残余应力无损测试技术
- 格式:pdf
- 大小:240.40 KB
- 文档页数:5
压痕法残余应力测试压痕法残余应力测试是一种常用的测试方法,用于评估材料表面的残余应力。
在材料制备或使用过程中,由于各种因素的影响,材料内部会形成一定的应力场。
这些残余应力可能会影响材料的性能和寿命,因此了解和控制残余应力对于材料工程来说非常重要。
在进行压痕法残余应力测试时,首先需要在待测试材料的表面施加一个样品尺寸相对较小的压痕。
这个压痕通常采用金刚石压头或硬质球体进行,因为金刚石具有较高的硬度和刚性,能够施加较大的压力而不易变形。
通过压痕产生的弹性变形和塑性变形,可以间接地测量出残余应力的大小和分布情况。
压痕法残余应力测试的原理是基于弹性力学和塑性力学的基本理论。
在施加压痕之前,材料表面是没有残余应力的。
但是,由于压痕会引起材料的局部弹性变形和塑性变形,会在其周围产生一定的应力场。
这些残余应力是由变形过程中的弹性回复和塑性留下的位错等缺陷引起的。
通过测量压痕的大小和形状以及周围材料的变形情况,可以计算出残余应力的大小和分布情况。
通常,在进行压痕法残余应力测试时,会使用光学显微镜或扫描电子显微镜等设备对压痕进行观测和测量。
通过分析压痕的几何形状参数,结合合适的数学模型和理论,可以得到残余应力的精确值。
压痕法残余应力测试在材料科学和工程的许多领域中得到了广泛的应用。
它可以用于评估不同材料的制备工艺对残余应力的影响,以及不同材料在使用过程中的变化情况。
压痕法残余应力测试还可以用于研究材料的应力分布和应力引起的变形行为,进一步理解材料的力学性能和行为规律。
总结回顾起来,压痕法残余应力测试是一种基于压痕的方法,用于评估材料表面的残余应力。
通过测量压痕的大小和形状,以及分析周围材料的变形情况,可以计算出残余应力的大小和分布情况。
这项测试在材料科学和工程领域具有广泛的应用,对于了解和控制材料的残余应力非常重要。
在本次的文章中,我们介绍了压痕法残余应力测试的基本原理和测试方法。
通过这项测试,可以评估材料表面的残余应力,进一步了解材料的性能和寿命。
X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。
2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。
二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。
三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。
从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。
材料中内应力分为三大类。
第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。
由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。
第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。
第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。
第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。
在通常情况下, 我们测得是残余应力是指第一类残余应力。
当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。
当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。
材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。
原理见图1。
由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。
当然更适用于薄膜材料的残余应力测量。
图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。
表面残余应力测试技术研究及应用现状表面残余应力测试技术研究及应用现状摘要: 在生产、处理或加工材料的过程中,由于材料的局部区域的不均匀塑性变形,产生了残余应力。
残余应力对疲劳强度、抗蚀性、尺寸稳定性、相变、硬度等均有影响; 提高表面塑变抗力,降低表层的有效拉应力,可以抑制疲劳裂纹的萌生和扩展,提高疲劳强度。
本文主要介绍一些常用的表面残余应力的测试技术以及应用现状。
关键词:表面残余应力;X -射线衍射; 测试参数金属材料在热处理、表面处理、表面改性、塑性变形加工等各种冷热加工之后或在切削、研磨、装配、铸造、焊接等加工工艺之后,材料的局部区域产生了不均匀的塑性变形,必然会产生内应力。
残余应力是一种弹性应力,它与材料中局部区域存在的残余弹性应变相联系,是材料中发生了不均匀的弹性形变或不均匀的弹塑性变形而引起的,或者说是材料的弹性各向异性或塑性各向异性的反映。
这种残余应力对疲劳强度、抗蚀性、尺寸稳定性、相变、硬度等均有影响。
此外,绝大多数机件的疲劳破坏是从表面开始的。
由于残余应力而影响或导致的机械零件失效达50% 以上,这也是工程界越来越关注的产品失效问题。
下面就介绍几种表面残余应力的测定技术。
目前广泛应用的残余应力测试方法可分为两大类:物理方法和机械方法。
物理法有X 射线法、磁测法和超声波法等;机械法也称应力释放法如电侧(盲孔、切割、套孔及逐次去层)法及光弹贴片钻孔法。
此外, 近些年还出现了硬度测定法、压痕测定法、全息干涉法、错位散斑干涉法、脆性涂层法等。
一、测定法简单介绍X 射线测定法X 射线衍射技术来测定材料中的残余应力,其测定的基本原理是基于X 射线衍射理论。
当一束具有一定波长λ的X 射线照射到多晶体上时,会在一定的角度2θ上接收到反射的X 射线强度极大值( 即所谓衍射峰) ,这便是X 射线衍射现象( 如下图) 。
X 射线的波长λ、衍射晶面间距d 和衍射角2θ之间遵从著名的布拉格定律:2d sinθ= n λ( n = 1,2,3……)在已知X 射线波长λ的条件下,布拉格定律把宏观上可以测量的衍射角2θ与微观的晶面间距d 建立确定的关系。
钻孔法测量残余应力测量原理钻孔法测量残余应力是基于材料力学中的应力释放原理。
当在材料表面钻孔时,孔周围的材料会发生弹性变形,这种变形会受到材料内部的残余应力的影响。
通过测量钻孔后的表面位移,可以确定孔周围的残余应力状态。
实验步骤钻孔法测量残余应力的实验步骤如下:1、选择合适的材料试件,进行表面处理,确保表面平整无杂质。
2、使用高精度的钻机在材料试件的表面钻孔,钻孔直径一般在0.5-1.0mm之间,孔深约为10-20mm。
3、在钻孔前、钻孔后和取下钻屑后分别使用光学显微镜观察孔周围的表面形貌,并记录下来。
4、根据观察到的表面形貌变化,计算出钻孔前后的位移量。
5、根据位移量和材料的弹性常数,计算出孔周围的残余应力。
精度分析钻孔法测量残余应力的精度主要受到以下因素的影响:1、钻孔直径和深度的精度:钻孔直径和深度的变化会影响位移量的测量精度,进而影响残余应力的计算精度。
2、表面处理质量:表面处理不干净会导致钻头受损,从而影响钻孔质量。
3、观察和测量误差:观察和测量表面形貌变化的过程中可能存在误差,导致位移量的计算不准确。
4、材料本身的力学性能:材料的弹性常数等力学性能参数的准确性也会影响残余应力的计算精度。
为了提高精度,需要采取以下措施:1、使用高精度的钻机和测量设备,确保钻孔直径和深度的准确性。
2、加强表面处理,确保表面干净无杂质。
3、使用高精度的光学显微镜进行观察和测量,减少人为误差。
4、对材料试件进行详细的质量和性能检测,确保其符合实验要求。
数据处理根据实验步骤中记录的位移量和材料的弹性常数,可以计算出孔周围的残余应力。
一般而言,钻孔法测量残余应力的数据处理可以采用以下步骤:1、计算钻孔前后的位移量差值,得到孔周围的位移变化量。
2、根据位移变化量和材料的弹性常数,利用应力释放原理计算孔周围的残余应力。
3、将计算得到的残余应力与实验前的预测值进行比较,评估测量结果的准确性。
4、如果测量结果不满足要求,可能需要重新进行实验,并检查实验步骤和数据处理方法是否正确。
2.测试方法目前常用的残余应力测试方法主要有三种:一是盲孔法,二是X射线衍射法,三是磁弹性法。
盲孔法需在工件表面测量部位钻φ1.5~2mm深2mm的小孔(粘贴专用应变花),通过测读释放应变确定残余应力的大小,所测应力为孔深范围内的平均应力,同一测点无法重复测量比较;X射线衍射法可以做到无损测试,但由于X射线穿透力有限,一般只能测出几个微米范围内平均应力;磁弹性法是近几年发展较快应用比较成熟的一种残余应力测试方法,具有方便、无损、快速、准确的特点。
对采用盲孔法和X射线衍射法检测残余应力,施工强度大,测量精度难以保证。
尤其盲孔法不能对同一位置进行重复性测量,测量数据的符合性差。
因此,三峡发电机组转子圆盘支架焊缝残余应力的测试采用了磁弹法技术。
残余应力的测量方法残余应力的测量方法可以分为有损和无损两大类。
有损测试方法就是应力释放法,也可以称为机械的方法;无损方法就是物理的方法。
机械方法目前用得最多的是钻孔法(盲孔法),其次还有针对一定对象的环芯法。
物理方法中用得最多的是X射线衍射法,其他主要物理方法还有中子衍射法、磁性法和超声法。
X射线衍射法依据X射线衍射原理,即布拉格定律。
布拉格定律把宏观上可以准确测定的衍射角同材料中的晶面间距建立确定的关系。
材料中的应力所对应的弹性应变必然表征为晶面间距的相对变化。
当材料中有应力σ存在时,其晶面间距d 必然随晶面与应力相对取向的不同而有所变化,按照布拉格定律,衍射角2θ也会相应改变。
因此有可能通过测量衍射角2θ随晶面取向不同而发生的变化来求得应力σ。
从这里可以看出X射线衍射法测定应力的原理是成熟的,经过半个多世纪的历程,在国内外,测量方法的研究深入而广泛,测试技术和设备已经比较完善,不但可以在实验室进行研究,可且可以应用到各种实际工件,包括大型工件的现场测量。
化工设备残余应力无损检测方法发布时间:2021-07-05T17:18:54.650Z 来源:《基层建设》2021年第10期作者:刘智[导读] 摘要:残余应力可导致金属材料发生应力腐蚀开裂、疲劳寿命下降等问题,是设备失效的主要诱因之一。
陕西西宇无损检测有限公司摘要:残余应力可导致金属材料发生应力腐蚀开裂、疲劳寿命下降等问题,是设备失效的主要诱因之一。
据统计,应力腐蚀开裂造成的设备事故在整个石化设备腐蚀破坏事故中的比例高达50%左右。
化工设备制造过程中的焊接等工艺将产生明显的残余应力,是生产环境下焊接接头失效的重要诱因。
化工设备在焊接后通常会进行整体或局部热处理以降低有害的残余拉应力,但一般不会对处理后的残余应力进行检测,难以保证处理的有效性。
因此,选择适用于化工设备的残余应力测量方法,可根据应力值评估设备的安全风险,指导、评价残余应力的处理和改善,对提高设备的安全性能和使用寿命具有重要意义。
关键词:化工设备;残余应力;无损检测引言残余应力检测方法可分为有损方法和无损方法两大类。
有损检测方法是指移除被测对象的部分材料使残余应力得到释放,通过测量产生的应变实现残余应力的检测,包括剥层法[2]、全应变释放法、环芯法和钻孔法等。
但该类方法对材料会产生不同程度的破坏,对于安全性要求较高的化工设备难以应用。
因此,对于化工设备尤其是在用设备的残余应力,一般选择无损方法进行检测。
目前,已有部分学者对各类残余应力检测方法进行了综述和比较[6-8],但并未结合化工设备的实际检测条件进行分析和评估。
本文结合化工设备的特点和实际应用情况,分析了化工设备对残余应力检测方法的具体要求,对现有方法的技术特点和适用工况进行了整理和总结,并对化工设备残余应力的检测方案进行了探讨。
1无损检测技术概述无损检测技术是一种在不损坏被检测对象使用性能及结构特征的前提下,借助声、光、电、磁等介质对被检测对象中是否存在结构缺陷或者材质不均匀等问题进行检测,并将缺陷的大小位置等信息进行判定显示的检测技术。
第二章残余应力测定方法残余应力的测定方法大致可分为机械测量法和物理测量法两类。
物理测量法包括X射线法、磁性法、和超声波法等。
它们分别利用晶体的X射线衍射现象.材料在应力作用下的磁性变化和超声效应来求得残余应力的量值。
它们是无损的测量方法。
其中X射线法使用较多,比较成熟,被认为是物理测量法中较为精确的一种测量方法。
磁弹性法和超声波法均是新方法,尚不成熟,但普遍地认为是有发展前途的两种测试方法。
物理法的测试设备复杂.昂贵.精度不高。
特别是应用于现场实测时,都有一定的局限性和困难。
机械方法包括切割法、套环法和钻孔法(下面主要介绍)等,它是把被测点的应力给予释放,并采用电阻应变计测量技术测出释放应变而计算出原有残余应力。
残余应力的释放方法是通过机械切割分离或钻一盲孔等方法,因此它是一种破坏性或半破坏性的测量方法,但它具有简单、准确等特点。
从两类方法的测试功能来说,机械方法以测试宏观残余应力为目的,而物理方法则测试宏观应力与微观应力的综合值。
因此两种方法测试的结果一般来说是有区别的。
一、分离法测量残余应力切割法和套环法都是将被测点与其邻近部分分开以释放残余应力,因此统称分离法。
它是测量残余应力的一种最简单的方法,多用于测量表面残余应力或沿厚度方向应力变化较小的构件上的残余应力。
(一)、切割法:在欲测部位划线:划出20mm×20mm的方格将测点围在正中。
在方格内一定方向上贴应变计和应变花,再将应变计与应变仪相连,通电调平。
然后用铣床或手锯慢速切割方格线,使被测点与周围部分分离开。
切割后,再测应变计得到的释放应变。
它与构件原有应变量值相同、符号相反,因此计算应力时,应将所得值乘以负号。
释放后的残余应力计算方法如下:1、如果已知构件的残余应力为单向应力状态,只要在主应力方向贴一个应变片(如图3.1)即可。
分割后得释放应变ε,由虎克定律可知其残余应力为:σ=-Eε(1)2、如果构件上残余应力方向已知,则在测点处沿主应力方向粘贴两个应变片1和2(如图3.2所示)。
残余应力无损检测方法嘿,你知道不?残余应力那可是个大问题呢!无损检测方法就像个超级侦探,能在不破坏材料的情况下找出残余应力。
那咱就说说这神奇的无损检测方法吧!首先,X 射线衍射法就超厉害。
把材料放在那,X 射线一照,就像医生给病人拍片子似的,能看出材料内部的残余应力分布。
步骤嘛,就是调整好设备,让X 射线准确地照射到材料上,然后分析反射回来的X 射线信号。
这多牛啊!注意事项呢,可得小心操作设备,别让X 射线伤着自己。
那安全性咋样?放心吧,只要按规定操作,那是妥妥的安全。
稳定性也没得说,每次检测结果都挺靠谱。
这种方法适合检测各种金属材料,优势就是准确、快速。
比如说在航空航天领域,那飞机零件的残余应力检测可离不开它。
检测得准,飞机飞得才安心嘛!再说说超声检测法。
这就像用超声波给材料做体检。
把探头放在材料上,超声波在材料里传播,通过分析超声波的变化就能知道残余应力的情况。
步骤简单,放好探头,启动设备就行。
注意别把探头弄坏了。
安全性那是杠杠的,超声波又不会伤人。
稳定性也不错,检测结果比较稳定。
这种方法应用场景可广了,汽车制造、机械加工都能用。
优势就是方便、快捷,可以在生产线上直接检测。
这不就像有个随时待命的小助手嘛!还有磁测法呢!就像用魔法探测材料的残余应力。
通过测量材料的磁性变化来判断残余应力。
步骤不难,把仪器靠近材料就行。
注意别让磁场干扰其他设备。
安全性好得很,没啥危险。
稳定性也还行。
在钢结构检测中很管用。
优势就是可以快速检测大面积的材料。
哇塞,这多厉害!总之,残余应力无损检测方法那是超级棒!各种方法都有自己的优势和应用场景。
在实际生产中,根据不同的需求选择合适的方法,就能让我们的产品更安全、更可靠。
这难道不是超赞的事情吗?咱可一定要重视残余应力检测,让我们的生活更美好!。
残余应力检测标准一、检测方法标准残余应力检测方法通常采用X射线衍射法和超声波法。
其中,X 射线衍射法是最常用的一种,其原理是利用X射线衍射图谱对材料内部的残余应力进行测定。
超声波法则是利用超声波在材料中的传播速度和方向变化来测定材料内部的残余应力。
在检测过程中,需要根据实际情况选择合适的检测方法,并遵循相应的操作规范和技术要求。
二、检测仪器标准残余应力检测仪器应符合国家有关标准和行业标准的要求,具备高精度、高稳定性和高可靠性的特点。
仪器的各项技术指标应经过法定计量部门的标定和校准,并取得相应的合格证书。
此外,仪器还应具备安全保护装置和防护设施,以确保检测过程的安全性和可靠性。
三、检测程序标准残余应力检测程序包括以下步骤:1. 试样制备:按照相关规定和标准制备试样,并确保试样的表面平整、光洁度和尺寸精度符合要求。
2. 仪器校准:对检测仪器进行校准,以确保其各项技术指标符合要求。
3. 试样安装:将试样安装在检测设备上,并确保安装位置和方向的正确性。
4. 数据采集:按照规定的操作程序和技术要求进行数据采集,包括X 射线衍射图谱或超声波传播速度和方向等。
5. 数据处理:对采集到的数据进行处理和分析,包括数据转换、拟合和计算等,以得出试样内部的残余应力分布和大小。
6. 报告编制:根据处理后的数据编制检测报告,包括试样残余应力分布图、数据统计表和结论等。
四、检测报告标准残余应力检测报告应包括以下内容:1. 试样信息:包括试样的名称、材质、尺寸和制备方法等。
2. 检测方法:说明所采用的残余应力检测方法及其原理和操作流程。
3. 仪器信息:包括检测仪器的型号、生产厂家和标定证书等。
4. 检测结果:包括试样内部的残余应力分布和大小等数据,以及相应的图表和统计表。
5. 结论评价:对试样的残余应力状况进行评价,指出可能存在的问题和改进建议。
6. 其他相关信息:如检测人员的资格证书、检测时间和地点等。
五、检测人员要求从事残余应力检测的人员应具备相关专业知识和技能,熟悉检测仪器的使用和维护方法,能够正确操作检测设备和处理数据。
sic晶片的残余应力检测方法
对于碳化硅(SiC)晶片的残余应力检测,主要有以下几种方法:
1.光弹性法:这种方法基于晶体在外加应力作用下的双折射现象,通过检测偏振光偏振方向的变化,来计算材料中的残余应力。
与其他残余应力测量方法相比,光弹性法具有检测速度快、精度高、分辨率高、可重复性好等显著优势。
2.X射线衍射法:这是一种广泛应用于材料应力分析的非破坏性测试方法,可以测量材料中晶体的结晶度、晶胞参数、晶格畸变以及残余应力等信息。
3.Imura方法:这是一种用于测量材料残余应力和应力状态的试样旋转法。
它利用X射线衍射技术产生的X射线衍射图谱来完成测量,计算出材料的残余应力分量和应力状态。
其主要优点在于实时反求解,同时其测量结果可靠,而且准确性高。
但它的缺点在于试样旋转范围有限,这就需要更大的样品尺寸。
这些方法都可以用来检测SiC晶片的残余应力,具体使用哪种方法需要根据实际情况和需求来决定。