谈数学直觉思维的培养
- 格式:pdf
- 大小:169.12 KB
- 文档页数:2
如何提高数学思维能力要提高数学思维能力,需要坚持练习和思考数学问题。
以下是一些建议来帮助您提高数学思维能力:1.养成解决问题的习惯:数学是解决问题的一种工具,因此要培养主动思考和解决问题的能力。
可以尝试从日常生活中的实际问题入手,思考如何应用数学知识解决它们。
2.培养数学直觉:数学直觉是基于经验和洞察力的一种直观感知能力。
可以通过观察、试验和思考来培养数学直觉。
例如,可以通过观察几何图形的形状和特征,来发现它们之间的关系。
3.练习解决问题的多种方法:数学问题往往有多种解决方法,要尝试不同的方法来解决同一个问题。
这样可以培养灵活的思维,发展多样化的解决问题的能力。
4.独立思考和解决问题:在解决问题时,尽量独立思考和解决,不要急于寻求答案。
如果遇到难题,可以尝试分解问题、归纳总结、试错等方法来解决。
5.练习数学推理和证明:数学推理和证明是数学思维的重要组成部分。
要经常练习数学推理和证明,可以尝试证明一些基本定理或推导一些数学公式。
6.深入理解数学概念:要强化对数学概念的理解,要通过多角度、多层次的学习和思考来深入理解。
可以通过查阅相关资料、参加课外活动等方式来拓宽数学知识面。
7.多做数学题目:通过大量的练习来提高数学思维能力。
可以做一些基础练习,培养基本的计算能力;也可以挑战一些难题,提高解决复杂问题的能力。
8.学会从错误中学习:在解决问题的过程中,可能会犯错。
要学会从错误中吸取经验教训,找出错误的原因,分析并改进解题方法。
9.寻找数学背后的美学:数学不仅是一门应用学科,更是一种美学。
要发现数学中的美和乐趣,培养对数学的兴趣和热爱,这将提高您的数学思维能力。
10.参加数学竞赛和小组讨论:参加数学竞赛可以提高解决问题的能力和压力处理能力。
与同学或数学爱好者组建学习小组,进行数学讨论、互相学习和思想碰撞,可以更快地提高数学思维能力。
总之,提高数学思维能力需要不断地练习和思考,通过多样化的方法来解决问题,培养数学直觉和灵活思维。
浅谈数学直觉思维及培养【摘要】中学数学在注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养。
直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。
培养直觉思维能力是社会发展的需要。
【关键词】数学直觉思维培养中学数学在注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养,特别是直觉思维能力的培养。
而过多地注重逻辑思维能力的培养,不利于思维能力的整体发展。
培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需要。
一、数学直觉概念的界定简单的说,数学直觉是具有意识的人脑对象(结构及其关系)的某种直接的领悟和洞察。
对于直觉作以下说明。
1.直觉与直观、直感的区别直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。
例如,等腰三角形的两个底角相等的,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。
而直觉的研究对象则是抽象的数学结构及其关系。
庞加莱说:“直觉不必建立在感觉明白之上,感觉不久便会变的无能为力。
例如,我们仍无法想象千角形,但我们能够通过直觉一般地思考多角形,多角形把千角形作为一个特例包括进来。
”由此可见,直觉是种深层次的心理活动,没有具体的直观形象和可操作的逻辑顺序作思考的背景。
正如迪瓦多内所说:“这些富有创造性的科学家与众不同的地方,在于他们对研究的对象有一个活生生的构想的深刻的了解,这些构想结合起来,就是所谓‘直觉’……因为它适用的对象,一般说来,在我们的感官世界中是看不见的。
”2.直觉与逻辑的关系从思维方式上来看,思维可以分为逻辑思维和直觉思维。
长期以来,人们刻意的把两者分离开来,其实,这是一种误解,逻辑思维和直觉思维从来就不是割离的。
有一种观点认为逻辑重于演绎,而直观重于分析。
从侧重角度来看,此话不无道理,但侧重并不等于完全。
数学逻辑中是否会有直觉成分?数学直觉中是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件做出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。
浅谈直觉思维的认识和初中生数学直觉思维的培养1对直觉思维的认识1.1直觉思维与数学直觉思维直觉思维是指对一个问题未经逐步分析仅依据对内因的感知迅速地对问题答案作出判断、猜想,或者在对疑难百思其解之中,突然对问题有“灵感”和“顿悟”。
甚至对未来事物的结果有“预感”、“预言”等都是直觉思维。
而数学思维是人脑和数学对象(空间关系、数量关系、结构关系)交互作用并按照一般思维规律认识数学内容的内在的理性活动。
数学知识具有严密的逻辑性、抽象性和系统性。
数学的直觉思维是人的感性认识到理性认识的过程,是始学分析思维的基础。
1.2直觉思维的主要特点及数学直觉思维的特点直觉思维是一种心理现象。
它不仅在创造性思维活动关键阶段起着极为重要的作用,也是人生命活动、延缓衰老的重要保证。
直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点。
直觉思维是完全可以有意识加以训练和培养的,从直觉思维的角度来看,主要有以下特点:1.2.1简明性直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象而迅速的作出判断和猜想,它省去了中间推理的环节,而采取了“跳跃式”的形式。
但它却触及到了数学对象的“本质”所在。
1.2.2创造性直觉思维是基于研究对象整体上的把握,不专于细节的推理,是思维的大手笔。
正是由于思维的无意识性,它的想象才是丰富的、发散的,使人的认知结构向外无限扩展,因而具有反常规的独创性。
1.2.3自信力成功感可以培养一个人的自信,直觉发现伴随着很强的“自信心”。
这种自信更稳定、更持久。
当一个问题不用通过逻辑推理的形式而是通过自己的直觉获得,那么内心将会产生一种强大的学习欲望和钻研动力,从而更加相信自己的能力。
如果从培养学生的能力入手,数学中的逻辑思维显得太枯燥乏味,直接影响学生的学习情趣,使得学生学习数学失去动力,这使得提高学生数学思维能力成为一句空话。
所以在重视学生的逻辑能力的同时,必须注意培养学生的观察力、直觉力、想象力,特别是直觉思维能力。
浅谈数学教学中关于直觉思维的培养摘要:数学知识具有严谨性、抽象性和系统性。
数学的直觉思维是人的感性认识到理性认识的过程,是数学分析思维的基础。
本文就中学数学直觉思维的培养进行了探讨。
关键词:数学思维;直觉思维;感性认识;理性认识数学思维是人脑和数学对象(空间形式、数量关系、结构关系)交互作用并按照一般思维规律认识数学内容的内在理性活动。
数学知识具有严谨性,抽象l生和系统性。
数学的直觉思维是人的感性认识到理性认识的过程,是数学分析思维的基础。
下面我从四个方面入手谈谈中学数学直觉思维能力的培养。
一、直觉思维的内容及在数学教学中的特点能力是顺利完成某种活动所必需的并直接影响活动效率的个性心理特征。
数学能力是人们在从事数学活动时所必需的各种能力的综合,而其中数学思维能力是数学能力的核心。
思维是人脑对客观事物的本质和规律的概括的和间接的反映过程。
人的思维过程包括直觉思维和分析思维。
直觉思维是人类思维的重要形式,是创造性思维的基础;直觉思维是未来的高科技信息社会中,能适应世界新技术革命需要,具有开拓、创新意识的开创性人才所必有的思维品质。
由于数学知识的严谨性、抽象性和系统性的特点,数学思维就是人脑和数学对象交互作用并按一般的思维规律认识数学规律的过程。
现代教育重视能力的培养,主要要求学生在数学学习中学会观察问题、发现问题、提出问题、探究和解决问题。
可见直觉思维在中学数学教学中具有重要的地位和作用。
二、直觉思维在数学教学中作用数学思维实质上就是数学活动中的思维,而中学数学的思维是直接发展学生的思维能力的途径。
我们现阶段的整个数学体系以知识的逻辑展开为线索,在理论课中力求逻辑思维的科学性、严谨性,知识结构的系统性,这有利于学生系统地理解和掌握学科的基本知识及其联系,也最大程度地训练和培养了学生的逻辑思维能力,提高学生的科学素养。
如果从培养学生的能力入手,数学中的逻辑思维显得太枯燥乏味,直接影响学生的学习情趣,使得学生学习数学失去动力,这使得提高学生数学思维能力成为一句空话。
浅谈数学直觉思维能力的培养摘要:“逻辑用于论证,直觉可用于发明”,数学直觉就是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。
学生直觉思维能力的培养,需要教师运用直观教学法,努力拓宽学生的知识面,同时,在课堂上给学生留下一定的学习空间,鼓励学生进行合理的猜想,进而帮助学生养成自问和反思的习惯,形成较强的直觉思维能力。
关键词:数学直觉思维能力培养“逻辑用于论证,直觉可用于发明”,庞加莱的这一名言精辟地指出了直觉在创造性思维活动中的作用。
直觉,又称为顿悟,在某些领域中又称为灵感。
平时,某人花了许多时间做一道题目,突然间他做出来了,但是还需为答案提出形式证明;或当别人向他提问时,他能够迅速作出很好的猜测,判定某事物是不是这样。
这种“突发奇想”就是直觉思维。
而数学直觉是对数学对象、结构以及规律性东西敏锐的想象和迅速的判断。
许多数学高材生常常具备较强的直觉思维能力,解题时能够“单刀直入,立刻剖析问题的核心,而不是在外围大兜圈子”,其思维过程能够省略许多看来是思考的逻辑链上的必要环节,这对具有巨大潜能的初中学生来说,培养他们的猜想能力、想象能力和直觉思维能力就显得尤为重要了。
一、运用直观性教学。
在数学教学中,要注意将客观事物中的数学特点抽象而构造出模型、表格、图形等直观形象,要尽可能为学生提供某种关于这些概念、定理、法则的直观性理解,这些直观形象有助于直觉思维的形成。
第一,要注意数形结合。
著名数学家华罗庚指出:“数缺形时少直观,形缺数时难入微。
”数和形作为数学的两个基本对象,是现实世界中数量与空间形式的反映。
因此,我们要把数、形之间的转化作为培养学生直觉思维能力的重要途径。
当面对表示题目信息的“数”有明显意义的问题时,要求学生能直觉想象出相应的图形,利用“形”的直观来寻找解题途径;反之,对表示题目信息的“形”易于用数来表示的问题,要求学生能构造出相关的“数”的命题,用数的性质来解决问题。
第二,要注意教学语言的直观性。
谈谈数学中直觉思维能力的培养数学直觉是人脑对数学对象、结构以及关系的敏锐的想象和迅速的判断,是导致数学发现的关键.我们不但要重视逻辑思维能力,而且也要重视非逻辑思维能力,特别是数学直觉思维能力.本文主要阐述了对数学直觉思维的认识,以及培养数学直觉思维的重要性和必要性,进一步讨论如何培养数学直觉思维的问题.标签:直觉思维;逻辑思维;创新;猜想在传统的数学教学中,教师往往比较注重学生数学逻辑思维能力的培养,过于强调学生要”言之有理,言之有据”,因而忽略了对学生数学直觉思维能力的培养. 培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求.一、对数学直觉思维的认识1、数学直觉思维的含义所谓数学直觉思维,就是大脑基于有限的数据资料和知识经验,充分调动一切与问题有关的显意识与潜意识,在敏锐想象和迅速判断的有机结合下,从整体上单刀直入的领悟数学对象的本质,洞察数学结构和关系的一种思维方式.2、数学直觉思维的作用直觉思维就是指人们不受逻辑规则约束直接领悟事物本质的一种思维方式.数学直觉思维是直接反映了数学对象、结构以及关系的思维活动.思维者不是按部就班地推理,而是对思维对象从整体上进行考察,调动自身的全部的知识、经验,通过丰富的想象作出敏锐而迅速的假设、猜想或判断,跳过若干个中间步骤或放过个别细节而直接把握研究对象的本质与联系.3、数学直觉思维的特点数学直觉思维具有个体经验性、突发性、偶然性、果断性、创造性、迅速性、自由性、直观性、自发性、不可靠性等特点.迪瓦多内说: “任何水平的数学教学的最终目的,无疑是使学生对他要处理的数学对象有一个可靠’直觉’.”二、数学直觉思维的培养一个人的数学思维,判断能力的高低主要取决于数学直觉思维能力的高低.徐利治教授就曾指出:”数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的.”潜意识可以通过显意识的各种活动对它施加影响,从而间接地改变潜意识思维,使其向有利于创造性学习的方向发展.因此,数学直觉是可以通过训练提高的.下面谈谈如何培养学生的数学直觉思维能力:1、注重整体洞察,培养学生的整体直觉思维和观察能力直觉思维不同于逻辑思维,直觉思维是综合的而不是分析的,它依赖于对事物的全面和本质的理解,侧重于整体上把握对象而不拘泥于细节的逻辑分析,它重视元素之间的联系、系统的整体结构,从整体上把握研究的内容和方向.中学数学教学中图形的识别,规律的发现以及理解能力、记忆能力、抽象能力、想象能力和运算能力等都离不开观察.在观察之前,要给学生提出明确而又具体的目的、任务和要求.指导学生从整体上观察研究对象的特征.2、重视解题教学,注重培养学生数形结合思维华罗庚说过:”数缺形时少直觉,形缺数时难入微.”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉,对培养学生的几何直觉思维大有帮助.教师应该把直觉思维在课堂教学中明确提出,制定相应的活动策略,重视数学思维方法的教学.3、重视在教学过程中培养学生的数学”直觉思维”教学中选择适当的题目类型,有利于考察和培养学生的直觉思维.例如选择题,由于只要求从四个选项中挑选出来正确答案,省略了解题过程,这就容许合理的猜想,有利于直觉思维的发展.实施开放性问题教学,也是培养直觉思维的有效方法,开放性问题的条件或结论不够明确,可以从多个角度由果寻因,由因索果,提出猜想,由于答案的发散性,有利于直觉思维能力的培养.4、注重引导学生进行合理猜想,培养归纳直觉思维归纳直觉是一种非逻辑思维,它需要有”理智的勇气”、”精明的诚实”、”明智的克制”.在数学解题中,运用归纳直觉,虽然是冒风险的,但仍然值得重视.猜想是由已知原理、事实,对未知现象及其规律所作出的一种假设性的命题.在我们的数学教学中,培养学生进行猜想,是激发学生学习兴趣,发展学生直觉思维,掌握探求知识方法的必要手段.作为一个教师,我们不仅要注意”保护”学生已有的猜想能力和直觉能力,而且应更加注意帮助学生学会合理的猜想方法,并使他们的直觉思维不断得到发展而趋向精致.”引”学生大胆设问;”引”学生各抒己见;”引”学生充分活动.让学生猜想问题的结论,猜想解题的方向,猜想由特殊到一般的可能,猜想知识间的有机联系,让学生把各种各样的想法都讲出来,让学生真正”触摸”到自己的研究对象,推动其思维的主动性.为了启发学生进行猜想,我们还可以创设使学生积极思维、引发猜想的意境,可以提出”你是怎么发现这一定理的?”,”这种解题的方法是如何想到的?”诸如此类的问题,组织学生进行猜想、探索,还可以编制一些变换结论、缺少条件的的题目,引发学生猜想的愿望,猜想的积极性. 教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感.5、注重渗透数学审美观念,培养审美直觉思维美的意识能唤起和支配数学直觉.纵观古今,数学上的许多发现和创举无论是从宏观还是微观上看无不遵循美的创造规律.难怪数学大师阿达玛认为,数学直觉的本质是某种”美感”或”美的意识”.美感和美的意识是数学直觉的本质.数学中主要包括简洁美、和谐美、对称美、奇异美以及数学思想美、数学家的情感美,在美的享受中启迪人们的心灵,引起精神的升华.伊思.斯图尔特曾经说过这样一句话,”数学的全部力量就在于直觉和严格性巧妙的结合在一起,受控制的精神和富有灵感的逻辑.”受控制的精神和富有美感的逻辑正是数学的魅力所在,也是数学教育者努力的方向.【参考文献】[1]郭树平.直觉思维能力与数学教学[J].教学与管理,2004,36:7-11.[2]蔡翠苹. 数学问题解决中的直觉思维[J].福建师范大学,2005:8-12.[3]刘涛.基于创造性思维培养的化学教学设计研究[J].曲阜师范大学,2006:15-18.[4]张成红;数学教学中创造性思维能力的培养[J];现代教育报.教师周刊,2007:4-7.。
浅论数学直觉思维及培养数学直觉思维是指在数学问题或数学情景中产生的直观感受和对问题本质的认知方式。
比起单一的运算能力,数学直觉思维对于提高解决实际问题的能力有着重要作用。
本文将从数学直觉思维的重要性、培养方法和实践意义三个方面来浅论数学直觉思维及其培养。
数学直觉思维的重要性当我们面对一个新的问题时,我们通过数学直觉思维来判断问题的本质。
在数学研究中,当一组数学符号的背后隐藏着的规律被我们所认知时,我们的数学直觉便会产生。
数学直觉思维能让我们通过对已知规律的提取,推断出新的规律,并通过这些规律来理解、解释和解决问题。
数学直觉思维被广泛应用于各个领域,包括自然科学、社会科学、工程技术等等。
通过数学直觉思维,我们可以更加深刻理解事物本质,帮助我们在实际问题中快速找出解决问题的方法。
培养数学直觉思维的方法最简单的培养方法:模拟模拟数学直觉思维的方法很简单,只需进行一些简单的游戏、解迷题或者玩玩数学游戏即可。
这些游戏可能会让你觉得有些困难,但是通过逐渐增加难度,你的数学直觉思维能力将会得到提升。
阅读数学经典著作数学经典著作是培养数学直觉思维的另一种方法。
许多经典著作都很难读懂,但是在阅读这些著作时,我们需要理解一些数学观念和思维方法。
在阅读经典著作时,我们可以通过模拟问题语境进行思考,从而培养数学直觉思维。
解决实际问题解决实际问题是培养数学直觉思维的最有效方法之一。
解决实际问题需要我们在实际情境中运用数学思维,这样我们才能真正理解数学问题的本质。
通过解决实际问题,我们可以增加自己的数学直觉思维能力。
数学直觉思维的实践意义数学直觉思维对于我们的生活和工作有着重要的实践意义。
对于生活:我们可以通过数学直觉思维来解决一些日常生活中的小问题,比如计算物品折扣、计算总价等等。
使用数学直觉思维可以帮助我们快速掌握数字和量的变化,使生活更加便捷。
对于工作:多数工作领域都需要一定的数学思维,因此培养数学直觉思维能力会给我们带来帮助。
浅谈初中数学直觉思维培养
初中数学直觉思维培养是指在学习数学知识和解题过程中,培养和提高学生的直觉思
维能力。
直觉思维能力是指通过直觉和感性认识来解决问题的一种思维方式。
在解题过程中,直觉思维能力能够帮助学生发现问题的本质、抓住重点、迅速找到解题的思路和方法,从而更高效地完成数学学习和解题。
培养学生的直觉思维能力需要注重培养学生的观察能力和感知能力。
学生在学习数学
的过程中,应该注重观察和感知问题的特点和规律,以此来引发和培养学生的直觉思维能力。
在学习几何的时候,可以通过观察图形的形状、大小、位置等特征,以及通过观察图
形的相对关系和性质,来培养学生的空间直觉和几何直觉思维能力。
培养学生的直觉思维能力还需要注重培养学生的联想和想象能力。
学生在解决问题的
过程中,应该能够灵活地运用所学的知识和方法,进行联想和想象,以此来探索并解决问题。
在解决代数问题的时候,学生应该能够将具体问题转化为代数式,进行联想和想象,
找到问题的解题思路和方法。