北师大版初中数学八年级上册7.2定义与命题word教案(2)
- 格式:doc
- 大小:1.08 MB
- 文档页数:3
北师大版八年级上册《7.2 定义与命题》教案x一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解命题的构成要素,学会如何书写和阅读命题。
教材通过具体的例子,引导学生理解定义与命题的关系,以及如何从命题中提取信息。
二. 学情分析八年级的学生已经有一定的数学基础,对数学概念和命题有一定的认识。
但是,对于定义与命题的深入理解,以及如何从命题中提取信息,可能还存在一定的困难。
因此,在教学过程中,需要通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
三. 教学目标1.了解定义与命题的概念,理解命题的构成要素。
2.学会如何书写和阅读命题。
3.学会从命题中提取信息。
四. 教学重难点1.重点:定义与命题的概念,命题的构成要素。
2.难点:如何从命题中提取信息。
五. 教学方法采用讲授法、引导法、讨论法、案例分析法等,通过具体的例子,引导学生理解定义与命题的概念,以及如何从命题中提取信息。
六. 教学准备2.PPT。
3.教学案例。
七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是定义,什么是命题。
例如,定义一个三角形:由三条线段首尾相连围成的图形。
然后,给出一个命题:所有的三角形都有三个顶点。
让学生思考这个命题是否正确。
2.呈现(10分钟)通过PPT,呈现定义与命题的概念,以及命题的构成要素。
让学生理解定义与命题的关系。
3.操练(15分钟)让学生阅读教材中的例子,尝试自己书写和阅读命题。
教师通过提问,引导学生理解命题的构成要素。
4.巩固(10分钟)通过小组讨论,让学生互相交流自己的理解和发现。
教师通过提问,检查学生对定义与命题的理解。
5.拓展(10分钟)让学生尝试解决一些与定义与命题相关的问题。
例如,给出一个命题,让学生判断其是否正确,并说明理由。
6.小结(5分钟)通过总结,让学生回顾本节课所学的内容,加深对定义与命题的理解。
7.家庭作业(5分钟)布置一些与定义与命题相关的作业,让学生课后巩固所学知识。
(2) 定义与命题7.2 : 教学目标知识技能.了解真命题和假命题的概念。
1 .会在简单的情况下判别一个命题的真假。
2 .了解公理和定理的含义。
3 过程与方法,让学生在自己提出问题、.从生活命题引入数学命题,并通过小组活动1自己解决问题的过程中经历知识的产生过程归纳、并在这个过程中了解类比、, 分类等思维方法。
.在学生总结命题、真命题、定理和公理之间的关系中,感受数学知识间的2 内在联系。
.通过对真假命题的判断,初步体验举反例、推理说明等数学方法。
3 情感态度与价值观让学生在推理中感觉到数学的有用性。
教学重点:命题的真假的概念和判别。
教学难点判别命题的真假其实已涉及证明。
教学过程一、复习也就是给出它们的定,作出明确的规定,对名称和术语的含义加以描述:、定义1 . 义叫做命题,判断一件事情的句子:、命题的定义2命题的结构、3结论是由,条件是已知事项.每个命题都由条件和结论两部分组成: . 已知事项推断出的事项其中“如,那么……”的形式,命题可以写成“如果……,一般地:、命题的特征4 . “那么”引出的部分是结论,果”引出的部分是条件把下列命题改写成“如果┄┄那么┄┄”的形式,并指出命题的条件和结论、相等的角是对顶角;1 、钝角大于它的补角;2 、两直线平行,同位角相等;3 二、新授课想一想如何证实一个命题是真命题呢?:用学过的观察、实验法1生:这些方法往往不可靠2生:能不能根据已知的真命题来证明呢?3生那已知的真命题又是怎么证明的?4:生 . :……5生 . 公认的真命题称为公理推理的过程叫证明。
. 经过证明的真命题称为定理 : 本套教材选用如下命题作为公理两点确定一条直线。
1. 两点之间线段最短。
2.,如果同位角相等,两条直线被第三条直线所截3.; 那么这两条直线平行 ; 同位角相等,两条平行线被第三条直线所截4. ; 两边及其夹角对应相等的两个三角形全等5. ; 两角及其夹边对应相等的两个三角形全等6. ; 三边对应相等的两个三角形全等7. . 对应角相等,全等三角形的对应边相等8. 同角(等角)的补角相等。
3.同一平面内,过一点有且只有一条直线与直线垂直.4.两条直线被条直线所截,如果同位角相等,那么这两条直线平行〔即:同位角相等,两直线平行〕5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.〔SAS)7.两角及其夹边分别相等的两个三角形全等. (ASA)8.三边分别相等的两个三角形全等. (SSS)另外一条根本领实我们将在后面的学习中认识它.9.平行线截线段成比例.【设计:总结学生学过的根本领实,并以它们作为证明的出发点,初步构建几何证明的“公理化体系〞,培养学生逻辑推理能力.用数学的三种语言〔文字语言、符号语言、图示语言〕表达“九条根本领实〞,提高学生数学语言的表达能力.】思考四:代数知识中是否也有“公理〞呢?能举例说明吗?探究活动三:感受代数中的公理数与式的运算律和运算法则、等式的有关性质和不等式的有关性质都可以看作公理.在等式或不等式中,一个量可以用它的等量来代替.例如:如果a=b,b=c,则a=c,这一性质也可以作为证明的依据,称为“等量代换〞.如果a>b,b>c,那么a>c, 称为“不等式的传递性.〞【设计:用学生学过的具体实例,感受代数的公理化思想.】思考五:请同学们结合所学知识,谈谈你对“根本领实〞或“公理〞的理解?〔1〕公理是通过长期实践反复验证过的,不需要再进行推理论证而都成认的真命题.〔2〕公理可以作为判定其他命题真假的依据.【设计:深刻理解公理的独立性、完备性、和谐性.】教学活动三: 典例分析例:如下图,直线AB与直线CD相交于点O,∠AOC与∠BOD是对顶角. 求证:∠AOC=∠BOD.证明:∵直线AB与直线CD相交于点O〔〕,∴∠AOB和∠COD都是平角〔平角的定义〕.∴∠AOC和∠BOD都是∠AOD的补角〔补角的定义〕.∴ ∠AOC=∠BOD〔同角的补角相等〕.定理:对顶角相等.【设计:严格证明几何定理“对顶角相等〞,初步感受证明的思路和书写过程.】随堂练习:证明定理: 三角形的任意两边之和大于边.:如图,△ABC.求证:AB+BC>AC,BC+CA>AB,CA+AB>BC.证明:∵AC是以点A、点C为端点的线段〔〕,∴AB+BC>AC〔两点之间,线段最短〕.∵AB是以点A、点B为端点的线段〔〕,∴ BC+CA>AB 〔两点之间,线段最短〕.∵BC是以点B、点C为端点的线段〔〕,∴ CA+AB>BC 〔两点之间,线段最短〕.【设计:证明定理,感受证明的思路和书写过程.】教学活动四: 文化拓展数学文化阅读材料一:数学家欧几里得;数学文化阅读材料二:《几何原本》;数学文化阅读材料三:徐光启与《几何原本》.【设计:了解《几何原本》和数学家欧几里得、徐光启,感受公理化方法对数学开展和促进人类文明进步的价值.】板书设计一.公理、证明和定理的含义二.数学的“九条根本领实〞三.代数中的公理作业设计定义与命题〔二〕作业单。
定义与命题(第1课时)教学目标:1.了解定义与命题的含义,会区分某些语句是不是命题.2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.3.通过对某些语句特征的判断学会严谨的思考习惯.教学过程:第一环节:情景引入(由学生表演)活动内容:小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(表演结束)教师提出问题:在这个小品中,你得到什么启示?(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;②对定义含义的解释;③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)活动内容:①师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;如果D处水流受到污染,那么____处水流便受到污染;②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)第三环节:反馈练习活动内容:1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.第四环节:课堂小结活动内容:①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.。
北师大版八年级上册《7.2 定义与命题》教学设计一. 教材分析《7.2 定义与命题》这一节主要让学生了解数学中的定义与命题的概念,理解它们在数学论证中的重要性。
北师大版八年级上册的教材通过生动的例子和丰富的练习,帮助学生理解和掌握定义与命题的基本知识。
二. 学情分析学生在七年级时已经初步接触过定义与命题的概念,但对其本质和应用可能还不是很清楚。
因此,在教学过程中,教师需要从学生的实际出发,通过生动的例子和实际操作,让学生理解和掌握定义与命题。
三. 教学目标1.知识与技能:使学生理解定义与命题的概念,能够正确判断一个命题是真命题还是假命题。
2.过程与方法:通过观察、分析和推理,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 教学重难点1.重点:定义与命题的概念及其应用。
2.难点:如何判断一个命题是真命题还是假命题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考;通过分析案例,让学生理解定义与命题;通过小组合作,培养学生的团队协作能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的数学问题引入定义与命题的概念。
例如:“什么是一个角?”让学生思考并回答,然后给出正确的定义。
2.呈现(15分钟)呈现教材中的案例,让学生观察和分析。
例如:等腰三角形的性质。
引导学生发现这是一个命题,并尝试给出证明。
3.操练(15分钟)让学生分组,每组选一个命题进行分析和证明。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成教材中的练习题,检验他们对定义与命题的理解。
教师选取部分学生的作业进行点评。
5.拓展(10分钟)让学生尝试自己编写一个命题,并给出证明。
教师选取部分学生的命题进行点评。
6.小结(5分钟)总结本节课的主要内容,强调定义与命题在数学论证中的重要性。
北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。
本节课主要介绍了定义与命题的概念,以及如何正确理解和运用它们。
教材通过具体的例子,让学生初步认识定义与命题,并学会如何区分它们。
同时,教材还引导学生思考定义与命题在数学中的应用,培养学生的逻辑思维能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数学概念和定理有一定的认识。
但学生在理解和运用定义与命题方面可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握定义与命题的概念和运用。
三. 教学目标1.理解定义与命题的概念,掌握它们的区别与联系。
2.学会如何正确理解和运用定义与命题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.重点:定义与命题的概念及其区别与联系。
2.难点:如何正确理解和运用定义与命题。
五. 教学方法1.情境教学法:通过具体的例子,引导学生理解和掌握定义与命题。
2.启发式教学法:引导学生主动思考,发现定义与命题的规律。
3.小组合作学习:鼓励学生互相讨论,共同解决问题。
六. 教学准备1.教学PPT:制作涵盖定义与命题的例子、练习题等内容的PPT。
2.学习素材:准备一些与定义与命题相关的阅读材料,以便学生在课后进行拓展学习。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“直线的定义”,引导学生思考定义与命题的概念,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现定义与命题的相关概念,让学生初步认识它们。
同时,教师可以通过讲解、举例等方式,让学生了解定义与命题的区别与联系。
3.操练(10分钟)教师布置一些练习题,让学生区分给出的数学语句是定义还是命题。
学生独立完成后,教师选取部分答案进行讲解和分析。
4.巩固(10分钟)教师继续呈现一些定义与命题的例子,让学生判断并解释它们的含义。
在此过程中,教师要注意引导学生运用已学的知识,加深对定义与命题的理解。
北师大版数学八年级上册2《定义与命题》教学设计2一. 教材分析《定义与命题》是北师大版数学八年级上册第二单元的教学内容。
本节课的主要内容是让学生理解并掌握命题与定理的概念,学会如何用数学语言表述命题,以及如何通过推理和证明来判断命题的真假。
本节课的内容是学生学习更高级数学知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
二. 学情分析学生在七年级时已经接触过简单的命题和定理,对命题和定理的概念有初步的了解。
但是,对于如何准确地表述命题,如何通过推理和证明来判断命题的真假,以及如何运用命题和定理解决实际问题等方面,还需要进一步的学习和掌握。
因此,在教学过程中,教师需要根据学生的实际情况,从简单的例子入手,逐步引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。
三. 教学目标1.理解命题与定理的概念,掌握如何用数学语言表述命题。
2.学会通过推理和证明来判断命题的真假。
3.能够运用命题和定理解决实际问题。
4.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.重点:理解命题与定理的概念,掌握如何用数学语言表述命题,学会通过推理和证明来判断命题的真假。
2.难点:如何引导学生理解和掌握命题与定理的概念,以及如何运用这些概念解决实际问题。
五. 教学方法1.讲授法:教师通过讲解和举例,引导学生理解和掌握命题与定理的概念。
2.实践法:学生通过动手操作和思考,培养学生的逻辑思维能力和数学素养。
3.讨论法:学生分组讨论,交流自己的理解和思路,培养学生的合作意识和沟通能力。
六. 教学准备1.教师准备PPT,内容包括教材中的重点和难点,以及一些相关的例子和练习题。
2.准备一些与本节课内容相关的实物或图片,用于导入和呈现。
七. 教学过程1.导入(5分钟)教师通过展示一些与本节课内容相关的实物或图片,引导学生观察和思考,激发学生的兴趣。
然后,教师简要介绍本节课的主要内容,让学生对课程有一个初步的了解。
八年级数学上册7.2定义与命题第2课时定理与证明教学设计(新版北师大版)一. 教材分析本节课的内容是北师大版八年级数学上册7.2定义与命题的第2课时,主要学习定理与证明。
定理是数学中经过证明的命题,是数学推理的基础。
本节课通过学习定理与证明,让学生理解数学命题的本质,培养学生的逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了七年级和八年级上册的数学知识,对命题和定理有一定的了解。
但是,对于如何进行数学证明,学生可能还存在一定的困难。
因此,在教学过程中,需要引导学生理解证明的过程,培养学生的逻辑推理能力。
三. 教学目标1.理解定理的概念,知道定理的定义和定理的证明过程。
2.能够运用所学的定理进行问题的解决。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.定理的概念和定理的证明过程。
2.如何运用所学的定理解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考,从而达到理解定理的目的;通过案例教学,让学生了解定理的证明过程,掌握证明的方法;通过小组合作学习,培养学生的团队协作能力,提高学生的逻辑推理能力。
六. 教学准备1.PPT课件2.相关案例和问题3.小组合作学习资料七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾命题和定理的概念,为新课的学习做好铺垫。
2.呈现(10分钟)呈现本节课的学习目标,让学生明确本节课的学习内容。
然后,通过PPT课件,介绍定理的概念和定理的证明过程。
在呈现过程中,引导学生关注定理的证明方法,让学生理解证明的过程。
3.操练(10分钟)通过案例教学,让学生了解定理的证明过程,掌握证明的方法。
在这个过程中,教师要引导学生积极参与,提出自己的观点,培养学生的逻辑思维能力。
4.巩固(10分钟)让学生分组进行合作学习,运用所学的定理解决实际问题。
教师在这个过程中,要引导学生进行合理的分工,指导学生解决问题,培养学生的团队协作能力。
定义与命题(第1课时)
教学目标:
1.了解定义与命题的含义,会区分某些语句是不是命题.
2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.
3.通过对某些语句特征的判断学会严谨的思考习惯.
教学过程:
第一环节:情景引入(由学生表演)
活动内容:
小亮和小刚正在津津有味地阅读《我们爱科学》.
小亮说:……
小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”
小亮说:“……”
小刚说:“……”
小亮说:“哈!,这个黑客终于被逮住了.”……
坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:
一人说:“这黑客是个小偷吧?”
另一人说:“可能是喜欢穿黑衣服的贼.”……
一人说:“那因特网肯定是一张很大的网.”
另一人说:“估计可能是英国造的特殊的网.”……(表演结束)
教师提出问题:在这个小品中,你得到什么启示?
(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)
①关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能
进行;
②对定义含义的解释;
③举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好);第二环节:命题含义(情景引入)
活动内容:
①师:如果B处水流受到污染,那么
____处水流便受到污染;
如果C处水流受到污染,那么____处水流便
受到污染;
如果D处水流受到污染,那么____处水流
便受到污染;
②学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.
([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.
[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.
[生丙]如果C处受到污染,那么A、B、C处便受到污染.
[生丁]如果C处受到污染,那么D处也会受到污染的.
[生戊]如果E处受到污染,那么A、B处便会受到污染.
[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.
……
老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.
即:命题是判断一件事情的句子.如:
熊猫没有翅膀.
对顶角相等.
大家能举出这样的例子吗?
[生甲]两直线平行,内错角相等.
[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.
[生丙]内错角相等.
[生丁]任意一个三角形都有一个直角.
[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
[生己]全等三角形的对应角相等.
……
[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:
你喜欢数学吗?
作线段AB=a.
平行用符号“∥”表示.
这些句子没有对某一件事情作出任何判断,那么它们就不是命题.
一般情况下:疑问句不是命题.图形的作法不是命题.)
第三环节:反馈练习
活动内容:
1.你能列举出一些命题吗?
答案:能.举例略.
2.举出一些不是命题的语句.
答案:如:①画线段AB=3 cm.
②两条直线相交,有几个交点?
③等于同一个角的两个角相等吗?
④在射线OA上,任取两点B、C.等等.
第四环节:课堂小结
活动内容:
①定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;
②命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.。