晶间腐蚀的防止和消除
- 格式:ppt
- 大小:1.57 MB
- 文档页数:38
不锈钢晶间腐蚀问题晶间腐蚀是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。
这种腐蚀是在金属(合金)表面无任何变化的情况下,使晶粒间失去结合力,金属强度完全丧失,导致设备突发性破坏。
许多金属(合金)都具有晶间腐蚀倾向。
其中不锈钢、铝合金及含钼的镍基合金晶间腐蚀较为突出。
如有应力存在,由晶间腐蚀转变为沿晶应力腐蚀破坏。
贫化理论认为,晶间腐蚀是由于晶界析出新相,造成晶界附近某一成分的贫乏化。
如奥氏体不锈钢回火过程中(400-800℃)过饱和碳部分或全部以Cr23C6 形式在晶界析出,造成碳化物附近的碳与铬的浓度急剧下降,在晶界上形成贫铬区,贫铬区作为阳极而遭受腐蚀。
对于低碳和超低碳不锈钢来说,不存在碳化物在晶界析出引起贫铬的条件。
但一些实验表明,低碳,甚至超低碳不锈钢,特别是高铬、钼钢,在650-850℃受热时,在强氧化介质中,或其电位处于过钝化区时,也发生晶间腐蚀。
铁素体不锈钢在900℃以上高温区快冷(淬火或空冷)易产生晶间腐蚀。
即使极低碳、氮含量的超纯铁素体不锈钢也难免产生晶间腐蚀。
但在700-800℃重新加热可消除晶间腐蚀。
由此可见,铁素体不锈钢焊后在焊缝金属和熔合线处易产生晶间腐蚀。
18Cr-9Ni 钢在温度高于750℃时,不产生晶间腐蚀,而在600-700℃区间,晶间腐蚀倾向最严重。
当温度低于600℃时,需长时间才能产生晶间腐蚀倾向,温度低于450℃时基本不产生晶间腐蚀倾向。
检验某种钢材是否有晶间腐蚀倾向,一般采用敏化处理工艺。
钢材加热到晶间腐蚀最敏感的,恒温处理一定时间,这种处理工艺称为敏化处理,产生晶间腐蚀最敏感的温度叫敏化温度。
18-8 不锈钢最敏感温度为650-700℃,产生晶间腐蚀倾向所需要的最短时间为1-2小时。
不锈钢中,除了主要成分Cr、Ni、C 外,还含有Mo、Ti、Nb 等合金元素。
它们晶间腐蚀的作用如下:1.碳:奥氏体不锈钢中碳量越高,晶间腐蚀倾向越严重,导致晶间腐蚀碳的临界浓度为0.02%(质量分数)。
1引言随着“工业4.0”时代的到来,工业的发展步伐进一步加大,而不锈钢因其自身具有的耐腐蚀性、力学性能良好等特点被广泛应用于工业的生产加工中。
然而其在焊接的过程中,可能会出现焊缝晶间腐蚀的现象,影响了不锈钢的内部结构,从而对其性能也产生了影响。
因此,本文对奥氏体不锈钢焊缝晶间腐蚀问题的防止探讨,具有一定的研究价值和意义。
2晶间腐蚀的概念晶间腐蚀是一种发生在金属材料晶粒之间的腐蚀形式。
奥氏体不锈钢一旦产生了晶间腐蚀,在应力的作用情况下,这种腐蚀会逐渐向内部扩展,从而破坏奥氏体不锈钢的内部结构,影响其使用性能。
晶间腐蚀一般情况下在热影响区以及焊缝或者是熔合线上产生,而在熔合线上产生的晶间腐蚀又叫刃状腐蚀[1]。
3晶间腐蚀产生的原因分析对奥氏体不锈钢产生晶间腐蚀的过程分析如下:在奥氏体不锈钢焊缝处于室温下的状态时,其C元素在奥氏体内的溶解度很小,大约有0.02%~0.03%,并一般情况下的奥氏体不锈钢内含有的C含量不会超出0.02%~0.03%的范围,因此,对奥氏体不锈钢进行淬火处理能够保证材料的力学性能稳定。
但是在淬火过程中,奥氏体不锈钢材料长时间处于450~850℃的温度下,其C元素的扩散速度会加快,和Cr元素进行化学反应,生成碳化铬Gr23C6。
这种情况下使得奥氏体内晶界Cr元素含量越来越少,而当其含量小于12%时,就丧失了部分抗腐蚀能力,从而产生了晶间腐蚀现象。
总之,晶间腐蚀的产生就是由于Cr元素的缺失引起的。
4奥氏体不锈钢焊缝产生晶间腐蚀的影响因素4.1加热温度和加热时间的影响在影响奥氏体不锈钢焊缝晶间腐蚀的众多因素中,加热的温度和解热的时间是其中的一个重要影响因素。
一般情况下,对于奥氏体来说,其产生晶间腐蚀的温度范围大概在450~ 850℃之间。
这主要是在温度低于450℃的时候,不会产生Gr23C6;而当温度高于850℃时,会使得Cr元素的扩散速度加快,不会出现“贫铬区”。
而在对奥氏体不锈钢进行焊接的过程中,焊缝的两侧区域是处于450~850℃温度之间的,容易引发晶间腐蚀现象。
绝大多数金属和合金是多晶体,在它们的表面上也显露出许多晶界。
晶界是原子排列较为疏松、紊乱的区域,容易产生杂质原子富集、晶界吸附、第二相的沉淀析出等现象(见界面);因此存在着显著的化学、物理不均匀性。
在腐蚀介质中金属和合金的晶界的溶解速度和晶粒本身的溶解速度是不同的。
在某些环境中,晶界的溶解速度远大于晶粒本身的溶解速度时,会产生沿晶界进行的选择性局部腐蚀,称为晶间腐蚀(图1及图2)。
受热(如敏化处理)、受力(冷加工形变)而引起晶界组织结构的不均匀变化,对晶间腐蚀也有很大影响(见金属腐蚀)。
晶间腐蚀发生后,金属和合金虽然表面仍保持一定的金属光泽,也看不出被破坏的迹象,但晶粒间的结合力已显著减弱,强度下降,因此设备和构件容易遭到破坏。
晶间腐蚀隐蔽性强,突发性破坏几率大,因此有严重的危害性。
不锈耐酸钢、镍基耐蚀合金、铝合金等金属材料都有可能产生晶间腐蚀;尤其在焊接时,焊缝附近的热影响区更容易发生晶间腐蚀。
20世纪30年代以来,对晶间腐蚀进行了大量研究,所提出的贫化理论,特别是对奥氏体不锈钢的贫铬理论已得到证实,并将贫化理论应用到铝铜合金的贫铜及镍钼合金的贫钼等方面。
前者在晶界上析出了CuAl2,后者在晶界上析出了Mo2C。
晶间腐蚀机理贫铬理论是奥氏体不锈钢晶间腐蚀主要理论。
从相图得知,不锈钢中碳在奥氏体里的固溶度随着温度的升高而增加,500~700℃时,1Cr18Ni9钢中碳在奥氏体里的平均固溶度不超过0.01%。
奥氏体不锈钢经固溶处理快速冷却后,奥氏体中的碳处于过饱和状态。
当这种钢在敏化温度范围(427~816℃)内受热时,奥氏体中过饱和的碳会迅速地向晶界扩散,在晶界上,碳消耗了晶界周围的铬,与铬形成铬的碳化物,由于铬的扩散速度太慢而得不到及时的补充,结果在晶界周围形成严重的贫铬区(图3)。
1Cr18Ni9奥氏体不锈钢的贫铬区的宽度约为2000┱左右,贫铬区的含铬量低于9.28%,亦即低于钝化所需要的含铬量。
晶间腐蚀1.沿着金属晶粒边界发生的选择性腐蚀,称为晶间腐蚀(lntergranular Corrosion);锈钢、形式,发生在金属晶体的边缘上形式,发生在金属晶体的边缓得很松弛,机械强度大大降低。
经过晶腐蚀的金属表面,外表看上去好像还如很完整,但因失去了机械强度,所以稍加轻轻敲击,便会碎成细粒。
晶间腐蚀由于肉眼无法看出,常常成设备及重要构件突然破坏,危害性极大。
例如,不锈钢、镍基合金、铝合金、镁合金等都存在腐蚀问题。
航空零件上采用的高强度铝合金镀硬铬,尤其是含铜量高的铝合金,如果热处理未处理好,就有可能在晶粒边缘连续地析出CuAl2的硬化相颗。
粒,这样晶粒近旁的含铜量就比晶粒内部的含铜量少,结果晶粒边界附近就成为阳极,为阴极,在一定的腐蚀条件下,腐蚀微电池产生,界腐蚀就发生了。
此外锌、锡、铝等金,也会发生晶间腐蚀。
2.另一种晶间腐蚀现象就是穿晶腐蚀或称为腐蚀破坏。
其腐蚀的破坏形式是沿最大张应力线发生的,可穿透晶体,所以被称为穿晶腐蚀。
例如,金属在周期交变载荷下的腐蚀及在)。
例如,金属在周期交变载荷的属性):成开裂,通常称为腐蚀裂要开。
这类腐蚀是经常发生的,尤其是合金材料,由于不同金属元素,它们之间审代取真,濟窿。
旨油韵胖解呀队等因素,这种腐蚀便会加速,直至腐蚀裂开。
3.黄铜的脱锌所形成的开裂称为季裂(Season :应力Cracking),也就是指黄铜的缉分之中去,造成铜组分富集在合金盼表面上,这蚀实属晶间腐蚀,当有应力存在时,便造成开裂实际生产中,也经常发现rosion )现象,就是金属腐蚀后于晶间腐蚀的一种特殊形多与穿晶腐蚀相似,多数发生在高粥例如,机翼的上淳窝结构等多冠妄三劣情况下,使该部位凳纹的侧墜金产生剥蚀腐蚀。
4.另外,还有空穴腐蚀( Cavitation Corrosinn竽生物腐蚀( Microbiological CorroSion)【电镀设备厂】属的晶格同样存在着影响,紲严,与所受的介质条件有密切关系:很危险,必须引起重视。
奥氏体不锈钢晶间腐蚀及防止1前言不锈钢按组织可分为铁素体不锈钢:如Crl7、 Cr17Ti、Cr28等,马氏体不锈钢:如2Cr13、3Crl3、 4Cr13等,奥氏体不锈钢:如0Crl8Ni9Ti、1Crl8Ni9Ti、 Crl8Nil2Mo2Ti三种。
由于奥氏体不锈钢含有较高的铬和镍.可形成致密的氧化膜且热强性高,故奥氏体不锈钢比其它不锈钢具有更优良的耐蚀性、塑性、高温性能和焊接性,因此奥氏体不锈钢在航空、化工和原子能等工业中得到日益广泛的应用。
但在生产过程是如果焊条选用或焊接工艺不正确时,会产生晶间腐蚀及焊接热裂纹。
2 晶间腐蚀的概念晶间腐蚀是产生在晶粒之间的一种腐蚀形式。
产生晶间腐蚀的不锈钢,受到应力作用时,晶间腐蚀由表面开始而逐渐向内部发展。
这种腐蚀对于承受重载零件危害很大,因为它不引起零件外形的任何变化而使品粒之间结合遭到破坏,严重降低其机械性能,强度几乎完令损失,往往使机械设备发生突然破坏,是不锈钢最危险的一种破坏形式。
晶间腐蚀可以分别产生在热影响区、焊缝或熔合线上。
在熔合线上产生的晶间腐蚀又叫刃状腐蚀。
3晶间腐蚀产生的原因现以18—8型奥氏体钢(例如1CrI8NI9)来说明晶问腐蚀产生的过程。
室温下碳元素在奥氏体的溶解度很小,约0.02-0.03% (质量分数),而一般奥氏体钢中含碳量均超过0.02-0.03%,因此只能在淬火状态下使碳固溶在奥氏体中,以保证钢材具有较高的化学稳定性。
但是这种淬火状态的奥氏体钢当加热到450~850~(2或在该温度下长期使用时,碳在奥氏体中的扩散速度大于铬在奥氏体中的扩散速图1晶间腐蚀度。
当奥氏体中含碳量超过它在窀温的溶解度(0.02-0.03%)后。
碳就不断地向奥氏体晶粒边界扩散,并和铬化合,析出碳化铬Gr23C6。
但收稿日期:2o03一o6一o4 是铬的原子半径较大,扩散速度较小,来不及向边界扩散,品界附近大量的铬和碳化合形成碳化铬,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自品界附近。
热力设备在运行期间的腐蚀与防止热力设备在运行期间,由于所处的环境介质在特定的条件下具有侵蚀性,如不同阴离子含量、不同pH值的水等会对金属产生各种各样的腐蚀。
从腐蚀形态上来说主要有均匀腐蚀和局部腐蚀,其中局部腐蚀对设备的安全运行危害较大。
热力设备的腐蚀不仅会缩短设备的使用年限,造成经济损失,同时还会危害到其它设备,例如,腐蚀产物随给水进入锅炉后会加剧受热面的结垢速度并进一步引起垢下腐蚀,形成恶性循环,最终造成设备事故。
因此,必须采取有效措施,防止或减缓各种类型的腐蚀。
第一节金属腐蚀简介金属材料与周围的介质发生了反应而遭到破坏的现象称之为金属腐蚀。
破坏的结果不但损坏了其固有的外观形态,而且也破坏了金属的物理和化学性能。
腐蚀其实是一个相对概念,金属无论接触到什么介质,都会发生腐蚀,只不过腐蚀速度不同而已。
按照腐蚀机理,金属腐蚀一般可分为化学腐蚀和电化学腐蚀。
1. 化学腐蚀金属与周围介质直接发生化学反应引起的腐蚀。
这种腐蚀多发生在干燥的气体或其它非电解质中。
例如,在炉膛内,水冷壁外表面金属在高温烟气的作用下引起的腐蚀;在过热蒸汽管道内,金属与过热蒸汽直接作用引起的腐蚀等。
2. 电化学腐蚀金属与周围介质发生了电化学反应,在反应过程中有局部腐蚀电流产生的腐蚀。
金属处在潮湿的地方或遇到水时,容易发生电化学腐蚀。
这类腐蚀在生产中较为普遍,而且危害性较大。
例如,钢铁与给水、锅炉水、冷却水以及湿蒸汽、潮湿的空气接触所遭到的腐蚀,都属于电化学腐蚀。
一、按照腐蚀的形态可分为均匀腐蚀和局部腐蚀1. 均匀腐蚀是指金属表面几乎全面遭受腐蚀。
2. 局部腐蚀是指腐蚀主要集中在金属表面的某个区域,而其它区域几乎未遭到任何腐蚀的现象。
局部腐蚀常见有以下几种类型:(1)小孔腐蚀:腐蚀集中在个别点上,腐蚀向纵深发展,最终造成金属构件腐蚀穿孔。
(2)溃疡状腐蚀:在金属某些部位表面上损坏较深,腐蚀面较大的腐蚀。
(3)选择性腐蚀在合金的金属表面上只有一种金属成分发生腐蚀。
晶间腐蚀基本概念简介英文名称:intergranular corrosion;intercrystalline corrosion说明:主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。
晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。
而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。
通常出现于黄铜、硬铝合金和一些不锈钢、镍基合金中。
不锈钢焊缝的晶间腐蚀是化学工业的一个重大问题。
不锈钢不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。
产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。
晶间腐蚀可以分别产生在焊接接头的热影响区(HAZ)、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀线腐蚀(KLA)。
不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。
当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。
因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。
数据表明,铬沿晶界扩散的活化能力162~252KJ/mol,而铬由晶粒内扩散活化能约540KJ/mol,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。
敏化含碳量超过0.03%的不稳定的奥氏体型不锈钢(即不含钛或铌的0Cr18Ni9不锈钢),如果热处理不当则在某些环境中易产生晶间腐蚀。