液力耦合器的工作原理、日常维护、故障应急处理
- 格式:doc
- 大小:242.00 KB
- 文档页数:6
化工设备基础知识-液力耦合器引言液力耦合器是一种常见的传动装置,广泛应用于化工设备中。
它具有简单可靠、传动平稳以及对负载变化具有自适应能力的特点。
本文将介绍液力耦合器的工作原理、结构组成、应用领域以及维护保养等内容。
工作原理液力耦合器利用工作液体在转动容器内的离心力产生液力传递动力。
主要由输入轴、转子、定子以及液体组成。
当输入轴带动转子旋转时,液体随着转子的运动形成旋涡,离心力将液体推向定子,随后再被转子重新抓住。
这样,动力就从输入轴传递到输出轴。
液力耦合器的工作原理可以简化为以下几个步骤: 1. 输入轴带动转子旋转。
2. 转子运动使液体形成旋涡。
3. 离心力将液体推向定子。
4. 转子再次抓住液体,形成闭合传递动力。
结构组成液力耦合器主要由转子组件、定子组件、液体以及附件组件组成。
转子组件转子组件包括转子轴、转子盘、转子鳍片等。
转子轴是液力耦合器的主轴,通过输入轴将动力输入到转子上。
转子盘位于转子轴的两端,起到固定转子鳍片的作用。
而转子鳍片则是将动能转化为离心力的关键部件。
定子组件定子组件包括定子壳体、定子鳍片等。
定子壳体是液力耦合器的外壳,起到固定转子组件的作用。
而定子鳍片则是承接离心力并传递到输出轴的部件。
液体液力耦合器中的液体是起到传递动力的媒介。
常见的液体包括油和水。
液体的选择要根据工作条件和要求来确定。
附件组件附件组件包括液力控制阀、壳体附件等。
液力控制阀用于控制液力耦合器的工作状态,例如启动和停止。
壳体附件用于安装和固定液力耦合器。
应用领域液力耦合器广泛应用于各种化工设备中,例如泵、压缩机、搅拌器等。
其主要作用是传递动力并实现转速的适应性调节。
在输送泵中,液力耦合器能够平稳启动泵,并在负载变化时保持泵的稳定工作状态,有效降低设备的损坏风险。
在压缩机中,液力耦合器可以起到起动和停止压缩机的作用,并在压缩机的负载突变时提供缓冲。
在搅拌器中,液力耦合器具有较高的转矩传递能力,能够保证搅拌器在高负载条件下的稳定运行。
液力耦合器工作原理液力耦合器是一种常见的传动装置,广泛应用于各种机械设备中。
它通过液体的流动来传递动力,实现机械的启动、加速和传动。
本文将详细介绍液力耦合器的工作原理。
液力耦合器由外壳、泵轮、涡轮和液体组成。
外壳是液力耦合器的外部壳体,起到支撑和保护内部组件的作用。
泵轮和涡轮是液力耦合器的两个主要部件,它们通过液体的流动来实现动力传递。
液力耦合器的工作原理如下:1. 初始状态:液力耦合器处于静止状态时,液体充满整个液力耦合器的腔体,包括泵轮腔和涡轮腔。
2. 启动过程:当驱动装置启动时,驱动装置带动泵轮旋转。
泵轮的旋转产生离心力,将液体从泵轮的中心向外边缘抛出。
液体经过泵轮的叶片,形成高速液流。
3. 动力传递:高速液流经过涡轮的叶片,使涡轮开始旋转。
涡轮的旋转将动力传递给被驱动装置,驱动装置开始运动。
4. 液力传递:液体从涡轮流回泵轮,形成一个闭合的循环。
在液体的流动过程中,液体的动能被传递给涡轮,实现了动力的传递。
液力耦合器的工作原理可以总结为以下几点:1. 液体的流动:液力耦合器通过液体的流动来传递动力。
液体的流动是由泵轮的旋转产生的,液体经过泵轮和涡轮的叶片,形成高速液流。
2. 动能的传递:液体的流动使涡轮开始旋转,涡轮的旋转将动力传递给被驱动装置。
液体的动能在涡轮上转化为机械能,从而实现动力的传递。
3. 流体耦合:液力耦合器通过液体的流动来实现机械的启动、加速和传动。
液体的流动使得驱动装置和被驱动装置之间实现了流体耦合,从而实现了动力的传递。
液力耦合器具有以下优点:1. 起动平稳:液力耦合器的液体传动可以实现平稳的启动,避免了机械传动中的冲击和震动。
2. 承载能力强:液力耦合器可以承受较大的扭矩和负载,适合于各种重载工况。
3. 过载保护:液力耦合器可以在过载时自动抑制转矩,保护机械设备免受损坏。
4. 无需维护:液力耦合器没有机械传动中的齿轮和皮带,无需定期润滑和维护,使用寿命长。
液力耦合器在各种机械设备中广泛应用,如汽车、船舶、冶金设备、矿山机械等。
液力偶合器维护、使用要领液力偶合器广泛应用于皮带机、破碎机、斗提机、拉链机、风机及取料机等多种需要安全传递扭矩的设备,其安全使用、正确维护是保证主机设备安全运行的重要因素。
为加强在线设备液力偶合器的使用、维护管理工作,特制定本要领。
一、液力偶合器的结构与原理1、结构:液力偶合器是一种靠液体动能传递扭矩的传动部件,主要结构由输入轴、输出轴、泵轮、涡轮、外壳、轴承及易熔塞等零件组成。
其输入轴一端与电机相连,另一端与泵轮相连;输出轴一端与涡轮相连,另一端与工作机相连。
泵轮与涡轮对称布置,都是具有径向直叶片的叶轮,叶轮腔的最大直径称为有效直径,是规格大小的标志。
外壳与泵轮固定连成密封腔,供工作介质在其中做螺旋环流运动以传递扭矩。
2、工作原理:当电机通过输入轴带动偶合器泵轮旋转时,泵轮工作腔内的工作液体受离心力的作用由半径较小的泵轮入口处被加速加压抛向半径较大的泵轮出口处,同时液体的动量矩产生增量,即泵轮将输入的机械能转化成了液体动能。
当携带液体动能的工作液体从泵轮出口冲向对面的涡轮时,液流便沿涡轮叶片所形成的流道做向心流动,同时释放液体动能转化成机械能,驱动涡轮并带动负载旋转做功。
由此,输入与输出在没有直接机械连接的情况下,仅靠液体动能便柔性地连接起来。
1、功能:(1)、具有柔性传动自动适应功能;(2)、具有减缓冲击和隔离扭振功能;(3)、具有使电机轻载起动功能;(4)、具有节电功能;(5)、具有过载保护功能:由于偶合器传动无机械直接连接,故当外载荷超过一定限度后,泵轮力矩便不再上升,此时电机照常运转,输出减速直至停转,损失的功率转化成热量使偶合器油温上升,当温升达到易熔塞熔化温度时(通常为125℃),偶合器上的易熔塞中的易熔合金便熔化,工作液体从小孔喷出,从而输出与输入被切断,保护电机、工作机不受损坏,故可有效降低机器故障率,降低维护费用和停工时间,延长电机和工作机的使用寿命。
2、用途:液力偶合器适用于一切需要解决起动困难、过载保护、隔离冲击扭振的机械设备。
液力耦合器的工作原理、日常维护及常见故障应急处理一、工作原理:以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮,形成周而复始的流动。
液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
二、液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。
液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。
如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。
三、简介:变速型液力偶合器的结构大致分为:泵轮,涡轮,工作室,勺管,主油泵,油箱,进油室和回油室,有的可能还有辅助油泵,根据各个厂家的设计制造不同可能结构上稍有差异!1>泵轮和涡轮是带有径向叶片的碗状性结构,相互扣在一起,有的称两者间的空间为工作室,但为了便于更方便的理解我们不那样叫!我这里所说的工作室是指旋转外壳包围的空间,勺管则是控制这里的油压来控制传动力矩,故我认为这里称为工作室更合理!2>工作室通过涡轮圆周上的间隙与泵轮和涡轮中的空间相通.3>进油室在轴向方面通过泵轮低部的小孔连通泵轮和涡轮中的空间4>泵轮连接电机,涡轮连接风机(或水泵)5>主油泵通过主轴用齿轮传动运行中主油泵将油箱中的油加压后分为两路,一路进入进油室后通过泵轮低部轴向方面的小孔进入到泵轮与涡轮之间的空间,一路到各个轴承进行润滑.如果单设有辅助油泵,那轴承的润滑油部分由辅助油泵完成.在电机的转动下带动泵轮旋转,通过离心力和叶片的作用产生一个旋转冲击矩从而冲动涡轮叶片使涡轮旋转,这样就完成了传动的过程!当需要调节风机的出力时,只需通过调节勺管开口与工作室圆周方向的距离就能控制工作室油压(由于工作室与泵轮,涡轮间的空间相同),由于离心力的作用离圆周方向越靠近油压越大,勺管泄出的工作油越大.那么工作室的油压就很好控制,油压越大泵轮传动到涡轮的力矩越大不用说风机转动越快出力越大!四、常见故障及处理:油泵不上油或油压太低或油压不稳定原因:a.油泵损坏 a.修复或更换油泵b.油泵调压阀失灵或调整不好 b.重新调整或更换油泵调压阀使压力正常c.油泵吸油管路不严,有空气进入 c.拧紧各螺栓使其密封d.吸油器堵塞 d.清洗吸油口过滤e.油位太低, e.加油至规定油位f.油压表损坏 f.更换压力表g.油管路堵塞处理g.清洗油管路箱体振动原因:a.安装精度过低 a.重新安装校正b.基础刚性不足 b.加固或重新做基础c.联轴节胶件损坏 c.更换橡胶件d.地脚螺栓松动处理 d.拧紧地脚螺丝油温过高原因:1)、冷却器冷却水量不足加大水量;2)、箱体存油过多或少调节油量规定值;3)、油泵滤芯堵塞清洗滤芯;4)、转子泵损坏打不出油换内外转子;5)、安全阀溢流过多调整安全阀;6)、弹簧太松上紧弹簧;7)、密封损坏泄油换密封件;8)、油路堵塞清除。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载液力耦合器常见故障及维护地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容液力耦合器原理、常见故障及处理一、常见故障及处理油泵不上油或油压太低或油压不稳定原因 1.油泵损坏2.油泵调压阀失灵或调整不好3.油泵吸油管路不严,有空气进入4.吸油器堵塞 5.油位太低,吸6.油压表损坏 7.油管路堵塞处理 1.修复或更换油泵 2.重新调整或更换油泵调压阀使压力正常 3.拧紧各螺栓使其密封 4.清洗吸油口过滤 5.加油至规定油位6.更换压力表 7.清洗油管路 2.油温过高原因 1.冷却器堵塞或冷却水量不足 2.风机负荷发生变动使偶合器过负荷处理 1.清洗冷却器,加大冷却水量 2.检查负荷情况,防止过负荷 3.勺管虽能移动但不能正常调速原因无工作油进入处理1.修复或更换油泵 2.重新调整或更换油泵调压阀使压力正常 3.拧紧各螺栓使其密封4.清洗吸油口过滤器 5.加油至规定油位 6.更换压力表7.清洗油管路 4.箱体振动原因 1.安装精度过低 2.基础刚性不足 3.联轴节胶件损坏 4.地脚螺栓松动处理 1.重新安装校正 2.加固或重新做基础 3.更换橡胶件 4.拧紧地脚螺丝二、原理及故障排除:1、原理:液力偶合器工作原理液力偶合器相当于离心泵和涡轮机的组合,当电机通过液力偶合器输入轴驱动泵轮时,泵轮如一台离心泵,使工作腔中的工作油沿泵轮叶片流道向外缘流动,液流流出后,穿过泵轮和涡轮间的间隙,冲击涡轮叶片以驱动涡轮,使其象涡轮机一样把液体动能转变为输出的机械能;然后,液体又经涡轮内缘流道回泵轮,开始下一次的循环,从而把电机的能量柔性地传递给工作机。
二、液力偶合器的调速原理液力偶合器在转动时,工作油由供油泵从液力偶合器油箱吸油排出,经冷却器冷却后送至勺管壳体中的进油室,并经泵轮入油口进入工作腔。
液力耦合器全液力耦合器装配工作规程1、上岗穿戴齐劳保用品,遵守劳动纪律和操作规程。
2、工作前整理场地,放稳各零部件,并检查装配使用工具和工作环境安全是否良好,确认安全后方可作业。
3、不得将损坏或不合格的零件装配液力耦合器。
4、必须认真按照图纸的技术要求,逐步安装,避免发生泄漏现象。
5、在装配过程中使用易燃品时,严禁明火作业。
6、各配合面连接螺栓要紧固好,不松动。
7、装配完成的液力耦合器先进行自检,确认合格后进行专检,不合格的产品必须返工再送修,直至合格。
8、装配好的液力耦合器必须摆放整齐分类码放,负荷装卸安全方便的要求。
9、装配中发现有质量问题的零件,必须报告有关部门查对图纸,核实无误后再进行生产。
10、打压试验压力不超过极限压力以免造成安全事故。
液力耦合器检修技术规范8.1液力耦合器是利用液体动能传递功率的液力元件,属于柔性传动,用它来连接两传动轴主要有YOXD-S水介质液力耦合器,YOX限矩型液力耦合器,YOXZ带制动液力耦合器,YOD皮带轮液力耦合器四种形式。
我厂使用YOX限矩型液力耦合器它主要旧连接板、传动板、后辅腔外壳,注油塞、泵轮、易熔塞、轴等部分组成。
8.2工作原理:液力耦合器相当于离心泵和涡轮机的组合,当电机通过液力耦合器输入轴驱动轮时,泵轮如一台离心泵使工作腔中的工作油沿泵轮叶轮流道向外缘流动,液流流出后,穿过泵轮和涡轮间的空隙,冲击涡轮叶片,以驱动涡轮,使涡轮把液体的动能和压能转变为输出的机械能,然后液体经涡轮内缘流道回到泵轮,开始下一次循环从而把电机的能量柔性地传递给工作机。
8.3使用与维护:8.3.1新机工作300小时,应对油质进行检查,如发现油质变坏,应换新油(20#透明油或液力传动液)。
8.3.2正常运转每隔10天检查一次液量,按规定充液量进行检查,发现有缺损应及时补上。
8.3.3定期检查弹性块磨损情况,必要时予以更换。
8.3.4有大修规定时,在大修中更换轴承及密封件后仍可继续使用权用。
液力耦合器工作原理引言概述:液力耦合器是一种常见的机械传动装置,广泛应用于各种工业领域。
它通过液体的动力传递来实现机械的连接和传动。
本文将详细介绍液力耦合器的工作原理,包括液力传递、液力变速和液力控制等方面。
一、液力传递1.1 流体动力传递液力耦合器内部填充着液体,通常是油。
当液体在转子内部流动时,它会产生动力,这种动力可以传递给其他机械部件,实现动力传递。
液力传递的基本原理是利用液体的动能和压力来传递转矩和功率。
1.2 液力耦合器的结构液力耦合器由驱动轴、从动轴和液力传递介质组成。
驱动轴和从动轴通过液力传递介质连接在一起。
液力传递介质通常由转子、泵和涡轮组成。
泵将液体从驱动轴端抽出,然后通过转子和涡轮的作用,将液体传递到从动轴端。
1.3 液力传递的特点液力传递具有一定的特点。
首先,液力传递可以在无接触的情况下实现动力传递,减少了磨损和噪音。
其次,液力传递可以实现连续的动力传递,不受转速比的限制。
此外,液力传递还具有一定的扭矩放大效应,可以在启动和低速工况下提供更大的扭矩输出。
二、液力变速2.1 液力耦合器的变速原理液力耦合器可以通过改变液体的流动状态来实现变速。
当液体在转子内部流动时,它的流速和流量会发生变化,从而改变液力传递的效果。
通过调整液体的流动状态,可以实现不同的转速比和扭矩输出。
2.2 液力变速的调节方式液力耦合器的变速可以通过调节泵和涡轮的转速来实现。
当泵和涡轮的转速不同时,液体的流动状态会发生变化,从而实现不同的变速效果。
此外,还可以通过改变液体的粘度和密度来调节液力变速的效果。
2.3 液力变速的优势和应用液力变速具有一定的优势。
首先,液力变速可以实现平滑的变速过程,减少机械部件的磨损和冲击。
其次,液力变速可以实现无级变速,满足不同工况下的需求。
液力变速广泛应用于汽车、船舶、工程机械等领域。
三、液力控制3.1 液力耦合器的控制方式液力耦合器的控制可以通过调节液体的流量和压力来实现。
液力耦合器工作原理液力耦合器是一种常用的传动装置,用于连接两个旋转的轴。
它通过液体的流动来传递动力,并且具有平滑、无级变速的特点。
液力耦合器主要由泵轮、涡轮和液力传动介质组成。
液力耦合器的工作原理如下:1. 泵轮:泵轮是液力耦合器的驱动轴,它通过发动机的转动产生动力。
泵轮上安装有一系列的叶片,当泵轮旋转时,叶片将液体从中心向外推送。
2. 涡轮:涡轮是液力耦合器的被驱动轴,它连接着需要传动动力的设备或机械。
涡轮上也安装有一系列的叶片,当液体推动泵轮的叶片时,涡轮的叶片受到液体的冲击而开始旋转。
3. 液力传动介质:液力传动介质是液力耦合器中的液体介质,通常是液压油。
当液体从泵轮的叶片推送到涡轮的叶片时,液体的动能被转化为涡轮的动能,从而实现动力的传递。
液力耦合器的工作过程可以分为三个阶段:1. 启动阶段:当发动机启动时,液体开始被泵轮的叶片推动,涡轮开始旋转。
在这个阶段,液力耦合器的传动效率较低,因为液体的流动还不够充分。
2. 加速阶段:随着液体的流动逐渐加强,涡轮的转速也逐渐增加。
在这个阶段,液力耦合器的传动效率逐渐提高,动力传递更加稳定。
3. 稳定阶段:当液体的流动达到一定的稳定状态时,涡轮的转速将与泵轮的转速保持一致。
在这个阶段,液力耦合器的传动效率达到最高,动力传递非常稳定。
液力耦合器具有以下优点:1. 平滑无级变速:液力耦合器可以实现平滑的无级变速,不需要离合器或变速器来进行操作,使得驾驶更加舒适。
2. 起动平稳:液力耦合器的启动过程平稳无冲击,对机械设备的启动和驾驶员的驾驶体验有很大的好处。
3. 能量传递稳定:液力耦合器能够根据负载的变化自动调整液体的流量,从而实现动力的稳定传递。
4. 承载能力强:液力耦合器能够承受较大的扭矩和冲击力,适用于各种重载工况。
然而,液力耦合器也存在一些缺点:1. 传动效率低:液力耦合器的传动效率相对较低,会有一定的功率损失。
2. 体积较大:液力耦合器相比于其他传动装置,体积较大,占用空间较多。
液力耦合器原理液力耦合器是一种常见的动力传递装置,广泛应用于各种机械设备中。
它通过液体介质传递动力,具有承载能力强、起动平稳、无级调速等优点,被广泛应用于汽车、船舶、风力发电等领域。
本文将详细介绍液力耦合器的原理和工作机制。
一、液力耦合器的概述液力耦合器是由泵轮、涡轮、导向器和液体介质组成的。
其中,泵轮又称为驱动轮或泵,涡轮又称为从动轮或涡;液体介质则是通过泵轮和涡轮之间的转差,传递运动和动力。
二、液力耦合器的原理液力耦合器的原理基于液体在转动或流动时所具有的一些特性,包括离心力、黏性和旋塞效应。
1. 离心力当泵轮(驱动轮)以一定的速度旋转时,液体受到离心力的作用会被抛到涡轮(从动轮)之中。
这种离心力会使液体获得动能,从而传递给涡轮,实现能量的传递。
2. 黏性液体具有一定的粘滞性,使得液体在传递过程中能够形成一个层流的环境。
这种黏性作用使得转动的液体能够均匀地传递动力,不会因为液体在传递过程中产生明显的滑动。
因此,液力耦合器具有良好的运动平稳性。
3. 旋塞效应液体在传递动力时会形成一个旋转的流体环,这种旋转的液体环会抵消液体传递时的惯性力,从而使液力耦合器具有较小的内部转差。
这种旋塞效应保证了液力耦合器在高速工作时,能够有较小的能量损耗。
三、液力耦合器的工作机制液力耦合器的工作过程可以分为三个阶段:起动阶段、传动阶段和闭锁阶段。
1. 起动阶段当液力耦合器处于起动状态时,液体介质会被泵轮抛向涡轮,形成旋转的液体环。
在起动阶段,液体的离心力非常强,可以实现大扭矩的传递,用于启动被驱动装置。
2. 传动阶段在液力耦合器启动后,液体介质将继续形成旋转的液体环。
在传动阶段,涡轮会以与泵轮相同的速度旋转,进一步传递动力。
液力耦合器在传动阶段具有无级调速的特点,能够灵活适应不同负载的需求。
3. 闭锁阶段当传动装置需要临时断开时,液力耦合器会进入闭锁阶段。
在闭锁阶段,通过控制流体的锁紧器来实现涡轮和泵轮之间的离合和连接。
限矩型液力耦合器的维修与保养(D O C)限矩型液力耦合器的维修与保养简述液力耦合器的定义、功能及其广泛应用1. 液力偶合器的定义:液力偶合器是以油压来传递动力的变速传动装置,因油压大小不受等级的限制,所在它是一个无级变速的联轴器。
液力偶合器的工作过程:液力偶合器主要由泵轮、涡轮和转动外壳组成。
泵轮和涡轮尺寸相同,相向布置,其腔内均有许多径向叶片,涡轮的片数一般比泵轮少 1 一 4 片,以避免共振。
泵轮的主轴和电动机主轴(或第一级增速齿轮轴)相连,涡轮轴和水泵主轴(或第二级增速齿轮轴)连接。
2. 液力偶合器功能:1) 具有减缓启动冲击和隔离扭振的功能机器静止时,由于传动系统中各元件之间存在着间隙,挠性构件是松弛的,因而在启动瞬间施加于电动机的力矩是很小的。
当电动机迅速加速,由于传动元件间隙被消除,挠性构件张紧,力矩突然施加于电动机,从而产生冲击与振动。
由于液力偶合器的泵轮力矩与其转速的平方成正比,因而在启动过程中,施加于电动机的力矩是随转速升高而逐渐增大的,即当电动机起动瞬间泵轮因转速低而力矩甚微,电机近似于带动泵轮空载起动,因而应用它减少启动时的冲击和振动。
发动机、往复泵式机械等,在运转时产生强烈的扭振,使零件承受反复应力,易使支撑和基座产生共振,造成严重后果。
应用液力偶合器,可以利用高速旋转的工作液体的惯性阻尼作用,使其扭振得以衰竭,有效地隔离原动机与工作机(负载)之间的扭振。
2) 具有过载保护功能机器运转时,运动部分贮存很大动能,其中很大一部分贮蓄在高速旋转的电动机转子中。
负载突然被制动(急刹车或传动机构被障碍物卡塞)时,将产生很大的动力载荷。
这时,原动机和工作机(负载)所有运动质量的动能,都在瞬间释放出来,为破坏机器零件而做功。
应用液力偶合器,若负载突然被制动,制动的只是负载的本身,而电动机的转速不低于尖峰力矩时的转速,即使是降速也不超过10%。
因此,突然制动所产生的功比采用液力偶合器时大为减少,能够防止电动机和负载动力过载,从而保护电动机不被烧毁(或内燃机不熄火)。
液力耦合器工作原理液力耦合器是一种常见的传动装置,广泛应用于各种机械设备中。
它通过液体的转动来传递动力,实现机械设备的启动、停止和变速等功能。
下面将详细介绍液力耦合器的工作原理。
一、液力耦合器的结构液力耦合器主要由外壳、泵轮、涡轮和液体组成。
外壳是液力耦合器的外部保护壳,起到固定和保护内部部件的作用。
泵轮和涡轮是液力耦合器的主要传动部件,它们通过液体的转动来传递动力。
液体则起到传递动力和承载转动力的作用。
二、液力耦合器的工作原理当液力耦合器开始工作时,驱动装置(如发动机)驱动泵轮旋转。
泵轮的旋转产生离心力,将液体从中心向外部甩出。
液体沿着外壳内壁形成一个液体环,称为液环。
涡轮则被液环推动转动。
涡轮的转动产生离心力,将液体从外部向中心抛出。
液体沿着外壳内壁形成另一个液环,称为反液环。
液力耦合器的工作原理就是通过这两个液环的相互作用来传递动力。
当泵轮转速增加时,液环的离心力增大,涡轮的转速也随之增加。
反之,当泵轮转速减小时,涡轮的转速也随之减小。
三、液力耦合器的优点1. 平稳启动:液力耦合器可以实现平稳的启动,避免了机械设备在启动过程中的冲击和振动。
2. 负载平衡:液力耦合器可以根据负载的变化自动调节传递的动力,实现负载平衡,保护机械设备免受过载损坏。
3. 变速范围广:液力耦合器的转速可以根据需要进行调节,实现机械设备的变速功能。
4. 无需维护:液力耦合器没有机械接触,无需润滑和维护,使用寿命长。
四、液力耦合器的应用液力耦合器广泛应用于各种机械设备中,如汽车、船舶、工程机械等。
它们在启动、停止和变速等方面都起到了重要的作用。
例如,在汽车中,液力耦合器用于连接发动机和变速器,实现启动和变速功能。
它可以平稳地将发动机的动力传递给变速器,使汽车能够顺利启动并实现不同速度的行驶。
在工程机械中,液力耦合器用于连接发动机和液压系统,实现各种工作功能。
它可以根据工作负载的变化自动调节动力传递,确保机械设备在工作过程中的平稳运行。
液力耦合器工作原理引言概述:液力耦合器是一种常见的动力传动装置,广泛应用于各种机械设备中。
它通过液体传递动力,实现发动机和传动系统之间的连接。
本文将详细介绍液力耦合器的工作原理。
一、液力传递1.1 液体填充液力耦合器内部装有液体,通常是液压油或液压液。
当液体填充到一定程度时,形成一个密封的液体环境。
1.2 动力传递当发动机工作时,液体被带动产生动力。
通过旋转的方式,液体将动力传递给液力耦合器的输出轴。
1.3 转矩调节液力耦合器的转矩可以通过调节液体的填充量和液体的黏度来实现。
这样可以根据实际需要来调节输出的动力大小。
二、工作原理2.1 液体离心力当发动机工作时,液体受到离心力的作用,向外部运动。
这种运动会带动输出轴的转动,实现动力传递。
2.2 液力传递液体在液力耦合器内部形成一个闭合的液体环境,通过液体的传递来实现动力传递。
这种传递方式比较平稳,可以减少机械部件的磨损。
2.3 自动调节液力耦合器可以根据负载的大小自动调节转矩。
当负载增加时,液体的黏度会增加,从而提高输出的转矩。
三、优缺点3.1 优点液力耦合器具有传递动力平稳、转矩调节范围广、无需离合器操作等优点。
适用于需要频繁启停和负载变化较大的场合。
3.2 缺点液力耦合器存在能量损失较大、效率低、液体需要定期更换等缺点。
在一些要求高效率和节能的场合不适用。
3.3 应用范围液力耦合器广泛应用于汽车、工程机械、船舶等领域,为各种机械设备提供动力传递支持。
四、维护保养4.1 液体更换液力耦合器内的液体需要定期更换,以保证液体的性能和稳定性。
4.2 清洁保养定期清洁液力耦合器的内部和外部,防止灰尘和杂质进入,影响液体的传递效果。
4.3 定期检查定期检查液力耦合器的工作状态,包括液体的填充量、液体的黏度等参数,确保其正常工作。
五、发展趋势5.1 高效节能未来液力耦合器将更加注重高效节能,减少能量损失,提高传递效率。
5.2 智能化液力耦合器将向智能化方向发展,通过传感器和控制系统实现自动调节和监控。
液力耦合器使用、维护、点检标准一、液力耦合器工作原理及特点1.液力耦合器工作原理液力耦合器由泵轮、涡轮、转动外壳、勺管等组成。
泵轮和涡轮对称布置,中间保持一定间隙,轮内有几十片径向辐射的叶片,运转时在偶合器中充油,当输入轴带动泵轮旋转时,进入泵轮的油在叶片带动下,因离心力作用由泵轮内侧流向外缘,形成高压高速流冲向涡轮叶片,使涡轮跟随泵轮作同向旋转,油在涡轮中由外缘流内侧被迫减压减速,然后流入泵轮,在这种循环中,泵轮将原动机的机械能转变成油的动能和势能,而涡轮则将油的动能和势能又转变成输出轴的机械能,从而实现能量的柔性传递。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
2.液力耦合器的特点能消除冲击和振动;输出转速低於输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。
液力耦合器的传动效率等於输出轴转速与输入轴转速之比。
二、液力耦合器安装使用维护点检标准1. 液力耦合器安装要求:液力耦合器与工作端联接配合为动配合(间隙配合),间隙在0.02~0.03mm;同轴度平行度偏差:四极电机<0.4mm,六极电机<0.6mm.安装时禁止用工具直接敲打铸铝件表面,禁止用加热法进行安装。
2.工作介质及加油标准(1)工作介质推荐使用32号汽轮机油、6号液力传动油、8号液力传动油;(2)加油量:加油范围为耦合器总容积的40~80%,不允许超出此范围,更不允许充满。
加油量少于容积的40%,设备转速低,提不起来,产生噪音,轴承润滑不足磨损;加油量超出容积80%,耦合器转动时,因过载而急剧升温升压,工作液体积膨胀,耦合器内压增大,破坏密封,引起漏液,甚至造成耦合器壳体开裂、机械损坏;(3)加油方法:加油时要同时拧下加油塞和易熔塞,用80~100目的滤网过滤;加油后拧上易熔塞,慢慢转动偶合器开始有油液溢出并对准基准刻度线(注油塞口至距垂直中心线最高点约55度,没有的要重新确定),拧紧加油塞。
液力耦合器工作原理标题:液力耦合器工作原理引言概述:液力耦合器是一种常用的动力传递装置,广泛应用于各种机械设备中。
它利用液体作为传递介质,将动力从一个旋转部件传递到另一个旋转部件,实现动力的传递和调节。
下面将详细介绍液力耦合器的工作原理。
一、液力耦合器的结构1.1 轴套:轴套是液力耦合器的外壳,用于容纳液体和传递动力。
1.2 泵轮:泵轮位于轴套内部,由驱动装置带动旋转,产生液体流动。
1.3 铲轮:铲轮也位于轴套内部,与泵轮相对,通过液体的流动传递动力。
二、液力传递原理2.1 液体流动:当泵轮旋转时,产生液体的流动,形成液体旋涡。
2.2 涡轮效应:涡轮效应使得铲轮尾随液体旋涡旋转,传递动力。
2.3 动力调节:通过改变泵轮的转速,可以调节液力耦合器的传递效率和输出扭矩。
三、液力耦合器的工作特点3.1 平稳传动:液力传递使得动力传递更加平稳,减少机械震动和冲击。
3.2 自动调节:液力耦合器可以根据负载情况自动调节传递效率,提高机械设备的工作效率。
3.3 高效节能:液力传递不会产生磨擦损耗,节约能源并延长机械设备的使用寿命。
四、液力耦合器的应用领域4.1 汽车行业:液力耦合器广泛应用于自动变速器中,实现换挡平稳和动力传递效率高。
4.2 工程机械:挖掘机、装载机等工程机械中也常用液力耦合器,提高机械设备的工作效率。
4.3 发电领域:液力耦合器在发机电组中扮演着重要角色,实现发机电的启动和调节。
五、液力耦合器的维护保养5.1 定期更换液体:液力耦合器中的液体需要定期更换,保持传递效率和润滑效果。
5.2 清洗滤网:液力耦合器内部的滤网需要定期清洗,防止杂质影响液体流动。
5.3 注意温度:液力耦合器工作时会产生热量,需要注意散热,避免过热影响传递效果。
结论:液力耦合器作为一种重要的动力传递装置,具有平稳传动、自动调节、高效节能等特点,广泛应用于各个领域。
了解液力耦合器的工作原理有助于正确使用和维护液力耦合器,提高机械设备的工作效率和使用寿命。
变速器液力耦合器的工作原理及调整方法变速器液力耦合器是汽车中重要的传动装置之一,它在汽车行驶过程中起到了关键的作用。
本文将探讨变速器液力耦合器的工作原理及其调整方法,以帮助读者了解和掌握这一技术。
一、工作原理变速器液力耦合器是将发动机的动力传递给车辆的传动系统的核心元件。
它由两个主要部分组成:泵轮和涡轮。
在液力耦合器内部,泵轮通过发动机输出的动力驱动,而涡轮与变速器相连,用于传递动力给车辆。
液力耦合器内充满了传动液。
当发动机启动时,泵轮开始旋转并向涡轮输送传动液。
传动液在泵轮的作用下形成了高速旋转的涡流,涡流的动能传递给涡轮,使涡轮开始旋转。
液流的旋转动能在涡轮上产生扭矩,从而将动力传递给变速器。
这样,变速器液力耦合器实现了发动机和变速器之间的动力传递。
液力耦合器的一个重要特点是其自动变速能力。
通过调整泵轮和涡轮之间的液力传递效率,可以实现不同档位的换挡。
当泵轮和涡轮的转速接近时,液力传递的效率较高,可以实现较大的输出扭矩;而当转速差距较大时,液力传递效率较低,可以实现更高的转速。
二、调整方法1. 检查液力耦合器油液液力耦合器的工作需要一定的润滑和冷却,因此检查油液的质量和量是必要的。
首先,确保油液的量在正常范围内,不得过少或过多。
然后,检查油液的质量,如果发现污浊或有金属颗粒,需要进行更换。
定期维护油液可保证液力耦合器的正常运行。
2. 调整液力耦合器的液力传递效率液力耦合器的液力传递效率直接影响车辆的加速和燃油经济性。
调整液力耦合器的液力传递效率可以通过增加或减少泵轮与涡轮之间的液力耦合程度来实现。
一般来说,液力传递效率较高时,车辆能够更快地加速,但燃油消耗也会相应增加;而液力传递效率较低时,车辆的燃油经济性更好,但加速性能相应减弱。
调整液力耦合器的液力传递效率可以通过调整液力耦合器上的控制阀来实现。
具体的调整方法可以参考汽车制造商提供的技术手册。
3. 定期检查液力耦合器的工作状态定期检查液力耦合器的工作状态是确保其正常运行的重要措施之一。
液力耦合器的工作原理、日常维护及常
见故障应急处理
一、工作原理:以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮,形成周而复始的流动。
液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
二、液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。
液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。
如将液力耦合器的油放空,耦合器就处于脱开状态,能起离合器的作用。
三、简介:变速型液力偶合器的结构大致分为:泵轮,涡轮,工作室,勺管,主油泵,油箱,进油室和回油室,有的可能还有辅助油泵,根据各个厂家的设计制造不同可能结构上稍有差异!
1>泵轮和涡轮是带有径向叶片的碗状性结构,相互扣在一起,有的称两者间的空间为工作室,但为了便于更方便的理解我们不那样叫!我这里所说的工作室是指旋转外壳包围的空间,勺管则是控制这里的油压来控制传动力矩,故我认为这里称为工作室更合理!
2>工作室通过涡轮圆周上的间隙与泵轮和涡轮中的空间相通.
3>进油室在轴向方面通过泵轮低部的小孔连通泵轮和涡轮中的空间
4>泵轮连接电机,涡轮连接风机(或水泵)
5>主油泵通过主轴用齿轮传动
运行中主油泵将油箱中的油加压后分为两路,一路进入进油室后通过泵轮低部轴向方面的小孔进入到泵轮与涡轮之间的空间,一路到各个轴承进行润滑.如果单设有辅助油泵,那轴承的润滑油部分由辅助油泵完成.在电机的转动下带动泵轮旋转,通过离心力和叶片的作用产生一个旋转冲击矩从而冲动涡轮叶片使涡轮旋转,这样就完成了传动的过程!
当需要调节风机的出力时,只需通过调节勺管开口与工作室圆周方向的距离就能控制工作室油压(由于工作室与泵轮,涡轮间的空间相同),由于离心力的作用离圆周方向越靠近油压越大,勺管泄出的工作油越大.那么工作室的油压就很好控制,油压越大泵轮传动到涡轮的力矩越大不用说风机转动越快出力越大!
四、常见故障及处理:
油泵不上油或油压太低或油压不稳定原因:
a.油泵损坏 a.修复或更换油泵
b.油泵调压阀失灵或调整不好 b.重新调整或更换油泵调压阀使压力正常
c.油泵吸油管路不严,有空气进入 c.拧紧各螺栓使其密封
d.吸油器堵塞 d.清洗吸油口过滤
e.油位太低, e.加油至规定油位
f.油压表损坏 f.更换压力表
g.油管路堵塞处理 g.清洗油管路
箱体振动原因:
a.安装精度过低 a.重新安装校正
b.基础刚性不足 b.加固或重新做基础
c.联轴节胶件损坏 c.更换橡胶件
d.地脚螺栓松动处理 d.拧紧地脚螺丝
油温过高原因:
1)、冷却器冷却水量不足加大水量;
2)、箱体存油过多或少调节油量规定值;
3)、油泵滤芯堵塞清洗滤芯;
4)、转子泵损坏打不出油换内外转子;
5)、安全阀溢流过多调整安全阀;
6)、弹簧太松上紧弹簧;
7)、密封损坏泄油换密封件;
8)、油路堵塞清除。
输出轴不转:
1)、安全阀压力值太低上紧弹簧;
2)、油路堵塞清除;
3)、泵损坏换内外转子;
4)、泵转向错误泵盖及偏心套转1800 ;
5)、泵吸油管路密封不准进空气加强密封;
轴端漏油:
1)、弹性联轴器旋转引起真空效应将油吸出吊罩将联轴器与端面隔开;
2)、皮碗密封圈唇面不平换密封圈;
3)、密封处轴面有划痕磨光。