平分线,交BA 延长线与点E ,且30αβ︒-=,则DCE ∠= (直接写出结果)22.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).23.请将下列题目的证明过程补充完整:如图,F 是BC 上一点,FG AC 于点,G H 是AB 上一点,HE AC ⊥于点,12E ∠=∠,求证://DE BC .证明:连接EF .,FG AC HE AC ∴⊥⊥,90FGC HEC ︒∴∠=∠=.//FG ∴_______( ).3∴∠=∠_______( ).又12∠=∠,∴______24=∠+∠,即∠_________EFC =∠.//DE BC ∴(___________).24.综合与探究问题情境:如图,已知OC 平分AOB ∠,CD OA ⊥于点D ,E 为DC 延长线上一点,EF OB ⊥于点F ,EG 平分DEF ∠交OB 于点G ,180DEF AOB ∠+∠=︒.问题发现:(1)如图1,当90AOB ∠=︒时,12∠+∠=____________°;(2)如图2,当AOB ∠为锐角时,1∠与2∠有什么数量关系,请说明理由; 拓展探究(3)在(2)的条件下,已知直角三角形中两个锐角的和是90°,试探究OC 和GE 的位置关系,并证明结论;(4)如图3,当AOB ∠为锐角时,若点E 为线段DC 上一点,EF OB ⊥于点F ,EH 平分DEF ∠交OA 于点H ,180DEF AOB ∠+∠=︒.请写出一个你发现的正确结论. 25.将△ABC 纸片沿DE 折叠,其中∠B =∠C .(1)如图1,点C 落在BC 边上的点F 处,AB 与DF 是否平行?请说明理由;(2)如图2,点C 落在四边形ABCD 内部的点G 处,探索∠B 与∠1+∠2之间的数量关系,并说明理由.26.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:∵12∠=∠(已知),且14∠=∠(__________),∴24∠∠=(__________).∴//BF _____(__________). ∴∠____3=∠(__________).又∵B C ∠=∠(已知),∴_____________(等量代换).∴//AB CD (__________).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.D解析:D【分析】若甲说的是真话,则乙是假话,丙说的是真话,和已知不符合.故甲说的是假话,不是乙获奖;若乙说的是真话,则丁说的也是真话,和已知不符合.故乙说的是假话,不是丙获奖.显然丙说的是真话,丁说的是假话,则是丁获奖.【详解】解:本题可分三种情况:①如果甲是真命题,则乙是假命题,丙是真命题,丁是真命题;显然与已知不符; ②如果甲是假命题,乙是真命题,则丙是假命题,丁是真命题;显然与已知不符; ③如果甲是假命题,乙是假命题,则丙是真命题,丁是假命题;在这种情况下,只有丙说了实话,而其他人都说了假话,因此这种情况符合题意.在③的条件下,丁说了假话,因此丁才是真正获奖的人.故选D .【点睛】此题主要考查命题的真假推理,解题的关键是用假设的方法,进行分析排除. 3.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.4.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A .【点睛】本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.5.B解析:B【分析】根据全等三角形的性质和三角形内角和定理解答即可;【详解】∵将ABC 绕点C 顺时针旋转90︒得到EDC △,∴ABC EDC ≅△△,∴20DCE ACB ∠=∠=︒,90BCD ACE ∠=∠=︒,AC CE =,∴902070ACD ∠=︒-︒=︒,∵点A 、D 、E 在同一条直线上,∴180ADC EDC ∠+∠=︒,∵180EDC E DCE ∠+∠+∠=︒,∴20ADC E ∠=∠+︒,∵90ACE ∠=︒,AC CE =,∴90DAC E ∠+∠=︒,45E DAC ∠=∠=︒,∴65ADC ∠=︒; 故选:B .【点睛】本题主要考查了全等三角形的性质,三角形的外角性质,准确计算是解题的关键. 6.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.7.D解析:D【分析】根据三角形的内角性质、三角形的内角和定理逐项判断即可得.【详解】A 、反例:锐角三角形的三个内角均小于90︒,此项错误;B 、反例:锐角三角形的三个内角均小于90︒,此项错误;C 、反例:一个三角形的三个内角分别为89.5,89.5,1︒︒︒,此项错误;D 、因为三角形的内角和等于180︒,所以不可能都小于60︒,此项正确;故选:D .【点睛】本题考查了三角形的内角、三角形的内角和定理,熟练掌握三角形的内角和定理是解题关键.8.C解析:C【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,故A是假命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,例如:-1的倒数也是-1,故B是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0和1,故C是真命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,例如:1的算术平方根也是1,故D是假命题;故选:C.【点睛】本题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.9.B解析:B【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等边三角形的判定和直线定理、平行四边形的判定和性质定理、线段垂直平分线的判定和性质、全等三角形的判定和性质定理判断即可.【详解】解:(1)等边三角形的三个内角都相等,是真命题,逆命题为:三个角相等的三角形是等边三角形,是真命题;(2)平行四边形相邻的两个角互补,但不一定相等,本说法是假命题,逆命题为:相邻的两个角都相等的四边形是平行四边形,是真命题;(3)线段垂直平分线上的点到这条线段两个端点距离相等,是真命题,逆命题为:到线段两个端点距离相等的点在线段垂直平分线上,是真命题;(4)底角相等的两个等腰三角形不一定全等,本说法是假命题,逆命题为:两个全等的等腰三角形的底角相等,是真命题;故选:B.【点睛】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.B解析:B【分析】根据相关性质依次判定各个说法即可.【详解】①错误,仅当两直线平行时,同位角才相等;②正确,三角形的中线一定会交于一点;③错误,钝角三角形也有三条高,其中有两条高在三角形外部;④正确,三角形两边长分别为6和9,则3<第三边长<15;⑤错误,不可通过面积判定全等;⑥正确,两个直角相加为180°,互补故选:B.【点睛】本题考查一系列性质,解题时需要注意一些性质或定理成立的前提条件,若遗失前提条件,则不成立.11.D解析:D【分析】分别利用同旁内角互补两直线平行,同位角相等两直线平行,内错角相等两直线平行得出答案即可.【详解】解:①∵∠1=∠2,∴BC∥AD,本选项符合题意;②∵∠B+∠BAD=180°,∴AB∥CD,本选项不符合题意;③∵∠3=∠4,∴AB∥CD,本选项不符合题意;(4)∵∠BCE=∠D,∴AD∥BC,本选项符合题意.一定能判定AD∥BC条件是①④.故选:D.【点睛】本题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解题的关键.12.B解析:B【分析】A、根据无理数的定义即可判定;B、根据整数的定义可以判断;C、根据在同一平面内,垂直同一直线的两直线互相平行可判断;D、根据平行线的性质可以判断.【详解】解:A、无限小数包含无限循环小数和无限不循环小数,无限不循环小数才是无理数,故选项错误;B、有最小的正整数是1,没有最小的整数,故选项正确;C 、在同一平面内,a ,b ,c 是直线,若 a ⊥b ,b ⊥c ,则 a ∥c ,故选项错误;D 、两直线平行,内错角相等,故选项错误.故选:B .【点睛】本题考查数、直线、角的若干基本概念,深刻理解有关基本概念是解题关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.1【分析】根据逆命题对顶角平行线全等三角形的性质对各个选项逐个分析即可得到答案【详解】对顶角相等的逆命题为:相等的角是对顶角故①错误;两直线平行同位角相等的逆命题为:同位角相等两直线平行故②正确;全 解析:1【分析】根据逆命题、对顶角、平行线、全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】对顶角相等的逆命题为:相等的角是对顶角,故①错误;两直线平行,同位角相等的逆命题为:同位角相等,两直线平行,故②正确;全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,故③错误; 逆命题是真命题的命题共有:1个故答案为:1.【点睛】本题考查了逆命题、对顶角、平行线、全等三角形的知识;解题的关键是熟练掌握对顶角、平行线、全等三角形的性质,从而完成求解.14.答案不唯一例如当但【分析】可根据的正负性来考虑即可例如用来进行判断即可【详解】反例:取有但故答案为:但【点睛】本题考查了命题与定理举反例说明说明命题是假命题时在选取反例时要注意遵循这一原则:反例的选 解析:答案不唯一,例如当1,1,a b a b ==->,但22a b <【分析】可根据a 、b 的正负性来考虑即可,例如用1a =、1b =-来进行判断即可.【详解】反例:取1a =,1b =-,有a b >,但22a b =.故答案为:1a =,1b =-,a b >,但22a b =.【点睛】本题考查了命题与定理,举反例说明说明命题是假命题时,在选取反例时要注意遵循这一原则:反例的选取一定要满足所给命题的题设要求,而不能满足命题的结论.15.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 16.35°【分析】先根据折叠性质可求得∠A′DE =∠ADE ∠A′ED =∠AED 再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED =145°然后利用三角形的内角和定理即可求得∠A 的度数【详解】解解析:35°【分析】先根据折叠性质可求得∠A′DE =∠ADE ,∠A′ED =∠AED ,再和平角性质可求得根据平角定义和已知可求得∠ADE+∠AED =145°,然后利用三角形的内角和定理即可求得∠A 的度数.【详解】解:∵将△ABC 沿着DE 对折,A 落到A′,∴∠A′DE =∠ADE ,∠A′ED =∠AED ,∴∠BDA′+2∠ADE =180°,∠A′EC+2∠AED =180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED =360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED =145°,∴∠A =180°-(∠ADE+∠AED )=180°-145°=35°,故答案为:35°.【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.17.两直线平行同位角相等;同位角相等两直线平行;AC ;两直线平行内错角相等【分析】根据平行线的判定和性质解题【详解】解:因为AD ⊥BCEF ⊥BC 所以∠ADC =∠EFC =90°根据同位角相等两直线平行所以解析:两直线平行,同位角相等;同位角相等,两直线平行;AC ;两直线平行,内错角相等.【分析】根据平行线的判定和性质解题.【详解】解:因为AD⊥BC,EF⊥BC,所以∠ADC=∠EFC=90°,根据“同位角相等,两直线平行”,所以AD//EF,根据“两直线平行,同位角相等”,所以∠1=∠CAD.因为∠3=∠C,根据“同位角相等,两直线平行”,所以DG//AC,根据“两直线平行,内错角相等”,所以∠2=∠CAD.所以∠1=∠2.故答案为:两直线平行,同位角相等;同位角相等,两直线平行;AC;两直线平行,内错角相等.【点睛】本题考查平行线的判定和性质,根据题目已知条件灵活运用平行线的判定和性质求解是解题关键.18.如果两个角是同一个角的补角那么这两个角相等【分析】把命题的题设写在如果的后面把命题的结论写在那么的后面即可【详解】解:命题同角的补角相等改成如果…那么…的形式为:如果两个角是同一个角的补角那么这两个解析:如果两个角是同一个角的补角,那么这两个角相等【分析】把命题的题设写在如果的后面,把命题的结论写在那么的后面即可.【详解】解:命题“同角的补角相等”改成“如果…,那么…”的形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案为:如果两个角是同一个角的补角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.①③【分析】依次分析判断即可得到答案【详解】①在同一平面内过一点有且只有一条直线与已知直线垂直故该项正确;②两条平行线被第三条直线所截同旁内角互补故该项错误;③数轴上的每一个点都表示一个实数故该项正解析:①③【分析】依次分析判断即可得到答案.【详解】①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点()P x,y 的坐标满足xy 0<,则x 与y 异号,那么点P 在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.20.70【分析】根据三角形的内角和定理求出∠BAD 求出∠BAE 根据角平分线的定义求出∠BAC 即可求出答案【详解】解:∵AD ⊥BC ∴∠ADC=∠ADB=90°∵∠B=40°∴∠BAD=90°-40°=50解析:70【分析】根据三角形的内角和定理求出∠BAD ,求出∠BAE ,根据角平分线的定义求出∠BAC ,即可求出答案.【详解】解:∵AD ⊥BC ,∴∠ADC=∠ADB=90°,∵∠B=40°,∴∠BAD=90°-40°=50°,∵∠EAD=15°,∴∠BAE=50°-15°=35°,∵AE 平分∠BAC ,∴∠CAE=∠BAE=12∠BAC=35°, ∴∠BAC=70°,∴∠C=180°-∠BAC-∠B=180°-70°-40°=70°;故答案为:70.【点睛】本题考查了三角形的内角和定理,能灵活运用定理进行计算是解此题的关键. 三、解答题21.(1)15°;(2)1122a β-;(3)1122a β-,理由见解析;(4)75°. 【分析】(1)根据三角形的内角和180°解得=70BCA ∠︒、20DCA ∠=︒,再根据角平分线的性质,得到35ACE ∠=︒,最后由DCE ACE DCA ∠=∠-∠解题即可;(2)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到ACE ∠的度数,最后由DCE ACE DCA ∠=∠-∠解题即可;(3)根据三角形的内角和180°解得BCA ∠、DCA ∠的度数,再根据角平分线的性质,得到BCE ∠的度数,最后由DCE BCD BCE ∠=∠-∠解题即可;(4)根据角平分线的性质,12FCE ECA FCA ∠=∠=∠,结合三角形一个外角等于不相邻的两个内角和,解得1()2ECA αβ∠=+,根据三角形的内角和180°解得DCA ∠的度数,最后由DCE DCA ACE ∠=∠+∠解题即可.【详解】(1)180BAC B BCA ∠+∠+∠=︒,70,40BAC B ∠=︒∠=︒=180704070BCA ∴∠︒-︒-︒=︒ CE 平分BCA ∠11703522ACE BCA ∴∠=∠=⨯︒=︒, CD AB ⊥180907020DCA ∴∠=︒-︒-︒=︒352015DCE ACE DCA ∴∠=∠-∠=︒-︒=︒;(2)若(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222ACE BCA αβαβ∴∠=∠=︒--=︒--, CD AB ⊥1809090DCA αα∴∠=︒-︒-=︒-11119022(90)22DCE ACE DCA αβαβα∴∠=∠-∠=-︒-=︒---, 故答案为:1122a β-; (3)若将ABC 换成钝角三角形,(),BAC B αβαβ∠=∠=∠>,=180BCA αβ∴∠︒-- CE 平分BCA ∠1111(180)902222BCE ACE BCA αβαβ∴∠=∠=∠=︒--=︒--, CD AB ⊥1809090BCD ββ∴∠=︒-︒-=︒-DCE BCD BCE ∴∠=∠-∠1190(90)22βαβ=︒--︒--01190229βαβ︒+=︒--+ 1122αβ=- 故答案为:1122αβ-; (4)CE 是ABC 外角ACF ∠的平分线,12FCE ECA FCA ∴∠=∠=∠ 由三角形的外角性质得,11=()22FCE ECA FCA αβ∴∠=∠=∠+ CD AB ⊥1809090ACD αα∴∠=︒-︒-=︒-DCE ACD ACE ∴∠=∠+∠190()2ααβ=︒-++ 119022αβ=︒-+ 190()2αβ=︒-- 30αβ-=︒19030752DCE ∴∠=︒-⨯︒=︒ 故答案为:75︒.【点睛】本题考查角平分线的性质、三角形内角和180°、三角形外角性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠. 【分析】(1)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(2)依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(3)依据∠A=90°,可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC 的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB 的度数,依据∠ABC 和∠ACB 的平分线相交于点P ,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A . 【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=20°+30°=50°,∴△BCP 中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×110°=55°, ∴△BCP 中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P ,∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.23.HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行【分析】连接EF ,根据垂线定义和平行线的判定与性质可证得34∠=∠,再证明∠DEF=∠EFC ,再根据平行线的性质即可证得结论.【详解】证明:连接EF,FG AC HE AC ⊥⊥,90FGC HEC ︒∴∠=∠=.FG ∴∥HE (同位角相等,两直线平行).34∴∠=∠(两直线平行,内错角相等).又12∠=∠,1324∴∠+∠=∠+∠,即DEF EFC ∠=∠.DE ∴∥BC (内错角相等,两直线平行),故答案为:HE ;同位角相等,两直线平行;4;两直线平行,内错角相等;∠1+∠3;DEF ;内错角相等,两直线平行.【点睛】本题考查平行线的判定与性质、垂线定义,掌握平行线的判定与性质是解答的关键. 24.(1)90;(2)1290∠+∠=︒,理由见解析;(3)//OC GE ,证明见解析;(4)答案不唯一,例如1290∠+∠=︒【分析】(1)根据角平分线的性质得∠1=12∠AOB=45︒,∠2=12∠DEF=45︒,即可求得1290∠+∠=︒; (2)根据角平分线的性质得112DEF ∠=∠,122AOB ∠=∠,即可求得1290∠+∠=︒; (3)在Rt △EFG 中,得到190EGF ∠+∠=︒,结合1290∠+∠=︒,得到∠2=∠EGF ,即可得到//OC GE ;(4)根据角平分线的性质得∠1=12∠AOB ,∠2=12∠DEF ,即可求得1290∠+∠=︒. 【详解】(1)∵CD OA ⊥,∴90AOB ∠=︒,∵180DEF AOB ∠+∠=︒,∴90DEF ∠=︒,∵OC 平分AOB ∠,EG 平分DEF ∠,∴∠1=12∠AOB=45︒,∠2=12∠DEF=45︒, ∴1290∠+∠=︒;故答案为:90;(2)1290∠+∠=︒.理由如下:∵OC ,EG 分别是AOB ∠,DEF ∠的平分线,∴112DEF ∠=∠,122AOB ∠=∠, ∴112()2DEF AOB ∠+∠=∠+∠, ∵180DEF AOB ∠+∠=︒,∴1290∠+∠=︒;(3)OC 和EG 的位置关系为OC ∥GE .证明:∵EF OB ⊥于点F ,∴90EFG ∠=︒.∴190EGF ∠+∠=︒.∵1290∠+∠=︒,∴2EGF ∠=∠,∴OC ∥GE ;(4)答案不唯一,例如1290∠+∠=︒.理由如下:∵OC ,EH 分别是AOB ∠,DEF ∠的平分线, ∴112DEF ∠=∠,122AOB ∠=∠, ∴112()2DEF AOB ∠+∠=∠+∠, ∵180DEF AOB ∠+∠=︒,∴1290∠+∠=︒;【点睛】本题考查了平行线的判定,角平分线的定义,正确的识别图形是解题的关键. 25.(1)平行,理由见解析;(2)∠1+∠2=2∠B ,理由见解析【分析】(1)AB 与DF 平行.根据翻折可得出∠DFC =∠C ,结合∠B =∠C 即可得出∠B =∠DFC ,从而证出AB ∥DF ;(2)连接GC ,由翻折可得出∠DGE =∠ACB ,再根据三角形外角的性质得出∠1=∠DGC +∠DCG ,∠2=∠EGC +∠ECG ,通过角的运算即可得出∠1+∠2=2∠B .【详解】解:(1)AB 与DF 平行.理由如下:由翻折,得∠DFC =∠C .又∵∠B =∠C ,∴∠B =∠DFC ,∴AB ∥DF .(2)连接GC ,如图所示.由翻折,得∠DGE =∠ACB .∵∠1=∠DGC +∠DCG ,∠2=∠EGC +∠ECG ,∴∠1+∠2=∠DGC +∠DCG +∠EGC +∠ECG =(∠DGC +∠EGC )+(∠DCG +∠ECG )=。
第七章平行线的证明
一、选择题(共15小题;共45分)
1. 如图,已知:,那么下列结论正确的是
A. B. C. D.
2. 下列命题中:
①相等的角是对顶角;
②如果三角形中有一个角是钝角,那么另外两个角为锐角;
③若两直线平行,则内错角相等;
④若,则.其中是真命题的有几个
A. B. C. D.
3. 下列语言是命题的是
A. 画两条相等的线段
B. 等于同一个角的两个角相等吗
C. 延长线段到,使
D. 两直线平行,内错角相等
4. 命题“垂直于同一条直线的两条直线平行”的题设是
A. 垂直
B. 两条直线
C. 同一条直线
D. 两条直线垂直于同一条直线
5. 如图,下列推理中错误的是
A. ,
B. ,
C. ,
D. ,
6. 如图,直线,射线与直线相交于点,过点作于点,已知
,则的度数为
A. B. C. D.
7. 如图,,,,则的大小为
A. B. C. D.
8. 把一块直尺与一块三角板如图放置,若,则的度数为
A. B. C. D.
9. 下列命题中,是假命题的是
A. 平方根等于本身的数是
B. 如果,都是无理数,那么也一定是无理数
C. 坐标平面内的点与有序实数对一一对应
D. 与可以合并同类项
10. 如图,,直线分别交直线,于点,,过点作于点
.若,则的度数为
A. B. C. D.
11. 将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1);(2);
(3);(4),其中正确的个数是
A. B. C. D.。
2015新北师大版八上第七章平行线的证明同步测试题
一、选择题
1、下列命题中逆命题是假命题的是()
A.如果两个三角形的三条边都对应相等,那么这两个三角形全等
B.如果a2=9,那么a=3 C.对顶角相等
D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等
2、如图所示,能判断AB∥CE的条件是( )
A.∠A=∠ACE B.∠A=∠ECD C.∠B=∠BCA D.∠B=∠ACE
3、如图,∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( ).
A.108° B. 110° C.115° D. 无法计算
4、如右下图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若
∠1=25°,则∠2的度数为()
A.20° B.25° C.30° D.35°
5、下列说法正确的是()①相等的角是对顶角②相等且互补的两个角是直角③一个角的两个邻补角是对顶角④若两个角不是对顶角,则这两个角不相等⑤凡直角皆相等⑥同时垂直于同一条直线的两条直线平行.
A.1个B.2个C.3个D.4个
6、如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为( ) A.35° B.45° C.55° D.125°
7、如图,已知AB∥CD,∠2=135°,则∠1的度数是( )
A.35° B.45° C.55° D.65°
8、如图,D、E、F分别在△ABC的三条边上,∠DEF=∠EFC,那么下列结论正确的是()A.EF∥AB B.DE∥BC C.DF∥AC D.∠EDF=∠C
9、如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70° B.80° C.100° D.110°
10、下列说法正确的是( ) A.每个命题都有逆命题 B.每个定理都有逆定理
C.真命题的逆命题也是真命题 D.假命题的逆命题是假命题
11、如图,∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数等于( ).
A.60° B. 70° C.80° D.无法确定
12、若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()
A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形
二、填空题(
13、如图,要在下列5×5的方格表中填入A、B、C、D、E五个英文字母,并且要求五个字母在每一行与每一列及对角在线,都只出现一次,则@所表示的英文字母为____.
14、如图,直线AB∥C D,∠BAE=28°,∠DCE=50°,则∠AEC=______。
15、命题“等腰三角形底边中线上任意一点到两腰的距离相等”是命题(填“真”、“假”).
16、如图,用一吸管吸吮易拉罐内的饮料时,吸管与易拉罐上部夹角∠1=74°,那么吸管与易拉罐下部夹角∠2=____________度.
17、如果一个角的两边与另一个角的两边互相平行,则这两个角_________.
18、如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是.
19、如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是____,破译“正做数学”的真实意思是____.
20、有A、B、C、D四位员工做一项工作,每天必须是三位员工同时做,另一位员工休息,当完成这项工作时,D做了8天,比其他任何人都多,B做了5天,比其他任何人都少,那么A做了____天.
三、解答题
21、用语言叙述这个命题:如图AB∥CD,EF交AB于点G,交CD于点H,GM平分∠BGH,HM平分∠GHD,则GM⊥HM.
22、一个农妇要过河,随身携带一只小白兔、一篮萝卜和一只饥饿又爱追兔子的狗.她发现系在河边的小船一次只能载她本人和兔子、狗、萝卜其中之一过河,她不能让狗和兔子呆在一起(狗会吓坏可怜的小兔),也不能让小兔和萝卜留在一起(兔子会把萝卜全吃掉),怎么办?请你帮农妇想办法:她怎样来回渡河才能把三样东西安全带到对岸?
23、如图,直线EF交直线AB、CD于点M、N,∠EMB=∠END,MG平分∠EMB,NH平分∠END。
试问:图中哪两条直线互相平行?为什么?
24、如图,在正方形ABCD中,已知∠AEF=30°,∠BCF=28°,求∠EFC的度数.
25、判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.
(1)等角的余角相等;
(2)平行线的同旁内角的平分线互相垂直;
(3)和为180°的两个角叫做邻补角.
26、如图,已知AD∥BE,∠1=∠2,试判断∠A和∠E之间的大小关系,并说明理由.
27、如图,若∠1+∠4=180°,试说明a与b是否平行?为什么?
28、已知∠AGE=∠DHF,∠1=∠2,则图中的平行线有几对?分别是什么?为什么?
29、如图,A、B之间有一座山,一条铁路要通过A、B两地,在A地测得∠MAB=75°,如果A、B 两地同时施工,那么B地按∠NBA=75°施工,能否使铁路在山腹中准确接通.
30、如图,欲将一块四方形的耕地中间的一条折路MPN改直,•但不能影响道路两边的耕地面积,应如何画线?
2015新北师大版八上第七章平行线的证明同步测试题
试卷答案
21, 解:根据AB∥CD,EF交AB于点G,交CD于点H可得两条平行线北第三条直线所截;
根据GM平分∠BGH,HM平分∠GHD,则GM⊥HM可得同旁内角的平分线互相垂直.
故答案为:两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.
22,先带兔子,再带萝卜(狗)过来,把兔子带回来,再带狗(萝卜)过去,回来再带兔子到对岸.
23,AB∥CD,MG∥NH.
24,58°
25, 解:(1)等角的余角相等,正确,是真命题;
(2)平行线的同旁内角的平分线互相垂直,正确,是真命题;
(3)和为180°的两个角叫做邻补角,错误,是假命题,如两个不同书本上的两个和为
180°的角.
26,
解:∠A=∠E,
证明:∵∠1=∠2,
∴DE∥AC,
∴∠E=∠EBC,
∵AD∥EB,
∴∠A=∠EBC,
∴∠E=∠A.
27,a∥b
28,2对,AB∥CD,GM∥HN
29,能
30,根据平行四边形中心对称的性质,可连接MN.过P作EF∥MN交AD于E,BC于F.连接MF或NE,则MF或NE为新修的路.。