高考数学(理)之三角函数与解三角形 专题02 同角三角函数的基本关系(解析版)
- 格式:docx
- 大小:668.95 KB
- 文档页数:10
1●高考明方向1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sinαcosα=tanα. 2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.★备考知考情同角关系式和诱导公式中的π±α,π2±α是高考的热点,题型既有选择题、填空题,又有解答题,难度为中低档题,主要是诱导公式在三角式求值、化简的过程中与同角三角函数的关系式、2 和差角公式及倍角公式的综合应用,一般不单独命题,在考查基本运算的同时,注重考查等价转化的思想方法.一、知识梳理《名师一号》P47知识点一 同角三角函数的基本关系平方关系:;1cos sin 22=+αα商数关系:sin tan cos =ααα注意:《名师一号》P50 问题探究 问题1在利用同角三角函数的基本关系中应注意哪些技巧?利用同角三角函数基本关系式化简求值时, 涉及两个同角基本关系sin 2α+cos 2α=1和tanα=sinαcosα,它们揭示同一角α的各三角函数间的关系,需要在复习中通过解题、理解、掌握.尤其是利用sin2α+cos2α=1及变形形式sin2α=1-cos2α或cos2α=1-sin2α进行开方运算时,要注意符号判断.知识点二诱导公式记忆口诀:奇变偶不变,符号看象限!注意:《名师一号》P50 问题探究问题2诱导公式的记忆口诀“奇变偶不变,符号看象限”中的“符号”是否与α的大小有34 关?无关,只是把α从形式上看作锐角,从而2kπ+α(k∈Z),π+α,-α,π-α,π2-α,π2+α分别是第一、三、四,二、一、二象限角.二、例题分析:(一) 求值例1.(1)《名师一号》P50 对点自测 4 (09全国卷Ⅰ文)o 585sin 的值为(A) 2-(B)2(C)2-2答案:A例1.(补充)(2)17cos 3⎛⎫-π ⎪⎝⎭的值为5 答案:12例1.(补充)(3)()tan 1665︒-的值为答案:1-注意:(补充)求任意角的三角函数值:负化正→正化主[)0,2π→主化锐例1.(4)《名师一号》P51 高频考点 例2(1)(2014·安徽卷)设函数f(x)(x ∈R)满足f(x +π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f ⎝ ⎛⎭⎪⎫23π6=( ) A.12 B.32 C .0 D .-126解:(1)由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6 =f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin 11π6+sin 17π6=0+12-12+12=12.练习:(补充)(2009重庆卷文)下列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<<7【答案】Csin168sin(18012)sin12,cos10cos(9080)sin80︒︒︒︒︒︒︒︒=-==-=由于正弦函数sin y x =在区间[0,90]︒︒上为递增函数,因此sin11sin12sin80︒︒︒<<,即sin11sin168cos10︒︒︒<<。
第二讲 同角三角函数的基本关系式与诱导公式知识梳理·双基自测 知识梳理知识点一 同角三角函数的基本关系式 (1)平方关系: sin 2x +cos 2x =1 . (2)商数关系: sin xcos x =tan x .知识点二 三角函数的诱导公式重要结论1.同角三角函数基本关系式的变形应用:如sin x =tan x·cos x,tan 2x +1=1cos 2x,(sinx +cos x)2=1+2sin xcos x 等.2.诱导公式的记忆口诀“奇变偶不变,符号看象限”.“奇”与“偶”指的是诱导公式k·π2+α(k∈Z)中的整数k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在k·π2+α(k∈Z)中,将α看成锐角时k·π2+α(k∈Z)所在的象限.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × )(2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin (π+α)=-sin α成立的条件是α为锐角.( × ) (4)若sin (kπ-α)=13(k ∈Z),则sin α=13.( × )[解析] (1)根据同角三角函数的基本关系式知当α,β为同角时才正确.(2)cos α≠0时才成立.(3)根据诱导公式知α为任意角.(4)当k 为奇数和偶数时,sin α的值不同.题组二 走进教材2.(必修4P 22B 组T3改编)已知tan α=12,则sin α-cos α3sin α+2cos α=( A )A .-17B .17C .-7D .7[解析] sin α-cos α3sin α+2cos α=tan α-13tan α+2=12-13×12+2=-17.故选A.3.(必修4P 22B 组T2改编)化简cos α1-sin α1+sin α+sin α1-co s α1+cos α⎝⎛⎭⎪⎫π<α<3π2得( A )A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α[解析] 原式=cos α1-sin α2cos 2α+sin α1-cos α2sin 2α,∵π<α<32π,∴cos α<0,sin α<0.∴原式=-(1-sin α)-(1-cos α)=sin α+cos α-2.4.(必修4P 29B 组T2改编)若sin(π+α)=-12,则sin(7π-α)= 12 ,cos ⎝ ⎛⎭⎪⎫α+3π2= 12 . [解析] 由sin(π+α)=-12,得sin α=12,则sin(7π-α)=sin(π-α)=sin α=12,cos ⎝ ⎛⎭⎪⎫α+3π2=cos ⎝ ⎛⎭⎪⎫α+3π2-2π=cos ⎝ ⎛⎭⎪⎫α-π2 =cos ⎝ ⎛⎭⎪⎫π2-α=sin α=12.题组三 走向高考5.(2019·全国卷Ⅰ)tan 255°=( D )A .-2- 3B .-2+ 3C .2- 3D .2+ 3[解析] 由正切函数的周期性可知,tan 255°=tan(180°+75°)=tan 75°=tan(30°+45°)=33+11-33=2+3,故选D.另:tan 225°=tan 75°>tan 60°=3,∴选D.6.(2015·福建)若sin α=-513,且α为第四象限角,则tan α的值等于( D )A.125B .-125C .512D .-512[解析] 因为sin α=-513,且α为第四象限角,所以cos α=1213,所以tan α=-512,故选D.7.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( A )A .-79B .-29C .29D .79[解析] 将sin α-cos α=43的两边进行平方,得sin 2α-2sin αcos α+cos 2α=169,即sin 2α=-79,故选A.考点突破·互动探究考点一 同角三角函数的基本关系式——师生共研 例1 (1)已知α为第三象限角,cos α=-817,则tan α=( D )A .-815B .815C .-158D .158(2)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 -5 .(3)若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 -3 .[解析] (1)因为α是第三象限角,cos α=-817,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-8172=-1517,故tan α=sin αcos α=158.选D.(2)由tan α=-13,得sin α=-13cos α,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos 2α=910,易知cos α<0,所以cos α=-31010,sin α=1010,故sin α+cos α=-105. (3)由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-c os α+2sin α-sin α=-1-2=-3.名师点拨(1)已知一个角的三角函数值求这个角的其他三角函数值时,主要是利用公式sin 2α+cos 2α=1,tan α=sin αcos α求解,解题时,要注意角所在的象限.并由此确定根号前的正、负号,若不能确定角所在象限要分类讨论.(2)遇sin α,cos α的齐次式常“弦化切”,如:asin α+bcos αcsin α+dcos α=atan α+b ctan α+d ;sin αcos α=sin αcos α1=sin αcos αsin 2α+cos 2α=tan α1+tan 2α; sin 2α+sin αcos α-2cos 2α=sin 2α+sin αcos α-2cos 2αsin 2α+cos 2α=tan 2α+tan α-21+tan 2α. 〔变式训练1〕(1)若α是第二象限角,tan α=-512,则sin α=( C )A.15 B .-15C .513D .-513(2)已知α是第二象限角,化简1-cos 4α-sin 4α1-cos 6α-sin 6α= 23. (3)(2017·全国卷Ⅰ)已知α∈⎝ ⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4= 31010 .[解析] (1)∵tan α=-512,∴sin αcos α=-512.∵sin 2α+cos 2α=1,∴sin 2α+⎝ ⎛⎭⎪⎫-125sin α2=1,∴sin α=±513.又α为第二象限角,∴sin α=513,故选C.(2)解法一:原式=1-cos 2α1+cos 2α-sin 4α1-cos 2α1+cos 2α+cos 4α-sin 6α =sin 2α1+cos 2α-sin 2αsin 2α1+cos 2α+cos 4α-sin 4α =2cos 2α1+cos 2α+cos 2α-sin 2α =2cos 2α3cos 2α=23. 解法二:∵1-cos 4α-sin 4α=1-(cos 2α+sin 2α)2+2sin 2αcos 2α=2sin 2αcos 2α, ∴原式=2sin 2αcos 2α1-cos 2α+sin 2αcos 4α-cos 2αsin 2α+sin 4α =2sin 2αcos 2α1-cos 4α-sin 4α+cos 2αsin 2α =2sin 2αcos 2α3sin 2αcos 2α=23. (3)由tan α=2得sin α=2cos α. 又sin 2α+cos 2α=1,所以cos 2α=15.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=55,sin α=255.因为cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4, 所以cos ⎝ ⎛⎭⎪⎫α-π4=55×22+255×22=31010. 考点二 诱导公式及其应用——多维探究 角度1 利用诱导公式化简三角函数式例2 (1)化简:sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 22π-αcos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin π+α= -1sin α .(2)化简1-2sin 10°sin 100°cos 80°-1-sin 2170°= -1 . [解析] (1)原式=cos α-cos αtan 2αsin α-sin α-sin α=-cos 2α·sin 2αcos 2αsin 3α=-1sin α. (2)∵cos 10°>sin10°,∴原式=1-2sin 10°cos 10°sin 10°-cos 10°=sin 210°-2sin 10°cos 10°+cos 210°sin 10°-cos 10°=|sin 10°-cos 10°|sin 10°-cos 10°=cos 10°-sin 10°-cos 10°-sin 10°=-1.角度2 “换元法”的应用例3 已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是 0 .[解析] 因为cos ⎝⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ =-cos ⎝ ⎛⎭⎪⎫π6-θ=-a.sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,所以cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0. 名师点拨(1)诱导公式的两个应用方向与原则:①求值:化角的原则与方向:负化正,大化小,化到锐角为终了. ②化简:化简的原则与方向:统一角,统一名,同角名少为终了.(2)注意已知中角与所求式子中角隐含的互余、互补关系、巧用诱导公式解题,常见的互余关系有π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等,互补关系有π3+α与2π3-α;π4+α与3π4-α等.〔变式训练2〕(1)(角度1)已知f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α.①化简f(α);②若α是第三象限的角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f(α)的值. (2)(角度2)(2021·唐山模拟)已知α为钝角,sin ⎝ ⎛⎭⎪⎫π4+α=34,则sin ⎝ ⎛⎭⎪⎫π4-α= -74 ,cos ⎝⎛⎭⎪⎫α-π4= 34 .[解析] (1)①f(α)=sin α-3πcos 2π-αsin ⎝ ⎛⎭⎪⎫-α+3π2cos -π-αsin -π-α=-sin α·cos α·-cos α-cos α·sin α=-cos α.②因为cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α,所以sin α=-15. 又α是第三角限的角, 所以cos α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f(α)=265.(2)sin ⎝⎛⎭⎪⎫π4-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+α, 因为α为钝角, 所以34π<π4+α<54π,所以cos ⎝ ⎛⎭⎪⎫π4+α<0.所以cos ⎝ ⎛⎭⎪⎫π4+α=-1-⎝ ⎛⎭⎪⎫342=-74.cos ⎝ ⎛⎭⎪⎫α-π4=sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π4=sin ⎝ ⎛⎭⎪⎫π4+α=34.名师讲坛·素养提升sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系例4 (2021·北京东城模拟)已知sin θ+cos θ=713,θ∈(0,π),则tan θ= -125. [解析] 解法一:因为sin θ+cos θ=713,θ∈(0,π)所以(sin θ+cos θ)2=1+2sin θcos θ=49169,sin θcos θ=-60169.由根与系数的关系,知sin θ,cos θ是方程x 2-713x -60169=0的两根,所以x 1=1213,x 2=-513.因为θ∈(0,π),所以sin θ>0.所以sin θ=1213,cos θ=-513,tan θ=sin θcos θ=-125.解法二:同解法一,得sin θcos θ=-60169,所以sin θcos θsin 2θ+cos 2θ=-60169,弦化切,得 tan θtan 2θ+1=-60169,解得tan θ=-125或tan θ=-512. 又θ∈(0,π),sin θ+cos θ=713>0,sin θcos θ=-60169<0.∴θ∈⎝ ⎛⎭⎪⎫π2,π,且sin θ>|cos θ|,∴⎪⎪⎪⎪⎪⎪sin θcos θ=|tan θ|>1,∴tan θ=-125.解法三:解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1.得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213.(舍去)故tan θ=-125.名师点拨sin x +cos x 、sin x -cos x 、sin xcos x 之间的关系为(sin x +cos x)2=1+2sin xcos x ,(sin x -cos x)2=1-2sin xcos x ,(sin x +cos x)2+(sin x -cos x)2=2.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值. 〔变式训练3〕(1)(2021·山东师大附中模拟)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α的值为( C ) A.75 B .725 C .257D .2425(2)若1sin α+1cos α=3,则s in αcos α=( A )A .-13B .13C .-13或1D .13或-1 [解析] (1)解法一:∵sin α+cos α=15,∴(sin α+cos α)2=125,∴sin αcos α=-1225,又α∈⎝ ⎛⎭⎪⎫-π2,0,∴sin α<0,cos α>0,∴cos α-sin α=sin α-cos α2=1-2sin αcos α=75.∴1cos 2α-sin 2α=1cos α-sin αcos α+sin α=257,故选C. 解法二:由解法一知⎩⎪⎨⎪⎧sin α+cos α=15,sin α-cos α=-75,得⎩⎪⎨⎪⎧cos α=45,sin α=-35.∴tan α=sin αcos α=-34.∴1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=1+tan 2α1-tan 2α =1+9161-916=257,故选C.(2)由1sin α+1cos α=3,可得sin α+cos α=3sin αcos α,两边平方,得1+2sin αcosα=3sin 2αcos 2α,解得sin αcos α=-13或sin αcos α=1.由题意,知-1<sin α<1,-1<cos α<1,且sin α≠0,cos α≠0,所以sin αcos α≠1,故选A.。
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.若tan α=3,则 sin2α-2 sin αcos α+3 cos2α=______.【答案】【解析】sin2α-2 sin αcos α+3 cos2α====.3.已知f(α)=,则f的值为________.【答案】-【解析】∵f(α)==-cos α,∴f=-cos=-cos=-cos=-.4.化简+=________.【解析】原式=+=-sin α+sin α=0.5.已知α∈(,π),tanα=-,则sin(α+π)=()A.B.-C.D.-【答案】B【解析】由题意可知,由此解得sin2α=,又α∈(,π),因此有sinα=,sin(α+π)=-sinα=-,故选B.6.记cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】解法一:因为cos(-80°)=cos80°=k,sin80°==,所以tan100°=-tan80°=-=-.解法二:因为cos(-80°)=k,所以cos80°=k,所以tan100°=-tan80°==-.7.已知sinαcosα=,且π<α<,则cosα-sinα的值为()A.-B.C.-D.【答案】B【解析】∵π<α<,∴cosα>sinα,∴cosα-sinα>0,又∵(cosα-sinα)2=1-2cosαsinα=,∴cosα-sinα=.8.若3cos(-θ)+cos(π+θ)=0,则cos2θ+sin2θ的值是________.【答案】【解析】∵3cos(-θ)+cos(π+θ)=0,即3sinθ-cosθ=0,即tanθ=.∴cos2θ+sin2θ======.9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A.B.C.D.【答案】D【解析】把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.11.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形12.已知,则()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴,∴.【考点】三角函数求值.13.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.14.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.15.若则【答案】【解析】,得,∴.【考点】求三角函数值.16.α是第二象限角,tanα=-,则sinα=________.【答案】【解析】由解得sinα=±.∵α为第二象限角,∴sinα>0,∴sinα=.17. cos=________.【答案】-【解析】cos=cos=cos(17π+)=-cos=-.18.已知其中若.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)先由已知条件求得的值,再由平方关系可得的值,把拆为,最后利用两角和的余弦公式即可求得的值;(2)考查了三角函数中知一求三的思想,即这几个量“知一求三”.可先利用差角余弦公式将展开,求得的值,两边平方即可求得的值,再由平方关系即可求得的值,最后由商关系即可求得的值.试题解析:(1)由已知得:,(2)由,得,两边平方得:,即,∵,且,从而. 12分【考点】1.平面向量的数量积运算;2.应用三角恒等变换求三角函数的值.19.已知x∈(0,),则函数f(x)=的最大值为()A.0B.C.D.1【答案】C【解析】由已知得,f(x)==tanx-tan2x=-(tanx-)2+,∵x∈(0,),∴tanx∈(0,1),=.故当tanx=时,f(x)max20.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos3(-θ)+sin3(-θ)的值.(2)求tan(π-θ)-的值.【答案】(1) -2 (2) 1+【解析】【思路点拨】先由方程根的判别式Δ≥0,求a的取值范围,而后应用根与系数的关系及诱导公式求解.解:由已知,原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,则a2-2a-1=0,从而a=1-或a=1+(舍去),因此sinθ+cosθ=sinθcosθ=1-.(1)cos3(-θ)+sin3(-θ)=sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθ·cosθ+cos2θ)=(1-)[1-(1-)]=-2.(2)tan(π-θ)-=-tanθ-=-(+)=-=-=1+.21.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.22.=()A.-B.-C.D.【解析】====sin 30°=.23.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.24. 4cos 50°-tan 40°=________.【答案】【解析】4cos 50°-tan 40°======.25.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.26.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.27.若cos =,则cos =().A.-B.-C.D.【答案】D【解析】∵cos =,∴cos =2cos 2-1=-,即sin 2x=,∴cos =sin 2x=.28.已知sin θ+cos θ=,则sin θ-cos θ的值为________.【答案】-【解析】∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+2cos θsin θ=,∴2cos θsin θ=,∴(sin θ-cos θ)2=1-=,又θ∈,∴sin θ<cos θ,∴sin θ-cos θ=-.29.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算30.已知,且,则.【答案】【解析】因为,所以。
第二节 同角三角函数的基本关系与诱导公式突破点一 同角三角函数的基本关系[基本知识]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1(α∈R).(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z . 2.同角三角函数基本关系式的应用技巧一、判断题(对的打“√”,错的打“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( ) (2)若α∈R ,则tan α=sin αcos α恒成立.( )答案:(1)× (2)× 二、填空题1.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,则tan α=________. 解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,sin α=35,∴cos α=-45,于是tan α=-34. 答案:-342.已知tan α=2,则sin α+cos αsin α-cos α的值为________.解析:原式=tan α+1tan α-1=2+12-1=3.答案:3[全析考法]考法一 知弦求弦、切或知切求弦利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.[例1] (1)(2019·成都龙泉中学月考)设cos(-80°)=k ,那么tan 100°等于( ) A.1-k2k B .-1-k2k C.k1-k2D .-k1-k2(2)(2019·甘肃诊断)已知tan x =43,且角x 的终边落在第三象限,则cos x =( )A.45 B .-45C.35D .-35[解析] (1)∵cos(-80°)=cos 80°=k ,∴sin 80°=1-cos 280°=1-k 2, ∴tan 100°=-tan 80°=-1-k2k.故选B.(2)因为角x 的终边落在第三象限,所以cos x <0,因为tan x =43,所以⎩⎪⎨⎪⎧sin 2x +cos 2x =1,sin x cos x =43,cos x <0,解得cos x =-35,故选D.[答案] (1)B (2)D [易错提醒]知弦求弦、切或知切求弦时要注意判断角所在的象限,不要弄错切、弦的符号. 考法二 知切求f (sin α、cos α)的值[例2] (2019·保定三校联考)已知tan(3π+α)=3,则3sin α-cos α2sin α+3cos α=( )A.13B.89C.23D .2[解析] ∵tan(3π+α)=3,∴tan α=3,∴3sin α-cos α2sin α+3cos α=3tan α-12tan α+3=3×3-12×3+3=89.故选B.[答案] B [方法技巧]利用“切弦互化”的技巧(1)弦化切:把正弦、余弦化成切的结构形式,统一为“切”的表达式,进行求值.常见的结构有:①sin α,cos α的二次齐次式(如a sin 2α+b sin αcos α+c cos 2α)的问题常采用“切”代换法求解;②sin α,cos α的齐次分式⎝ ⎛⎭⎪⎫如a sin α+b cos αc sin α+d cos α的问题常采用分式的基本性质进行变形.(2)切化弦:利用公式tan α=sin αcos α,把式子中的切化成弦.一般单独出现正切、余切的时候,采用此技巧.考法三 sin α±cos α与sin αcos α关系的应用[例3] (1)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12(2)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α=( ) A.75 B.257 C.725D.2425[解析] (1)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0, 所以cos α-sin α=-12.(2)∵sin α+cos α=15,∴1+2sin αcos α=125,∴2sin αcos α=-2425,(cos α-sin α)2=1+2425=4925.又∵-π2<α<0,∴cos α>0>sin α,∴cos α-sin α=75,∴1cos 2α-sin 2α=1α+sin αα-sin α=115×75=257. [答案] (1)D (2)B [方法技巧]正弦、余弦“sin α±cos α,sin α·cos α”的应用sin α±cos α与sin α·cos α通过平方关系联系到一起,即(sin α±cos α)2=1±2sin αcos α,sin αcos α=α+cos α2-12,sin αcos α=1-α-cos α22.因此在解题中已知1个可求另外2个.[集训冲关]1.[考法一]已知α∈(0,π),cos α=-35,则tan α=( )A.34 B .-34C.43D .-43解析:选D ∵cos α=-35且α∈(0,π),∴sin α=1-cos 2α=45,∴tan α=sin αcos α=-43.故选D.2.[考法三]已知sin α+cos α=13,则sin αcos α的值为________.解析:∵sin α+cos α=13,∴(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+2sin αcos α=19,解得sin αcos α=-49.答案:-493.[考法二]已知tan α=-43,求:(1)sin α-4cos α5sin α+2cos α的值; (2)1cos 2α-sin 2α的值; (3)sin 2α+2sin αcos α的值.解:(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α=sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. (3)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan αtan 2α+1=169-83169+1=-825. 突破点二 三角函数的诱导公式[基本知识]一、判断题(对的打“√”,错的打“×”)(1)sin(π+α)=-sin α成立的条件是α为锐角.( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍、偶数倍,变与不变指函数名称是否变化.( )答案:(1)× (2)√ 二、填空题1.已知cos(π+α)=-35,则sin ⎝ ⎛⎭⎪⎫3π2+α等于________. 解析:cos(π+α)=-cos α=-35,则cos α=35,sin ⎝ ⎛⎭⎪⎫3π2+α=-sin ⎝⎛⎭⎪⎫π2+α=-cos α= -35.答案:-352.已知sin ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫α+7π6等于________. 解析:sin ⎝ ⎛⎭⎪⎫α+7π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6+π=-sin ⎝ ⎛⎭⎪⎫α+π6=-45. 答案:-453.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________. 解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan [ π-( π6-α) ]=-tan ⎝ ⎛⎭⎪⎫π6-α=-33. 答案:-331.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角为终了.” 2.利用诱导公式化简三角函数的要求 (1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值.[典例感悟](2019·武威六中第一次阶段性检测)已知f (α)=⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π2-απ+α-π-α2-14sin ⎝ ⎛⎭⎪⎫3π2+α+π-α+π-α .(1)化简f (α);(2)若-π3<α<π3,且f (α)<14,求α的取值范围.解:(1)f (α)=αtan α+cos α2-1-4cos α-cos α+cos α=α+cos α2-1-4cos α=2sin αcos α-4cos α=-12sin α.(2)由已知得-12sin α<14,∴sin α>-12,∴2k π-π6<α<2k π+7π6,k ∈Z.∵-π3<α<π3,∴-π6<α<π3.故α的取值范围为⎝ ⎛⎭⎪⎫-π6,π3.[方法技巧]应用诱导公式化简求值的常见问题及注意事项(1)已知角求值问题.关键是利用诱导公式把任意角的三角函数值转化为锐角的三角函数值求解.转化过程中注意口诀“奇变偶不变,符号看象限”的应用.(2)对给定的式子进行化简或求值问题.要注意给定的角之间存在的特定关系,充分利用给定的关系结合诱导公式将角进行转化.特别要注意每一个角所在的象限,防止符号及三角函数名出错.[针对训练]1.(2018·玉林陆川中学期中)sin 570°的值是( )A .-12B.12C.32D .-32解析:选A sin 570°=sin(720°-150°)=-sin 150°=-12.故选A.2.(2019·湖北八校联考)已知sin(π+α)=-13,则tan ⎝ ⎛⎭⎪⎫π2-α=( ) A .2 2 B .-2 2 C.24D .±2 2解析:选D ∵sin(π+α)=-13,∴sin α=13,∴tan ⎝ ⎛⎭⎪⎫π2-α=cos αsin α=±22,故选D.3.(2019·南充模拟)设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β都是非零实数.若f (2 019)=-1,则f (2 020)=( )A .1B .2C .0D .-1解析:选A ∵f (2 019)=a sin(2 019π+α)+b cos(2 019π+β)=-a sin α-b cos β=-1,∴a sin α+b cos β=1,∴f (2 020)=a sin(2 020π+α)+b cos(2 020π+β)=a sin α+b cos β=1.故选A.4.化简:sin2α+ππ+α-α-2ππ+α3⎝ ⎛⎭⎪⎫π2+α-α-2π=________.解析:原式=sin 2α-cos ααtan α·cos 3α-sin α=sin 2αcos 2αsin 2αcos 2α=1. 答案:1。
第二讲 同角三角函数【基础扫描】同角三角函数的基本关系(1)平方关系:同一个角α的正弦、余弦的平方和等于1,即sin 2α+cos 2α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即sin αcos α=tan_α⎝ ⎛⎭⎪⎫其中α≠k π+π2(k ∈Z ). 【知识运用】考点一:利用同角三角函数求值【例1】(1)已知sin α=1213,并且α是第二象限角,求cos α和tan α.(2)已知tan α=43,且α是第三象限角,求sin α,cos α的值.【变1】1.已知α是第二象限角,sin α=513,则cos α=( )A . -1213 B .-513 C.513 D.2132.已知tan α=34,α∈⎝ ⎛⎭⎪⎫π,3π2,则cos α=( )A .±45 B.45 C .-45 D.35 3.若cos α=-45,α是第三象限角,则sin α=________,tan α=________.考点二:弦的齐次问题【例2】已知tan α=3,求下列各式的值.① 4sin α-cos α3sin α+5cos α;②sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α;③34sin 2a +12cos 2α.【变2】1.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝ ⎛⎭⎪⎫-3π2,-π.求:(1)tan α;(2)2sin α-3cos α4sin α-9cos α.2.已知tan α=2,求4sin 2α-3sin αcos α-5cos 2α的值.考点三: sin θ±cos θ与sin θcos θ关系的应用【例3】已知sin α+cos α=-13,0<α<π.(1)求sin αcos α的值;(2)求sin α-cos α的值.【变3】1.(1)若sin θ-cos θ=2,则tan θ+1tan θ=________. (2)已知sin αcos α=18,且π4<α<π2,则cos α-sin α=________.2.若cos α+2sin α=-5,则tan α=( )A.12 B .2 C .-12D .-2 3..已知0<θ<π,且sin θ-cos θ=15,求sin θ+cos θ,tan θ的值.【强化练习】 一、单选题1.设0,2πθ⎛⎫∈ ⎪⎝⎭,若1sin 3θ=,则cos θ=( ) A. 3 B. 232.已知错误!未找到引用源。
三角函数与平面向量02 同角三角函数的基本关系一、具本目标:(1)理解同角三角函数的基本关系式,会用同角三角函数之间的关系解决相关的问题. (2)高考解读:高考对同角三角函数基本关系式的考查主要是小题为主,或都与诱导公式及其它知识相结合,试题难度不大.但在高考中属于一个分点,同角的三个函数值中sin ,cos ,tan θθθ知一求二,易错点是忽略角的范围.导致整个题出错误.二、知识概述:1.知识要点:(1)22sin cos 1()R ααα+=∈ (2)sin tan ,cos 2k k Z απααπα⎛⎫=≠+∈ ⎪⎝⎭2.解题技巧:(1)已知sin ,cos ,tan θθθ三者中的一个求另外两个:利用平方关系和商数关系构造方程组求解; (2)已知αtan 的值,求关于αsin 与αcos 的齐n 次分式的值:分子、分母同除以αncos ,转化为关于αtan 的式子求解; (3)1的代换问题:含有α2sin,α2cos ,及αsin αcos 的整式求值问题,可将所求式子的分母看作“1”,利用22sin cos 1()R ααα+=∈代换后转化为“切”,然后求解; (4)对于αsin +αcos ,αsin αcos ,αsin -αcos 这三个式子,已知其中一个式子的值,可求其余两个式子的值,转化的公式为()ααααcos sin 21cos sin 2±=±.1.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=( )A .15B.5C.3D.5【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,【考点讲解】【真题分析】24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【答案】B2.【2019优选题】设ααcos sin +=t ,且0cos sin 33<+αα,则t 的取值范围是( ) (A ))0,2[- (B )),3()0,3(+∞-Y (C ))2,1()0,1(Y - (D ))2,2[-【解析】由ααααcos sin 21)cos (sin 2+=+得21cos sin 2-=⋅t αα,故)cos cos sin )(sin cos (sin cos sin 2233αααααααα+-+=+=23)211(22t t t t -⋅=--⋅ 注意到]2,2[)4(sin 2cos sin -∈+=+=παααt ,所以02<≤-t .【答案】A3.【2019优选题】已知α是三角形的一个内角,且32cos sin =+αα则这个三角形的形状是( ) A.锐角三角形 B.钝角三角形 C.不等腰的直角三角形 D.等腰直角三角形【解析】解法1:主要是判断α是钝角、锐角还是直角,又可以等价转化为判断α的某一三角函数值的符号.由α),0(π∈,将32cos sin =+αα两边平方得0194cos sin 2<-=αα,而0cos 0sin <∴>αα故α为钝角.解法2:由)4(sin 2cos sin πααα+=+,若20πα≤<则4344ππαπ≤+<,1)4sin(22≤+≤πα从而2cos sin 1≤+≤αα而132cos sin <=+αα,故α为钝角. 【答案】B4. 【2016高考新课标3理数】若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625【解析】本题的考点是同角三角函数间的基本关系与倍角公式. 法一:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A . 【答案】A 法二:由αα2sin 2cos2+可得ααααααααα22222cos sin cos sin 4cos 12sin 2cos 2sin 2cos ++=+=+将上面的式子分子分母同除以α2cos 后,1tan tan 41cos sin cos sin 4cos 2222++=++ααααααα化简后得2564. 【答案】A5.【2015福建】若,且为第四象限角,则的值等于( ) A . B . C . D .【解析】由,且为第四象限角,则, 则,故选D . 【答案】D6.【2019优选题】若0tan >α,则下列选项正确的是( )A .0sin >αB . 0cos >αC . 02sin >αD . 02cos >α 【解析】 tan 0α>知α的终边在第一象限或第三象限,此时sin α与cos α同号,故sin 22sin cos 0ααα=>,选C . 【答案】C7.【2019优选题】已知,则( ) A .B .C .D .【解析】由22(sin 2cos )2αα+=可得2222sin 4cos 4sin cos 10sin cos 4αααααα++=+,进一步整理可得 23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-,于是22tan 3tan 21tan 4ααα==--. 【答案】C5sin 13α=-αtan α125125-512512-5sin 13α=-α12cos 13α==sin tan cos ααα=512=-210cos 2sin ,=+∈αααR =α2tan 344343-34-8.【2019优选题】若,则tan2α=( )A .−B .C .−D .【解析】分子分母同除cos α得:sin cos tan 11,sin cos tan 12αααααα++==--∴tan 3α=-,∴22tan 3tan 21tan 4ααα==-. 【答案】B9.【2019优选题】若sin cos 1,sin cos 1,θθθθ+=-=则a b ab 的值是( )A. 0B. 1C. -1D. 【解析】由题意可得θθθθcos 1sin ,cos 1sin +=-=b a ,将两式相乘得到:()()θθθθθ222sin cos 1cos 1cos 1sin =-=+-=ab()0sin 12=-θab ,因为0sin ≠θ,所以1=ab .【答案】B.10.【2018优选题】设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_____.【解析】 sin 22sin cos sin αααα==-,则1cos 2α=-,又(,)2παπ∈,则tan α=22tan tan 21tan ααα===-11.【2017优选题】已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是________.【解析】由已知可得tan 2α=-,22sin cos cos ααα-=. 【答案】1-12. 【2019优选题】已知αtan 与αcot 是方程0222=+-m x x 的两根,则=αsin . 【解析】由韦达定理得12cot tan ==⋅m αα,故方程为0122=+-x x ,其两根均为1, 于是1cot tan ==αα,若α的终边在第一象限,则22sin ,42=+=αππαk ,若α的终边在第三象限,sin cos 1sin cos 2αααα+=-3434434322222sin cos cos 2tan 1411sin cos tan 141ααααααα----===-+++则22sin ,452-=+=αππαk ,故=αsin 22±. 【答案】22±13. 【2019优选题】若,则= . 【解析】法一:2cos sin tan ==ααα得ααcos 2sin =, ααααααααα222222cos 4sin cos sin cos sin 2cos 4sin 12sin +++=++∴ 89cos 4cos 4cos cos 4cos 422222=+++=ααααα,故答案为89.法二:ααααααααα222222cos 4sin cos sin cos sin 2cos 4sin 12sin +++=++894tan 1tan tan 222=+++=ααα 【答案】8914.【2018年高考江苏卷】已知,αβ为锐角,4tan 3=α,cos()5+=-αβ. (1)求cos2α的值;(2)求tan()-αβ的值.【解析】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.(1)因为4tan 3=α,sin tan cos =ααα,所以4sin cos 3=αα. 因为22sin cos 1+=αα,所以29cos 25=α,因此,27cos 22cos 125=-=-αα.(2)因为,αβ为锐角,所以(0,)+∈παβ.又因为cos()+=αβ,所以sin()+==αβ,因此tan()2+=-αβ.因为4tan 3=α,所以22tan 24tan 21tan 7==--ααα,因此,tan 2tan()2tan()tan[2()]1tan 2tan()11-+-=-+==-++ααβαβααβααβ.tan 2α=22sin 21sin 4cos ααα++1.已知,2παπ⎛⎫∈⎪⎝⎭且()53sin -=+απ,则tan α=( )A. 34-B. 43 C . 34 D. 43- 【解析】本题考查的是同角三角函数的关系,由题意可知,()53sin sin -=-=+ααπ,因为53sin =α并且,2παπ⎛⎫∈ ⎪⎝⎭,所以54sin 1cos 2-=--=αα,αααcos sin tan ==34-.【答案】A2.如图是由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的内角为,大正方形的面积是1,则的值是( ) A.1 B. C. D.-【解析】由已知可得大正方形的边长为1,小正方形的面积是()251sin cos 2=-θθ,这里θθsin cos >,所以可得到51sin cos =-θθ,由方程组⎪⎩⎪⎨⎧=-=+51sin cos 1cos sin 22θθθθ可得:53sin ,54cos ==θθ,257cos sin 22-=-θθ,故选D.【答案】D3.已知tan 2θ=,则22sinsin cos 2cos θθθθ+-=( )A .43-B .54 C.34- D .45【解析】2222222222sin sin cos 2cos tan tan 2222sin sin cos 2cos sin cos tan 121θθθθθθθθθθθθθ+-+-+-+-===+++=θ22sin cos θθ-2425-725725【模拟考场】45,故选D . 【答案】D4.已知sin cos 2sin cos αααα-=+,则tan α=__________.【解析】sin cos 1tan 2,2,tan 3.sin cos 1tan ααααααα--=∴=∴=-++Q【答案】-3 5.若sin cos θθ+=,[0,π]θ∈,则tan θ=( ) A .12-B .12C .2-D .2 【解析】由题意可知()51cos sin 2cos sin cos sin 222=++=+θθθθθθ,因此可得:054cos sin 2<-=θθ,因为()πθ,0∈,所以0cos ,0sin <>θ,因此得到⎪⎭⎫ ⎝⎛∈ππθ,2. 由()59cos sin 2cos sin cos sin 222=-+=-θθθθθθ.由0cos ,0sin <>θ,得到553cos sin =-θθ.又由于55cos sin =+θθ, 得到552sin =θ,55cos -=θ,2cos sin tan -==θθθ. 【答案】C6.若α为第三象限,则αααα22cos 1sin 2sin 1cos -+-的值为( )A .3B .3-C .1D .1- 【解析】因为α为第三象限,所以sin 0,cos 0αα<<.因此cos 2sin 123cos sin αααα+==+=--=---,故选择B .【答案】B7.已知2cos sin αα=,则41+cos sin αα=( )A.12B. 32-C. 12D. 23m【解析】由22cos sin 1sin ααα==-可得sin α=, 4221111cos sin 1cos 1sin sin sin sin sin αααααααα+=+=+-=+-1122=+-= ,故选D. 【答案】D8.,那么( )A. B . - C.D . -【易错分析】(1)k 值的正负;(2)tan100o表达式符号易错.【解析】()222180cos 180cos 180sin k -=--=-=οοο,οοοο80cos 80sin 80tan 100tan -=-=,而()k ==-οο80cos 80cos , 所以kk 21100tan --=ο,所以选B.【答案】B. 9.已知54cos ),0,2(=-∈x x π,则=x 2tan ( ) (A )247 (B )247- (C )724 (D )724- 【解析】解法1:用常规解法,可先由已知条件求x sin ,再求得x tan ,再应用倍角正切公式求得答案.因为54cos ),0,2(=-∈x x π,所以 53cos 1sin 2-=--=x x ,则43tan -=x . 由此得724tan 1tan 22tan 2-=-=xx x . 解法2:先由已知条件求x sin ,方法同1,由724sin cos cos sin 22cos 2sin 2tan 22-=-==x x x x x x x .cos(80)k -︒=tan100︒=k k解法3:因为)0,2(π-∈x ,235422<<,所以由54cos =x 得64ππ-<<-x ,从而322ππ-<<-x ,则32tan -<x ,故排除A 、B 、C 得答案为D ,这是一个用估值解决问题的灵活方法.解法4:作图如下,点A 在第四象限,作AB x ⊥轴,设OA =5,OB = 4,AB =3,OC 为第四象限的角平分线,OD 为∠COx 的角平分线,右BC = 4,54==OC BO DC BD 及BD+DC =4,解得BD =AB <916, ||x AOB =∠,则84ππ-<<-x ,所以422ππ-<<-x ,于是12tan -<x ,排除A 、B 、C 得答案. 【答案】D10.化简8sin 1-的结果是( )A.4cos 4sin +B.4cos 4sin -C.4sin 4cos -D.4cos 4sin -- 【解析】|4cos 4sin |)4cos 4(sin 4cos 4sin 24cos 4sin 8sin 1222-=-=-+=-,︒>︒=︒⨯≈225228)574(4Θ,224cos ,224sin ->-<∴,4cos 4sin <∴,故选C . 也可以在弧度制下去绝对值符号:2332329441534545ππ≈⨯=<<=⨯≈Θ4cos 45cos 45sin4sin <=<∴ππ.【答案】C 11.已知sin α=2sin β,tan α=3tan β,则cos α=________.【解析】∵sin α=2sin β,tan α=3tan β,∵sin 2α=4sin 2β,∵tan 2α=9tan 2β,∵由∵÷∵得:9cos 2α=4cos 2β,∵ ∵+∵得:sin 2α+9cos 2α=4, ∵cos 2α+sin 2α=1, cos 2α=38,即cos α=±64.∵【答案】±64xA D yOBC12.已知1sin 3sin cos 3cos 222=-⋅+x x x x ,则=x tan .【解析】由x x 22cos sin 1+=可得x x x x x x 2222cos sin sin 3sin cos 3cos 2+=-⋅+, 整理得:0sin 4sin cos 3cos 22=-⋅+x x x x ,而0cos ≠x ,两边同时除以x 2cos 得0tan 4tan 312=-+x x ,解得41tan -=x 或1.【答案】41-或1。