几何概型
【情境创设 引入新课】
情境一:现在假设,一根长为3米的彩带,拉直后在任意位置剪
断,那么剪得两端的长都不少于1米的概率有多大?
A
M
N
B
1m
1m
情景二:现在我们将刚才的视频提炼为:指针指向黄色区域时, 获得加分,否则不加分.在下面情况中获得加分的概率是多少?
情景三:大烧杯盛有2升的水,内有1只金鱼, 一个小烧杯从中 取出0.1升,求小烧杯水中含有这条金鱼的概率.
不能
等可能性、无限性
长度、面积、体积 等几何度量的比值
【小组进一步合作研讨】
1.研讨内容:
(1)你能根据刚才的研究成果,得出几何概型的定义吗? (2)你能根据刚才的研究成果,得出几何概型计算公式吗?
2.研讨形式
结合古典概型知识和对三个事件的研讨,小组合作, 人人参与,一名同学记录研讨成果。
归纳定义
达标检测
1.章丘明水百货大楼路口红绿灯,红灯时间为30秒,
黄灯时间为5秒,绿灯时间为40秒,问你到达路口时,
恰好为绿灯的概率为( C )
4
3
A
B
7
5
8
1
C
15
D2
2.在1升高产小麦种子中混入了一粒带麦锈病的种子, 从中取出10ml,含有麦锈病种子的概率是( 1 )
100
3.取一个长为2a的正方形及其内切圆,随机向
通
不
第
一
为
什
么
很
头
试
常
变
成
我
自
己
你
部
多
时
完
弄
。
但
戏
候
在
这