七年级数学上册期末总复习教学设计
- 格式:doc
- 大小:1.35 MB
- 文档页数:24
浙教版数学七年级上册第五章《一元一次方程》复习教学设计一. 教材分析浙教版数学七年级上册第五章《一元一次方程》是学生学习初中数学的重要内容,这部分知识为学生提供了用数学语言描述现实世界的基础工具,也为后续学习更复杂的方程和不等式打下基础。
本章主要介绍一元一次方程的概念、解法以及应用。
教材通过丰富的实例和循序渐进的练习,帮助学生理解和掌握一元一次方程的解法,并能够将其应用于解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于解决一些简单的数学问题已经有了一定的方法论。
但同时,这个阶段的学生还需要在逻辑思维、问题解决能力等方面得到进一步的培养。
在《一元一次方程》这部分内容的学习中,学生需要从具体的实例中抽象出方程,并通过变形和求解来找到问题的答案。
这对学生的抽象思维能力是一个挑战。
三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够将一元一次方程应用于解决实际问题,提高解决实际问题的能力。
3.培养学生的抽象思维能力和逻辑推理能力。
四. 教学重难点1.重难点:一元一次方程的概念,一元一次方程的解法。
2.难点:将实际问题转化为方程,并求解。
五. 教学方法采用问题驱动的教学方法,通过丰富的实例,引导学生从具体到抽象的过程,逐步理解一元一次方程的概念和解法。
同时,通过小组合作和讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生理解和巩固一元一次方程的知识。
2.准备多媒体教学工具,用于展示和讲解一元一次方程的解法。
七. 教学过程导入(5分钟)通过一个简单的实际问题引导学生思考如何用数学方法来描述和解决这个问题。
例如,可以通过一个关于分配物品的问题,让学生思考如何用数学方法来表示这个问题。
呈现(10分钟)在学生思考的基础上,呈现一元一次方程的概念和解法。
通过具体的实例,让学生理解什么是一元一次方程,以及如何求解一元一次方程。
一元一次方程的应用【目标导航】1.通过利润利率问题、行程问题等实际问题的分析,使学生掌握如何用方程来解决一些生活中的实际问题;2.引导学生积极探索思考,培养学生分析问题和用方程解决实际问题的能力;3.让学生在问题情境中感受数学的应用价值,从而产生对数学学习的浓厚兴趣.【要点梳理】列一元一次方程解应用题的一般步骤 1.审题;2.根据题意恰当的设出未知数;3.分析问题,找出等量关系并列出方程;4.求出所列方程的解;5.检验解的合理性;6.做出答案.【应用举例】一、和差倍分问题:父亲今年32岁,儿子今年8岁,几年后父亲的年龄是儿子年龄的3倍? 答案:解:设x 年后父亲的年龄是儿子年龄的3倍 32+x=3(8+x),解得:x=4. 二、数字问题:有一个两位数,它的十位上的数字比个位上的数字大5,并且这个两位数比它的两个数字之和的7倍还要大3,求这个两位数. 答案:解:设个位数为x,十位数为(x+5) 10(x+5)+x=7(x+x+5)+3, x=4, 这个两位数是:94 三、等积问题:一个长为20m ,宽为15m ,高为5m 的长方体盒子盛满水倒进棱长为15m 的正方体盒子,求水的高度. 答案:解:设水的高度是:xm. 151520155x ⨯⨯=⨯⨯203x =答:水高203m. 四、行程问题 1.(2011广西崇左)元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”,请你回答:良马___________天可以追上驽马. 答案:20.解:设良马x 天可以追上驽马,根据题意,得240x =150(12+x ).解得x =20.所以良马20天可以追上驽马.2.甲、乙两人骑自行车同时从相距65km 的两地同时出发,已知甲比乙每小时多骑2.5km , (1)若两人相向而行,2小时相遇,求乙的速度?(2)若两人同向而行,甲经过几小时追上乙? 答案: 解:(1)设:两人相向而行乙的速度每小时xkm. 2(x+x+2.5)=65, x=30答:乙的速度每小时30 km 。
章末复习教学目标1.复习立体图形与平面图形,直线、射线、线段,以及角的相关知识.2.通过复习本章知识绘制出知识结构图.教学重点应用直线、射线、线段的相关知识,借助数学语言的转化解决有关问题.教学难点体会从实际背景中抽象出数学问题,应用相关知识解决问题.教学过程复习导入请你带着下面的问题,进入本课的复习吧!1.下面是本章学到的一些数学名词,你能简短地描述这些数学名词吗?你能画出图形来表示它们吗?立体图形平面图形展开图两点的距离余角补角2.你能举出几个立体图形和平面图形的实例吗?3.找几个简单的立体图形,分别画出它们的展开图和从不同方向观察到的平面图形.你能由此说说立体图形与平面图形的联系吗?4.在本章中,关于直线和线段有哪些重要结论?5.本章学习了有关角的哪些知识?有哪些重要结论?【设计意图】以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望.要点复习考点一从不同方向观察立体图形【例1】从正三棱锥上面看到的平面图形是________.(填“A”或“B”)【答案】A【解析】从上面能看到正三棱锥的顶点及与顶点相连的三条棱.【归纳】(1)从前面观察物体看到的平面图形体现物体的长和高,从上面观察物体看到的平面图形体现物体的长和宽,从左面观察物体看到的平面图形体现物体的宽和高.(2)画从不同方向观察立体图形得到的平面图形时,看得见的部分用实线,看不见的部分用虚线.【跟踪训练1】如图是由几个小正方体搭成的几何体的从上面看到的平面图,小正方形中的数字表示在该位置小正方体的个数,画出从前面和左面看到的平面图形.【分析】根据图中的数字,可知从前面看有3列,从左到右的个数分别是1,2,1;从左面看有2列,个数都是2.【答案】解:从前面看从左面看【归纳】根据从上面看到的标数字的形状图确定从前面和左面看到的形状图,只需比较对应各行、各列数字的大小即可,一般按如下技巧进行:(1)从前面看到的形状图由各列的最大数字确定;(2)从左面看到的形状图由各行的最大数字确定;(3)最后将数字转化为正方形的个数,画出形状图.【设计意图】通过例1及跟踪训练1,考查学生对从不同方向观察立体图形这类问题的掌握情况.考点二立体图形的展开图【例2】在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体展开图的是().A.B.C.D.【答案】C【归纳】正方体的展开图可按如下口诀记忆:中间四个面,上、下各一面;中间三个面,一、二隔“河”见;中间两个面,“楼梯”就出现;中间没有面,三、三连一线.【跟踪训练2】根据下列立体图形的平面展开图,填写立体图形的名称.(1)_______,(2)_______,(3)________.【答案】长方体三棱柱三棱锥【归纳】根据展开图判断立体图形形状的规律(1)展开图全是长方形或正方形时,要考虑长方体和正方体;(2)展开图中有三角形时,要考虑三棱柱或棱锥;(3)展开图中有长方形(或正方形)和圆时,要考虑圆柱;(4)展开图中有扇形时,要考虑圆锥.【设计意图】通过例2及跟踪训练2,让学生掌握立体图形和平面图形之间的相互转化,并能够解决立体图形的展开图这类问题.考点三直线、线段的基本事实【例3】A,B两地间修建曲路与修建直路相比,虽然有利于游人更好地观赏风光,但增加了路程.其中蕴含的数学道理是().A.经过一点可以作无数条直线B.经过两点有且只有一条直线C.两点之间,有若干种连接方式D.两点之间,线段最短【答案】D【解析】两地间修建曲路与修建直路相比,增加了路程,其中蕴含的数学道理是:两点之间,线段最短.【跟踪训练3】经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是_____________________.【答案】两点确定一条直线【解析】经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是:两点确定一条直线.【归纳】直线、线段的性质在日常生活中有很多应用,我们要善于抓住问题的实质.【设计意图】通过例3及跟踪训练3,让学生体会数学知识在生活中的应用价值.考点四线段的有关计算【例4】两根木条,一根长20 cm,另一根长24 cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为().A.2 cm B.4 cmC.2 cm或22 cm D.4 cm或44 cm【答案】C【解析】设较长的木条为AB=24 cm,较短的木条为BC=20 cm,点M,N分别为线段AB,BC的中点,则BM=12 cm,BN=10 cm.(1)如图①,点C不在线段AB上时,MN=BM+BN=12+10=22(cm);(2)如图②,点C在线段AB上时,MN=BM-BN=12-10=2(cm).综上所述,两根木条的中点之间的距离是2 cm或22 cm.【归纳】(1)遇到有关线段的计算问题,应认真分析图形及已知条件,找出已知与未知之间的关系,运用线段和、差、倍、分的意义及线段的中点的性质解题.(2)在题目没有给出图示的情况下,注意必要时分类讨论,在各种情况下分别求解后,得到题目的最终答案.【设计意图】通过例4的讲解学习,锻炼学生的思维严谨性,培养分类讨论的习惯.考点五角的有关计算【例5】如图,∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=().A.15°B.45°C.15°或30°D.15°或45°【答案】D【解析】因为∠AOB=60°,射线OC平分∠AOB,所以∠AOC=∠BOC=12∠AOB=30°.以OC为一边作∠COP=15°,分两种情况讨论:(1)如图①,当OP在∠BOC内部时,∠BOP=∠BOC-∠COP=30°-15°=15°;(2)如图②,当OP在∠AOC内部时,∠BOP=∠BOC+∠COP=30°+15°=45°.综上所述,∠BOP=15°或45°.【归纳】解与角有关的计算题的依据是平角、直角的度数及角的平分线的性质,熟练掌握角的平分线的性质是求解的关键;当题目中的条件在图形中没有明确给出时,要注意是否需要进行分类讨论.【设计意图】通过例5的讲解学习,让学生学会运用分类讨论思想解决有关角的平分线的问题.考点六余角和补角【例6】已知∠A和∠B互为补角,并且∠B的一半比∠A小30°,求∠A,∠B.【答案】解:设∠A=x°,则∠B=180°-x°.根据题意,得∠B=2(∠A-30°),得180-x=2(x-30),解得x=80.所以,∠A=80°,∠B=100°.【归纳】余角、补角的相关计算往往利用方程思想,即设一个角的度数为α,则它的余角和补角的度数分别为90°-α,180°-α,再根据题目所给的条件列方程求解.【跟踪训练4】一只蚂蚁从O点出发,沿东北方向爬行2.5 cm,碰到障碍物B后,折向北偏西60°方向爬行3 cm到C点.(1)画出蚂蚁的爬行路线;(2)求出∠OBC的度数.【答案】解:(1)如图所示;(2)∠OBC=45°+30°=75°.【归纳】解答与表示方向的角有关的问题,需要从图形的角度入手,解题的关键是找准中心,正确画出表示方向的角.【设计意图】通过例6及跟踪训练4,让学生掌握应用方程思想解决角的问题,以及应用方位角的相关知识解决实际问题.课堂小结板书设计一、从不同方向观察立体图形二、立体图形的展开图三、直线、线段的基本事实四、线段的有关计算五、角的有关计算六、余角和补角课后任务完成教材第185页复习题6第1~7题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
苏科版数学七年级上册第二章《有理数》复习课教教学设计一. 教材分析《苏科版数学七年级上册第二章《有理数》复习课》是学生在学习了有理数的运算、大小比较、相反数和绝对值等知识后进行的一次复习。
本节课的主要内容是有理数的运算,包括加法、减法、乘法和除法。
复习课旨在帮助学生巩固和掌握有理数的基本运算规则,提高学生的运算能力,并为后续的学习打下坚实的基础。
二. 学情分析学生在之前的学习中已经接触过有理数的基本概念和运算规则,对有理数的加法、减法、乘法和除法有了一定的了解。
但部分学生在运算过程中仍存在一些问题,如运算速度慢、错误率高、对运算规律掌握不牢固等。
因此,在复习课中,需要针对这些学生存在的问题进行针对性的教学,帮助学生提高运算能力。
三. 教学目标1.知识与技能目标:通过复习,使学生掌握有理数的加法、减法、乘法和除法的运算规则,提高学生的运算速度和正确率。
2.过程与方法目标:通过自主学习、合作交流等学习方式,培养学生探究问题和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。
四. 教学重难点1.重点:有理数的加法、减法、乘法和除法的运算规则。
2.难点:运算过程中的巧算和运算规律的应用。
五. 教学方法1.自主学习法:引导学生自主探究有理数的运算规则,提高学生的自主学习能力。
2.合作交流法:学生进行小组讨论,培养学生合作交流的能力。
3.案例分析法:通过分析典型例题,使学生掌握运算规律。
4.巩固练习法:布置有针对性的练习题,帮助学生巩固所学知识。
六. 教学准备1.教师准备:备好复习课的相关教学材料,如PPT、练习题等。
2.学生准备:提前预习相关知识,准备好笔记本和笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的基本概念和运算规则,激发学生的学习兴趣。
2.呈现(10分钟)教师利用PPT展示有理数的加法、减法、乘法和除法的运算规则,引导学生进行分析。
浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
(2)已知关于a,b 的单项式()bm am 4- 次数为六,则m= 。
二.多项式1.定义:几个单项式的和叫做多项式.2.在多项式里,每个单项式叫做多项式的项.(包含前面的符号)3.常数项:不含字母的项(带符号).4.多项式的次数:多项式中次数最高项的次数. 注意:多项式的各项中,分数的分母中不能含有字母 一、典型例题:多项式的概念小结:多项式中的每一项包括号前面的符号,次数是次数最高项的次数,三.同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项.注意:同类项与字母的排列顺序无关四.合并同类项法则:(1)系数相加.(2)字母和字母的指数不变.注意:交换同类项位置时,要连同前面的符号一起移动.五.去括号法则:a+(b+c)=a+b+c括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号。
a -(b+c)=a-b-c括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
当一个多项式的化简结果不含某个字母时,这个多项式的值与这个字母的取值无关!二、练习(练习卷)冲一冲,争当高手1、=.3,-π142、小明一家外出旅游5天,这5天的日期之和是20,小明一家外出旅游最后一天是号。
3、一道题:“计算()()()3233232332-+x+x---的值,其中x --y+y322xy2yyxxyxx1,y=1.”甲同学认为这道题计算的结果与“x==21”这个条件无关,你说他的想法是否正确?请说明2理由.4、探索规律:如图,一张长方形桌子可以坐6人,按下图方式将桌子拼在一起<1>2张桌子拼在一起可以坐多少人?三张桌子呢?n张桌子呢?作业:课本页35----38 复习巩固。
第一章丰富的图形世界【知识与技能】掌握本章重要知识,能灵活运用所学知识,解决一些问题.【过程与方法】通过梳理本章知识,发展空间观念和合理的想象,结合分类讨论的思想,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习的兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】掌握图形的展开与折叠,截一个几何体,从三个方向看物体的形状等重点知识.一、知识框图,整体把握丰富的图形世界展开与折叠正方体的展开图平面图形的折叠圆柱、圆锥的侧面展开图生活中的立体图形常见的几何体:柱体、锥体、球体点、线、面、体之间的关系截一个几何体正方体的截面形状常见几何体的截面形状由截面想象几何体从三个方向看物体的形状从正面看从左面看从上面看【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系,教学时,边回顾边建立结构框图.二、释疑解感,加深理解1.常见的几何体(1)柱体棱柱:有两个面互相平行且相等,其余各面都是平行四边形,由这些面所围成的几何体叫棱柱(如图1).圆柱:以长方形的一边所在的直线为旋转轴,将长方形绕这条旋转轴旋转一周所形成的几何体叫圆柱(如图2).(2)锥体棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥(如图3).圆锥:以直角三角形一条直角边所在的直线为旋转轴,将三角形绕旋转轴旋转一周所形成的几何体叫做圆锥(如图4).(3)球体以半圆的直径为旋转轴,将半圆绕旋转轴旋转一周所形成的几何体叫做球体(如图5).2.展开与折叠立体图形沿棱或面与面的交线剪开可以展开为一个平面图形,而平面图形沿某些线折叠又可以围成一定形状的立体图形.3.截一个几何体用一个平面去截几何体,截出的面叫截面.若几何体各面是平的,则所得截面是多边形;若几何体有曲面,得到截面有可能是多边形,也有可能是由直线和曲线围成的图形,还有可能是由曲线围成的,如圆和椭圆.4.从三个方向看简单组合的几何体从正面看到的图形反映了物体的层数和列数从左面看到的图形反映了物体的层数和行数从上面看到的图形反映了物体的列数和行数三、典例精析,复习新知例1如下图所示,都为柱体的是()【分析】A中第二个图形是圆台;B中第三个图形为棱锥;D中第二个图形为圆锥;C 中均为柱体.故正确答案为C.例2画出下列图形的平面展开图形.【分析】首先要分析主体图形是由哪些面组成的,再分析其展开图形.图(1)是由2个三角形和3个矩形组成;图(2)是由1个扇形和1个圆组成;图(3)是由4个三角形和1个正方形组成.解:例 3 如果用一个平面截掉一个正方体的一个角,剩下的几何体有几个顶点?几条棱?几个面?【分析】本题可借助实物模型实际动手操作来判断.由于条件中没有明确说明怎样截,故需分类讨论.解:有以下四种不同的截法:第一种情况:如图(1)所示,截去正方体一角,剩下的几何体有7个顶点,12条棱,7个面;第二种情况:如图(2)所示,截去正方体一角,剩下的几何体有8个顶点,13条棱,7个面;第三种情况:如图(3)所示,截去正方体一角,剩下的几何体有9个顶点,14条棱,7个面;第四种情况:如图(4)所示,截去正方体一角,剩下的几何体有10个顶点,15条棱,7个面.例4如图,由5个小正方体搭建而成一个几何体,请画出从正面、左面、上面看到的图形?【分析】观察几何体,从正面看有两列,每列分别有1、2层;从左面看有三列,分别有1、2、1层;从上面看有两列,分别有1、3层.解:如图.例5如图,是由n个小正方体块所搭成的几何体,从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,请画出这个几何体从正面和左右看到的图形.【分析】先根据从上面看到的图形来确定从正面看到的图形和从左面看到的图形的列数和行数,再根据图中的数字确定每列每行正方体的个数,从而画出从正面和左面看到的图形.解:根据小正方形的数字摆出几何体,再画出从正面和左面看到的图形,所摆几何体如图所示:∴这个几何体从正面和左面看到的图形如图所示:【教学说明】师生共同回顾本章主要知识点,教师适时给予评讲,使学生真正成为学习的主体,激发学生学习的兴趣.四、复习训练,巩固提高1.写出下列各立体图形的名称.2.如图,绕虚线旋转一周形成的图形是()3.下列图形中,不是正方体平面展开图的是()4.用平面截下列几何体,找出相应的截面形状.5.如图是某个几何体从三个方面看到的图形,则这个几何体是()A.长方体B.圆锥C.圆柱D.正三棱柱6.下图是由一些相同的小正方体构成的立体图形从正面、左面、上面看到的图形,这些相同小正方体的个数是()A.4个B.5个C.6个D.7个7.下图是一个正方体的平面展开图,这个正方体是()8.如图所示,沿图中虚线把圆柱的侧面展开,会得到什么图形?若圆柱的底面半径为4cm,高为5cm.求侧面展开图的面积.(结果保留π)9.用小立方体搭一个几何体,使得它从正面和从上面看到的图形如图所示,这样的几何体只有一种吗?最多需要几个小立方体?最少需要几个小立方体?【教学说明】加强本章知识的应用,加深知识的理解,前几题由学生自主完成,第9题可师生共同探讨得出结论.【答案】1.(1)圆柱(2)三棱柱(3)三棱锥(4)圆锥2.D3.D4.(1)B (2)C (3)A5.A6.C7.D8.解:圆柱的侧面展开图是一个长方形,其面积为:S=2πr·h=2π×4×5=40π(cm2).答:侧面展开图的面积是40πcm2.9.解:这样的几何体不唯一,它最多需要17个小立方体,最少需要11个小立方体.五、师生互动,课堂小结本节课你能完整地回顾本章所学的知识吗?你有哪些收获?还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,让学生自主交流与反思,对于学生的困惑和疑问教师应予以补充.1.布置作业:从教材“复习题1”中选取.2.完成练习册中本章复习课的练习.本节课通过复习归纳本章内容,让学生对本章知识了然于胸.通过例题与复习训练,使学生能在全面掌握知识点的前提下,又能抓住重点.巧用幂的乘方分解因式幂的乘方公式:m n n m a a )()(==nm a , 它的逆向公式是:nma =m n n m a a )()(=。
浙教版数学七年级上册第三章《实数》复习教学设计一. 教材分析浙教版数学七年级上册第三章《实数》是学生在初中阶段首次接触实数的概念。
本章主要内容包括实数的定义、分类、运算以及实数与数轴的关系。
本章内容是后续学习代数和几何知识的基础,因此,对于学生的理解和掌握至关重要。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学符号和运算规则有一定的了解。
但实数概念较为抽象,学生可能难以理解。
因此,在教学过程中,需要注重引导学生从具体实例中抽象出实数的概念,并理解实数与数轴的关系。
三. 教学目标1.理解实数的定义和分类,掌握实数的运算规则。
2.理解实数与数轴的关系,能够利用数轴解释和解决实数问题。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和分类。
2.实数的运算规则。
3.实数与数轴的关系。
五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中抽象出实数的概念。
2.利用数轴辅助教学,帮助学生理解实数与数轴的关系。
3.采用小组合作学习的方式,让学生在讨论中巩固实数的运算规则。
六. 教学准备1.准备相关实数的教学案例和实例。
2.制作数轴教具,用于教学演示。
3.准备实数运算的练习题,用于巩固练习。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的有理数知识,如整数和分数的关系,有理数的运算规则等。
为学生引入实数的概念做铺垫。
2.呈现(15分钟)呈现实数的定义和分类,让学生从具体实例中抽象出实数的概念。
通过讲解和示例,让学生理解实数与数轴的关系。
3.操练(15分钟)让学生进行实数运算的练习,巩固学生对实数运算规则的理解。
教师可提供解答过程,让学生跟随讲解,逐步掌握实数的运算方法。
4.巩固(10分钟)采用小组合作学习的方式,让学生在小组内讨论实数运算问题,共同解决难题。
教师可适时给予指导,帮助学生巩固实数的运算规则。
5.拓展(10分钟)让学生利用数轴解释和解决实数问题,如判断实数的大小关系、求解实数的相反数等。
华师大版数学七年级上册《复习题》教学设计一. 教材分析华师大版数学七年级上册《复习题》教材内容丰富,结构清晰。
本册书分为四个单元,分别为:第一单元有理数,第二单元整式的加减,第三单元几何图形的性质,第四单元方程(一)。
每个单元后面都有相应的复习题,用于巩固所学知识。
本教学设计以第一单元有理数的复习题为例进行设计。
二. 学情分析学生在学习有理数这一单元时,已经掌握了有理数的定义、性质、运算等基本知识。
但部分学生对于有理数的应用仍存在困难,特别是在解决实际问题时,不能灵活运用有理数知识。
因此,在复习有理数时,需要重点引导学生运用有理数知识解决实际问题,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握有理数的定义、性质、运算,能运用有理数知识解决实际问题。
2.过程与方法:通过复习题的练习,提高学生的运算速度和准确率,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:有理数的定义、性质、运算。
2.难点:运用有理数知识解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的定义、性质、运算。
2.使用案例分析法,让学生通过解决实际问题,巩固有理数知识。
3.利用小组合作学习法,培养学生的团队合作精神和沟通能力。
六. 教学准备1.教师准备复习题课件,包括题目和答案。
2.学生准备笔记本,用于记录重点知识和解题过程。
七. 教学过程教师通过提问方式引导学生回顾有理数的定义、性质、运算,为新课的复习做好铺垫。
2.呈现(10分钟)教师出示复习题,要求学生在规定时间内完成。
题目包括填空题、选择题和解答题,涵盖有理数的定义、性质、运算等知识点。
3.操练(10分钟)学生独立完成复习题,教师巡回指导,解答学生疑问。
对于错误较多的题目,教师可进行讲解,确保学生掌握。
4.巩固(10分钟)教师选取部分学生完成的题目,进行讲解和分析,强调解题思路和技巧。
七年级数学上册期末总复习教学设计 第一二章:有理数及其运算复习知识要求:1、有具体情境中,理解有理数及其运算的意义;2、能用数轴上的点表示有理数,会比较有理数的大小.3、借助数轴理解相反数与绝对值的意义,会求有理数的相反数与绝对值.4、经历探索有理数运算法则和运算律的过程;掌握有理数的加、减、乘、除、乘方及简单的混合运算;理解有理数的运算律,并能利用运算律简化运算,及能运用有理数及其运算律解决简单的实际问题.知识重点:绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点.知识难点:绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点. 考点:绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象. 教学过程设计:教 学 过 程修 改 与 备 注一、有理数的基础知识 1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数.2、有理数的分类:(1)按定义分类: (2)按性质符号分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数03、数轴数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.4、相反数如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.5、绝对值(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a(3)两个负数比较大小,绝对值大的反而小. 二、有理数的运算 1、有理数的加法(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.(2)有理数加法的运算律: 加法的交换律 :a+b=b+a ;加法的结合律:( a+b ) +c = a + (b +c) 用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.2、有理数的减法(1)有理数减法法则:减去一个数等于加上这个数的相反数. (2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;3、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0. (2)有理数乘法的运算律:交换律:ab=ba ;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac.(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a 和b 互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.4、有理数的除法有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5、有理数的乘法 (1)有理数的乘法的定义:求几个相同因数a 的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“na ”其中a 叫做底数,表示相同的因数,n 叫做指数,表示相同因数的个数,它所表示的意义是n 个a 相乘,不是n 乘以a ,乘方的结果叫做幂.(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算. (2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.练习:一、选择题:1、下列说法正确的是( ) A 、非负有理数即是正有理数 B 、0表示不存在,无实际意义 C 、正整数和负整数统称为整数 D 、整数和分数统称为有理数2、下列说法正确的是( )A 、互为相反数的两个数一定不相等B 、互为倒数的两个数一定不相等C 、互为相反数的两个数的绝对值相等D 、互为倒数的两个数的绝对值相等 3、绝对值最小的数是( )A 、1B 、0C 、– 1D 、不存在4、计算())2(244-+-所得的结果是( )A 、0B 、32C 、32-D 、165、有理数中倒数等于它本身的数一定是( ) A 、1 B 、0 C 、-1 D 、±16、(– 3)–(– 4)+7的计算结果是( )A 、0B 、8C 、– 14D 、– 8 7、(– 2)的相反数的倒数是( ) A 、21 B 、21- C 、2 D 、– 2 8、化简:42=a ,则a 是( )A 、2B 、– 2C 、2或– 2D 、以上都不对 9、若21-++y x ,则y x +=( )A 、– 1B 、1C 、0D 、310、有理数a ,b 如图所示位置,则正确的是( )A 、a+b>0B 、ab>0C 、b-a<0D 、|a|>|b| 二、填空题 11、(– 5)+(– 6)=________;(– 5)–(– 6)=_________. 12、(– 5)³(– 6)=_______;(– 5)÷6=___________.13、()=⎪⎭⎫ ⎝⎛⨯-2122_________;21244⨯-=________.14、()=⨯-27132__________;=÷-9132________. 15、=-+-20032002)1(1_________;16、平方等于64的数是___________;__________的立方等于– 6417、75-与它的倒数的积为__________. 18、若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,则a+b=_______;cd=______;m=__________.19、如果a 的相反数是– 5,则a=_____,|a|=______,|– a – 3|=________.20、若|a|=4,|b|=6,且ab<0,则|a-b|=__________. 三、计算:(1)22)5()25(848-÷--÷- (2)145)2(535213⨯-÷+- (3))2(3)3(322-⨯+-÷- (4))32()4(824-⨯-÷-(5))3()6()2(16323-⨯---÷+-(6)⎥⎦⎤⎢⎣⎡÷-⨯+-95)31(53.1四、某工厂计划每天生产彩电100台,但实际上一星期的产量如下所示: 星期 一 二 三 四 五 六 日 增减/辆–1+3–2+4+7–5–10比计划的100台多的记为正数,比计划中的100台少的记为负数;请算出本星期的总产量是多少台?本星期那天的产量最多,那一天的产量最少?五、某工厂在上一星期的星期日生产了100台彩电,下表是本星期的生产情况: 星期 一 二 三 四 五 六 日 增减/辆–1+3–2+4+7–5–10比前一天的产量多的计为正数,比前一天产量少的记为负数;请算出本星期最后一天星期日的产量是多少?本星期的总产量是多少?那一天的产量最多?那一天的产量最少?第三章 整式的加减复习复习内容:列式表示数量关系、单项式、多项式、整式等有关概念以及整式加减运算.复习目标: 1.知识与技能进一步理解单项式、多项式、整式及其有关概念,准确确定单项式的系数、次数、多项式的项、次数;理解同类项概念,掌握合并同类项法则和去括号规律,熟练地进行整式加减运算.2.过程与方法通过回顾与思考,帮助学生梳理本章内容,提高学生分析、归纳、语言表达能力;提高运算能力及综合应用数学知识的能力. 3.情感态度与价值观培养严谨的学习态度和积极思考的学习习惯,通过列式表示数量关系,体会数学知识与实际问题的联系.教学过程设计:教 学 过 程修改与备注 一、本章知识结构框架图二、易错知题分析 误区一 书写不规范致误例1 用代数式表示下列语句:(1)比x 与y 的和的平方小x 与y 的和的数 (2)a 的2倍与b 的31的差除以a 与b 的差的立方. 错解(1)(22y x+)-(x+y ) (2)(2a-1/3b )÷(x+y) 剖析:(1)要表示的是“比x 与y 的和的平方小x 与y 的和的数”,应该先求和再求平方即应该是)()(2y x y x +-+,而不应该是(22y x +)-(x+y ).(2)是书写不规范,除号要用分数线代替,即应该写成3)(312b a ba --.代数式单项式系数次数多项式整式项合并同类项同类项去括号、添括号法则列代数式整式加减法丰富的问题情景正解:(1))()(2y x y x +-+ (2)3)(312b a ba -- 误区二 概念不清致误例2、判断下列各组是否是同类项:(1)0.2x 2y 与0.2xy 2 (2)4abc 与4ac (3)-130与15 (4)-532m n 与423n m(5)-++()()ab ab 332与 (6)7311pq p q n nn n++与错解:(1)(3)(4)(6)是同类项,(2)(5)不是同类项.剖析:(1)0.2x 2y 与0.2xy 2因为字母x 的指数不同,字母y 的指数也不同,所以不是同类项.(2)4abc 与4ac ,显然第二个单项式中没有字母b 所以不是同类项. (3)都是单独一个数-130和15,是同类项.(4)虽然-532m n 与423n m 字母的排列顺序不同,但相同字母m 的指数相同,n 的指数相同,字母也相同,所以是同类项.(5)将(a+b)看成一个整体,那么-++()()ab ab 332与是同类项. (6)7311pq p q n nn n++与中,字母相同都是p ,q 并且字母p 的指数都是n+1,q 的指数都是n ,也相同,所以是同类项.解:(1)、(2)不是同类项 (3)、(4)、(5)、(6)是同类项. 说明:根据同类项的定义判断,同类项应所含字母相同,并且相同字母的指数也分别相同,同类项与系数无关,与字母的顺序无关.(1)题相同字母的指数不相同; (2)题所含字母不同; (5)题将(a+b)看作一个整体.误区三 去括号致错例3 计算()83432x y x y z z --+-+ 错解:原式=z z y x y x 23438+-+--==z x +=4剖析:去括号时,括号前是“-”号,把括号和它前面的“-”号去掉,括号内各项都要变号,本题是最常见的错误:只改变括号内第一项的符号而忘记改变其余各项的符号.正解:原式=---++83432xy xy z z=-+463x y z(2)括号前的系数不是1 例4 计算()()85322222x y x y --- 错解1:原式=--+8562222x y x y=-2422x y错解2:原式=---85632222x y x y =-2822xy剖析:去括号时,若括号前的系数不是1,则要按分配律来计算,即要用括号外的系数乘以括号内的每一项.本题就是常见的错误:“变符号”与使用“分配律”顾此失彼.正解:原式=22223658y x y x+--==2222y x -=三、经典题型分析 题型一 列代数式1.列代数式的关键是正确掌握数学关联词.2.书写代数式时应注意规范:①代数式中用到乘号,若是数字与数字相乘,要用“³”号;若是数字与字母或字母与字母相乘,通常简写成“²”号或省略不写.②数字与字母相乘时,要把数字写在字母的前面,如“a 的2倍”写成“2a ”而不“a2”.若是带分数与字母相乘,应把带分数化为假分数,如“3225b a 而不是32212b a ” ③代数式中的除的关系,一般应写成分数形式.如a ÷2=2a . ④多项式后面跟单位的,要给多项式加括号,如(ab+cd )平方米. 例1]用代数式表示(1)a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的2倍. (2)314与x 的积与3除y 的商的和. (3)甲、乙两数之和是25,甲为a ,求比乙的2倍小7的数的立方. (4)甲为x ,乙为y ,求甲、乙两数积与乙数倒数的差.分析:注意和、差、倍、和的平方、平方和这些关联词表达的意思.解:(1)()()2122222a b a b +-+ (2)1343x y + (3)[()]22573--a (4)x y y-1点拨: 和是加法运算的结果,差是减法运算的结果,积是乘法运算的结果,商是除法运算的结果,和的平方是先求和再求平方,平方和是先求平方再求和,顺序不同.例2 用代数式表示阴影部分面积.分析:(1)用大半圆的面积减去两个小半园的面积就是阴影部分的面积.(2)阴影部分的面积分两部分,上半部分是长方形的面积减去三角形的面积,下半部分的面积是长方形的面积减去半圆的面积.解:(1)大半圆减去两个小半圆的面积1 21212222πππ()R r r R+--(2)上半部分长方形减去三角形面积S a a a=-=121414222下半部分长方形面积减去半圆面积S a a=-121822π∴S a a阴影=-341822π点拨:注意观察图形的特征,有时计算面积,要用割补法.题型二、与整式的概念有关的题型例3. 判断题(1)-12312,,a bb都是单项式.()(2)单项式-3xy5的系数是3,次数是五次.()(3)数的运算律对代数式都适用.()分析:(1)只有数与字母的积的运算的代数式叫做单项式,其中包括单独一个数或一个字母.而1b的分母中含有字母,是数与字母的商,所以它不是单项式.(2)单项式中的数字因数叫做这个单项式的系数,-3xy5中数字因数是-3,而不是3.就是说系数包括前面的符号.单项式的次数是单项式中所有字母的指数的和.所以-3xy5的次数是1+5即六次而不是五次.-3xy5就是-3xyyyyy它有六个字母因数,是六次.(3)数的运算律对代数式都适用.解:(1)³(2)³(3)√点拨:做判断题时,概念一定要清楚,要仔细阅读题目. 例4. 已知多项式,453121225xy x y x ym +--, (1)求多项式中各项的系数和次数. (2)若多项式是八次三项式,求m 的值.分析:(1)多项式中第一项421xy m +的系数是 4.次数应为所有字母指数的和,所以是2m +1+1=2m +2.第二项-5x 2y 2的系数是-5,次数为2+2=4.第三项-31x 5y 的系数是-31,次数是5+1=6.(2)因为多项式中第二项是4次的,第三项是6次的,均已确定,所以只能第一项是八次的.由(1)知2m +2=8,∴m =3. 解:(1)421x m +y 的系数是4,次数是2m +2. -5x 2y 2的系数是-5,次数是4.-31x 5y 的系数是-31,次数是6. (2)由(1)中2m +2=8,解得m =3.点拨:对于第一个单项式的次数是2m +2可能感到并不习惯,通过多次练习,这样对于字母表示数、次数会有较深的认识.在(2)问中由于多项式是八次三项式,而第二项、第三项的次数分别是4次、6次,故只有第一项应是8次,可得方程,求出m 的值.例5. 给出多项式6a 2b 2-3ab +4a 4b -8b 5+7a 3,分别回答下列问题: (1)是几项式? (2)是几次式? (3)字母a 的最高次数是多少? (4)字母b 的最高次数是多少? (5)把多项式按a 的降幂重新排列; (6)把多项式按b 的降幂重新排列.分析:只要把多项式的项数和次数概念弄清楚,(1)(2)是不难回答的.对于(3)和(4)回答时注意只看题目所要求的字母的次数,而不管其它字母.例如(3)因为多项式6a 2b 2-3ab +4a 4b -8b 5+7a 3中含有字母a 的各项中.a 的指数最大的是4,所以字母a 的最高次数是4. 同样道理可知字母b 的最高次数是5.解:(1)五项式; (2)五次式; (3)a 的最高次数是4; (4)b 的最高次数是5;(5)4a 4b +7a 3+6a 2b 2-3ab 3-8b 5; (6)-8b 5-3ab 3+6a 2b 2+4a 4b +7a 3.点拨:按某一个字母把多项式写成降幂排列(或升幂排列)实际是把这个字母看成主要字母、找出它的次数的大小,利用加法交换律按顺序写出来.此时与其它字母无关.例6、已知2314313521x y xy m n -+-与是同类项,求5m+3n 的值. 分析:所含字母相同,相同字母的指数也相同的项是同类项,所以,由x 的指数相同可得:3m-1=5,m=2;由y 的指数相同可得:2n+1=3,n=1,再代入5m+3n 中求值即可.解:因为2314313521x y xy m n -+-与是同类项,所以3m-1=5,m=2;同时2n+1=3,n=1;所以5m+3n =5³2+3³1=13.点拨:同类项是所含字母相同,相同字母的指数也相同的项,根据同类项的定义可得字母指数的方程,然后再求代数式的值.题型三、求代数式的值例7、 a 是绝对值等于2的负数,b 是最小的正整数,c 的倒数的相反数是-2.求代数式()[]4257232323a b a b c a b a b c a b -+--的值.分析:由已知条件可知a b c =-==2112,,,然后化简代数式,最后将已知条件代入求值.解:∵a 是绝对值等于2的负数,∴a =-2 ∵b 是最小的正整数,∴b =1 再∵c 的倒数的相反数是-∴=212,c()[]425742575232323232323a b a b c a b a b c a b a b a b c a b a b c a b a b c-+--=--++=() a b c =-==∴=⨯-⨯⨯=-2112521125,,原式点拨:求代数式值的题目,一般是找到代数式中的字母的值,将代数式化简后代入求值. 例8. 当a b a b -+=4时,求243()()()a b a b a b a b -+-+-的值. 分析:本题中根据已知条件很难求出a ,b 的值,观察到ba ba b a b a -++-与互为倒数,可把ba ba b a b a -++-,分别看作一个“整体”,将“整体”的值直接代入求值式,这样就可以避免求其中字母的值,简化了求值过程.这种求代数式值的方法叫整体代入法.解:∵a b a b a b a b -+=+-=414,∴ ∴243244314813723()()()a b a b a b a b -+-+-=-=-=³³. 点拨:求代数式的值,一般用化简求值法,但当代数式中字母的值很难求,而所给的题目又有一定的特殊性时,我们观察到含未知数的部分可以看成一个整体时,我们用整体代入法,这样会使运算简便,问题得解.例9 的值。