3.导数零点不可求题型
- 格式:doc
- 大小:184.27 KB
- 文档页数:3
一类导数零点不可求的题型整理吉林磐石 周喜瑞1、(2012课标卷文科第21题)设函数()2x f x e ax =--(1)求()f x 的单调区间(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '--+> ,求k 的最大值2、已知函数()ln f x ax x x =+的图像在点x e =(e 为自然对数的底数)处的切线斜率为3(1)求实数a 的值(2)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值3、设()2ln 2f x x x x =-+,若存在[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使得()f x 在[],a b 上的值域是 ()()2,2k a k b ++⎡⎤⎣⎦,求k 的取值范围。
这题用分参可以快速求出答案为92ln 21,10k +⎛⎤∈ ⎥⎝⎦, 另解:构造函数,则有2个不等的零点,,则单调递增,注意到有2个不等零点,所以,令,易知单调递减,且所以综上,。
注:本题为蔡小雄老师的书上134页上的一道例题(2012年杭州2中五月仿真考第22题),当时给出的解法是分离变量求范围。
4、已知()(]ln ,0,f x ax x x e =-∈ ,()ln x g x x= ,其中e 为自然对数的底数,a R ∈ (1)讨论1a =时,函数()f x 的单调性和极值;(2)求证:在(1)的条件下,()()12f xg x >+ (3)是否存在正实数a 使()f x 的最小值是3?若存在,求出a 的值,若不存在,请说明理由。
本题第二问的解法十分特殊,下面给出一种通法。
导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。
二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。
2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。
丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛丛有时我们无法根据题意求出导函数的零点,就很难根据导数与函数的单调性之间的关系判断出函数的单调性,这就给我们解题造成了很大的障碍.对于这类导函数的零点不可求问题,我们需通过设而不求、二次求导来求得问题的答案.一、设而不求当导函数有零点却难以求出其值时,可采用设而不求法,先设出零点的坐标,将其看作已知的点代入导函数为0的式子进行运算;然后用该零点将函数的定义域划分为几个子区间,在每个子区间上讨论导函数与0的大小关系,从而判断出函数的单调性,求得函数的单调区间和最值.例1.已知f(x)=x2-x-x ln x,且f(x)≥0.证明f(x)存在唯一的极大值x0,且e-2<f(x0)<2-2.证明:对函数求导f(x)=x2-x-x ln x,可得f′()x=2x-2-ln x,x>0,f″()x=2-1x=2x-1x,因此f′()x在(0,12)上单调递减,在(12,+∞)上单调递增,所以f′()x min=f′()2-1=ln2-1<0.由于f′()1=0,f′()e-2=2e-2>0,所以∃x0∈(e-2,2-1),使得f′()x0=0,即2x0-2-ln x0=0.当x∈(x0,1)时,f′()x<0;当x∈(1,+∞)时,f′()x>0.因此f(x)=x2-x-x ln x在(0,x0)与(1,+∞)上单调递增,在(x0,1)上单调递减.所以f(x)存在唯一的极大值点x0,则ln x0=2x0-2,且f(x0)=x02-x0-x0ln x0=-(x0-12)2+14.由于x0∈(e-2,12),所以f(e-2)<f(x0)<f(12)=14.因为f(e-2)=(e-2)2+e-2>e-2,所以e-2<f(x0)<2-2.根据函数零点存在性定理,可知本题中导函数的零点是存在的,但无法求出,所以假设x0是该函数的零点,即令f′()x0=0,通过代换与化简,得到x0∈(e-2,12).最后利用二次函数的单调性来证明f(x)存在唯一的极大值x0,且e-2<f(x a)<2-2.运用设而不求法解题,不必求出零点的具体坐标或者数值,只需将其看作已知的值进行代换即可.二、二次求导当导函数的零点不可求时,可以尝试运用二次或多次求导的方法,来逐步判断出原函数的单调性,求得原函数的最值.在解题的过程中,有时需对同一个函数进行二次求导,有时则要对不同函数进行多次求导.例2.设函数f(x)=e x,且g(x)=ln x,若对任意x≥0,都有f(x)-f(-x)≥ax成立,求实数a的取值范围.解:令h(x)=f(x)-f(-x)-ax=e x-e-x-ax,则在[0,+∞)上,h(x)≥0.对函数h(x)求导,得h′()x=e x+e-x-a,h″()x=e x-e-x,所以h′()x在[0,+∞)上单调递增,h′()0=2-a.①若a≤2,则h′()x≥0,所以函数h(x)在[0,+∞)上单调递增,所以h(x)≥0,所以f(x)-f(-x)≥ax.②若a>2,则h′()x在[0,+∞)上单调递增,所以h′()x m in≤0,所以在(0,+∞)内必然存在一个值m,使得h′()m=0,这与在[0,+∞)上h(x)≥0相矛盾,故舍去.所以实数a的取值范围为a≤2.我们对原函数进行两次求导,即可根据导函数与函数单调性之间的关系判断出上一级函数的单调性和最值,从而确定原函数的单调性和最值,确定参数a的取值范围.总之,虽然导函数零点问题中的零点不可求得,但是由于零点是存在的,所以我们可以通过设而不求、二次求导,并根据导函数与函数单调性之间的关系判断出函数的单调性,即可快速求得最值,证明不等式,求得参数的取值范围.(作者单位:江苏省响水县清源高级中学)“”陈亚冬38Copyright©博看网. All Rights Reserved.。
2020年第12期中学数学教学参考(下旬)'想方法求解导数零点问题的四种策略毛正燕(贵州省安顺市西秀区高级中学)余登高(贵州省安顺市西秀区岩腊乡三股水学校)摘要:导数零点是导数综合应用中非常重要的知识,其考查形式多样,问题设置一般较为复杂,尤其是导 数零点不可求问题。
本文给出四种策略下求解导数零点问题的示例,展现了一种策略独领风骚,多种策略 助力的解题过程。
关键词:导数;零点定理;函数文章编号:1002-2171 (2020) 12-0054-03导数作为高中数学中的重点内容,一直是高考函数压轴题涉及的主要知识。
导数零点问题考查形式多样,问题设置较为复杂,常常给学生的解题带来障碍。
下面笔者通过示例说明求解该类问题的四种策略。
1 一个定理——零点存在性定理在判断导函数/(:c)在给定区间U,6)内的单调 性后,可在区间(a,6)内取两个特殊值(往往取比较容易计算的具有明显特征的数值),计算对应的导函数值,并与〇进行比较,结合函数的零点存在性定理,就 可以得到导函数/'(x)在给定区间(a,6)内存在唯一 的零点。
例1(2019年高考数学全国卷I文科第20题第(I )问)已知函数 /(x) =2sin x—xcos x— x, /U)为/(X)的导函数。
证明:/(1)在区间(0,7T)内存在唯一零点。
分析:先对函数/(I)求导,然后对导函数再次求导,利用函数的单调性与最值,结合函数的零点存在性定理证明。
证明:由题意可得/^(工)=2cos x— [cos x+x(— sin x)] —l=cos x+xsin x一1,设函数g(x)=//(x)=c o s x+xsin x—1,贝!j(:r) =:ccos x。
当时,单调递增;当(|,7T)时,^/(:r)<0,g(jc)单调递减。
则函数g O)的最大值为 —1>〇。
又 g(0) =0,g(7t)=—2,可得 d f) .g(7t)<〇,即/'(f) ./(兀)<〇,所以根据函数的零点存在性定理,可知/(:c)在区间(0, 7t)内存在唯一零点。
高中数学题型归纳大全函数与导数3题型归纳三.零点、隐零点问题考点1.讨论零点个数1.已知函数f(x)=a2x 2−(a +1)x +lnx .(1)当a =1时,求y =f (x )在(e ,f (e ))处切线方程; (2)讨论f (x )的单调区间;(3)试判断a >1时f (x )=0的实根个数说明理由.考点2.证明存在零点2.已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.3.已知设函数f (x )=ln (x +2)﹣(x +1)e ax . (1)若a =0,求f (x )极值;(2)证明:当a >﹣1,a ≠0时,函数f (x )在(﹣1,+∞)上存在零点.考点3.已知零点个数求参4.已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.5.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.考点4.设而不求,虚设零点6.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.7.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.8.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.9.已知函数f(x)=lnx−x+1x−1.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.题型归纳三.零点、隐零点问题考点1.讨论零点个数1.已知函数f(x)=a2x2−(a+1)x+lnx.(1)当a=1时,求y=f(x)在(e,f(e))处切线方程;(2)讨论f(x)的单调区间;(3)试判断a >1时f (x )=0的实根个数说明理由.【分析】(1)求得f (x )的导数,可得切线的斜率和切点,可得所求切线方程; (2)求得f (x )的导数,讨论a =0,a >1,a =1,0<a <1,a <0,解不等式可得f (x )的单调区间;(3)由a >1可得f (x )的极值,判断符号,画出图象,可得实根的个数. 【解答】解:(1)函数f(x)=a2x 2−(a +1)x +lnx 的导数为f ′(x )=ax ﹣(a +1)+1x =(x−1)(ax−1)x, 当a =1时,y =f (x )在(e ,f (e ))处切线斜率为(e−1)2e,切点为(e ,12e 2﹣2e +1),可得切线方程为y ﹣(12e 2﹣2e +1)=(e−1)2e (x ﹣e ), 即为y =(e−1)2e x −12e 2;(2)f ′(x )=ax ﹣(a +1)+1x =(x−1)(ax−1)x,x >0,①当a =0时,f ′(x )=1−xx,可得f (x )的增区间为(0,1), 减区间为(1,+∞);②当a =1时,f ′(x )=(x−1)2x≥0,可得f (x )的增区间为(0,+∞); ③当a >1时,0<1a<1,可得f (x )的增区间为(0,1a),(1,+∞),减区间为(1a,1);④当0<a <1,1a>1,可得f (x )的增区间为(0,1),(1a,+∞),减区间为(1,1a);⑤当a <0时,f (x )的增区间为(0,1),减区间为(1,+∞); (3)a >1时f (x )=0的实根个数为1,a >1时,0<1a<1,可得f (x )的增区间为(0,1a),(1,+∞),减区间为(1a,1),可得f (x )的极小值为f (1)=﹣1−a 2<0,极大值为f (1a)=﹣1−12a−lna <0, 且x →+∞,f (x )→+∞, 可得f (x )=0的实根为1个.考点2.证明存在零点2.已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.【分析】(1)f (x )的定义域为(﹣1,+∞),求出原函数的导函数,进一步求导,得到f ″(x )在(﹣1,π2)上为减函数,结合f ″(0)=1,f ″(π2)=﹣1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数f ″(x )在(﹣1,π2)上存在唯一得零点x 0,结合单调性可得,f ′(x )在(﹣1,x 0)上单调递增,在(x 0,π2)上单调递减,可得f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(﹣1,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f ′(x )>0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)<0,可得函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈(x 1,π2)时,f (x )单调递减.当x ∈(π2,π)时,f (x )单调递减,再由f (π2)>0,f (π)<0.然后列x ,f ′(x )与f (x )的变化情况表得答案.【解答】证明:(1)f (x )的定义域为(﹣1,+∞), f ′(x )=cos x −11+x ,f ″(x )=﹣sin x +1(1+x)2, 令g (x )=﹣sin x +1(1+x)2,则g ′(x )=﹣cos x −2(1+x)3<0在(﹣1,π2)恒成立,∴f ″(x )在(﹣1,π2)上为减函数, 又∵f ″(0)=1,f ″(π2)=﹣1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数f ″(x )在(﹣1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(﹣1,x 0)上单调递增,在(x 0,π2)上单调递减,可得f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(﹣1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减;当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增; 由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0, 由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,−11+x <0,于是f ′(x )=cos x −11+x <0,f (x )单调递减,其中f (π2)=1﹣ln (1+π2)>1﹣ln (1+3.22)=1﹣ln 2.6>1﹣lne =0,f (π)=﹣ln (1+π)<﹣ln 3<0. 于是可得下表:x(﹣1,0)(0,x 1)x 1(x 1,π2)π2(π2,π)πf ′(x ) ﹣ 0 +﹣﹣﹣ ﹣f (x )单调递减单调递增大于0 单调递减 大于0 单调递减 小于0 结合单调性可知,函数f (x )在(﹣1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,sin x ≤1<ln (1+x ),则f (x )=sin x ﹣ln (1+x )<0恒成立, 因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点.3.已知设函数f (x )=ln (x +2)﹣(x +1)e ax .(1)若a=0,求f(x)极值;(2)证明:当a>﹣1,a≠0时,函数f(x)在(﹣1,+∞)上存在零点.【分析】(1)将a=0代入函数,求函数的导数,利用函数的单调性可判断函数的极值,可求的f(x)极值;(2)当a>﹣1,a≠0时,求函数的导数,分类讨a的范围,利用函数的单调性结合极值的大小,可证明函数f(x)在(﹣1,+∞)上存在零点.【解答】解:(1)函数f(x)=ln(x+2)﹣(x+1)e ax.当a=0时,f(x)=ln(x+2)﹣(x+1),定义域为(﹣2,+∞),由f′(x)=−x+1x+2=0,得x=﹣1.当x变化时,f′(x),f(x)的变化情况如下表:x(﹣2,﹣1)﹣1 (﹣1,+∞)f′(x)+ 0 ﹣f(x)↗极大值↘故当x=﹣1时,f(x)取得极大值0,无极小值.(2)证明:f′(x)=1x+2−e ax[1+a(x+1)],x>﹣2.①当a>0时,因为x>﹣1,所以f″(x)=−1(x+2)2−ae ax[a(x+1)+2]<0,f'(x)在(﹣1,+∞)单调递减.因为f'(﹣1)=1﹣e﹣a>0,f′(0)=−12−a<0,所以存在x1∈(﹣1,0),使f'(x1)=0,当﹣1<x<x1时,f'(x)>0,当x>x1时,f'(x)<0,所以f(x)在(﹣1,x1)单调递增,在(x1,+∞)单调递减.所以f(x1)>f(﹣1)=0,而f(0)=ln2﹣1<0,所以f(x)在(﹣1,+∞)存在零点.②当﹣1<a<0时,由(1)可知e x≥x+1,x>﹣2.所以e﹣ax≥﹣ax+1>﹣a(x+1).所以f (x )=ln (x +2)﹣(x +1)e ax =e ax [e ﹣axln (x +2)﹣(x +1)]>﹣e ax (x +1)[aln (x +2)+1)].于是f(e −1a )>e −1(e −1a +1)[−aln(e −1a +2)−1)]>e −1(e −1a +1)[−aln(e −1a )−1)]=0. 因为f (0)=ln 2﹣1<0,所以所以f (x )在(e −1a ,+∞)存在零点. 综上,当a >﹣1,a ≠0时,函数f (x )在(﹣1,+∞)上存在零点.考点3.已知零点个数求参4.已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x )单调性; (2)由(1)可知:当a >0时才有两个零点,根据函数的单调性求得f (x )最小值,由f (x )min <0,g (a )=alna +a ﹣1,a >0,求导,由g (a )min =g (e ﹣2)=e ﹣2lne ﹣2+e﹣2﹣1=−1e 2−1,g (1)=0,即可求得a 的取值范围. (1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x )单调性; (2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a 的取值范围.【解答】解:(1)由f (x )=ae 2x +(a ﹣2)e x ﹣x ,求导f ′(x )=2ae 2x +(a ﹣2)e x ﹣1, 当a =0时,f ′(x )=﹣2e x ﹣1<0, ∴当x ∈R ,f (x )单调递减,当a >0时,f ′(x )=(2e x +1)(ae x ﹣1)=2a (e x +12)(e x −1a ), 令f ′(x )=0,解得:x =ln 1a ,当f ′(x )>0,解得:x >ln 1a , 当f ′(x )<0,解得:x <ln 1a ,∴x ∈(﹣∞,ln 1a)时,f (x )单调递减,x ∈(ln 1a,+∞)单调递增;当a <0时,f ′(x )=2a (e x +12)(e x −1a )<0,恒成立, ∴当x ∈R ,f (x )单调递减,综上可知:当a ≤0时,f (x )在R 单调减函数,当a>0时,f(x)在(﹣∞,ln 1a )是减函数,在(ln1a,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln 1a )是减函数,在(ln1a,+∞)是增函数,∴f(x)min=f(ln 1a )=a×(1a)+(a﹣2)×1a−ln1a<0,∴1−1a−ln1a<0,即ln1a+1a−1>0,设t=1a,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=1t+1,由g(1)=0,∴t=1a>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+12)(ex−1a),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+12)(ex−1a)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1−1a−ln1a,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1−1a−ln1a>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1−1a−ln1a<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(3a−1),则f(n0)=e n0(a e n0+a﹣2)﹣n0>e n0−n0>2n0−n0>0,由ln(3a−1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).5.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)方法一、分离参数可得a=e xx2在(0,+∞)只有一个根,即函数y=a与G(x)=e xx2的图象在(0,+∞)只有一个交点.结合图象即可求得a.方法二、:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点..②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.利用h′(x)=ax(x﹣2)e﹣x,可得h(x))在(0,2)递减,在(2,+∞)递增,结合函数h(x)图象即可求得a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g ′(x )=0,得x =ln 2.当x ∈(0,ln 2)时,g ′(x )<0,当x ∈(ln 2,+∞)时,g ′(x )>0, ∴g (x )≥g (ln 2)=e ln 2﹣2•ln 2=2﹣2ln 2>0, ∴f (x )在[0,+∞)单调递增,∴f (x )≥f (0)=1,解:(2)方法一、,f (x )在(0,+∞)只有一个零点⇔方程e x ﹣ax 2=0在(0,+∞)只有一个根, ⇔a =e xx 2在(0,+∞)只有一个根, 即函数y =a 与G (x )=e xx 2的图象在(0,+∞)只有一个交点. G ′(x)=e x (x−2)x 3,当x ∈(0,2)时,G ′(x )<0,当∈(2,+∞)时,G ′(x )>0, ∴G (x )在(0,2)递减,在(2,+∞)递增, 当→0时,G (x )→+∞,当→+∞时,G (x )→+∞,∴f (x )在(0,+∞)只有一个零点时,a =G (2)=e 24.方法二:①当a ≤0时,f (x )=e x ﹣ax 2>0,f (x )在(0,+∞)没有零点.. ②当a >0时,设函数h (x )=1﹣ax 2e ﹣x .f (x )在(0,+∞)只有一个零点⇔h (x )在(0,+∞)只有一个零点.h ′(x )=ax (x ﹣2)e ﹣x ,当x ∈(0,2)时,h ′(x )<0,当x ∈(2,+∞)时,h ′(x )>0,∴h (x )在(0,2)递减,在(2,+∞)递增,∴ℎ(x)min =ℎ(2)=1−4ae 2,(x ≥0). 当h (2)<0时,即a >e 24,由于h (0)=1,当x >0时,e x >x 2,可得h (4a )=1−16a 3e 4a =1−16a 3(e 2a )2>1−16a 3(2a)4=1−1a >0.h (x )在(0,+∞)有2个零点 当h (2)>0时,即a <e 24,h (x )在(0,+∞)没有零点,当h (2)=0时,即a =e 24,h (x )在(0,+∞)只有一个零点,综上,f (x )在(0,+∞)只有一个零点时,a =e 24.考点4.设而不求,虚设零点6.已知函数f (x )=e x ﹣ln (x +m ).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵f′(x)=e x−1x+m,x=0是f(x)的极值点,∴f′(0)=1−1m=0,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵f′(x)=e x−1x+1=ex(x+1)−1x+1.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数f′(x)=e x−1x+2在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得e x0=1x0+2,ln(x0+2)=﹣x0.故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.7.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<x+1 e x−1+x(x>0)成立,由此问题转化为求g(x)=x+1e x−1+x在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)方法一:由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<x+1e x−1+x(x>0)①令g(x)=x+1e x−1+x,则g′(x)=−xex−1(e x−1)2+1=ex(e x−x−2)(e x−1)2由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.方法二:由a=1,知(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1,设g(x)=(x﹣k)(e x﹣1)+x+1,则g′(x)=(x﹣k+1)e x,若k⩽1,则当x>0 时,g′(x)>0,此时g(x)上单调递增,而g(0)=1,故当x>0 时,g(x)>1,则有g(x)>0,即(x﹣k)f′(x)+x+1>0;若k>1,则当x∈(0,k﹣1)时,g′(x)<0,当x∈(k﹣1,+∞)时,g′(x)>0,所以g(x)在(0,+∞)内的最小值为g(k﹣1)=k﹣e k﹣1+1,令h(k)=k﹣e k﹣1+1,由(Ⅰ)知,函数e x﹣x﹣2 在(0,+∞)内单调递增,则h(k)在(1,+∞)内单调递减,而h(2)>0,h(3)<0,所以当1<k⩽2 时,h(k)>0,即g(k﹣1)>0,则当x>0 时,g(x)>0,即(x﹣k)f′(x)+x+1>0,当k⩾3 时,g(x)>0 在(0,+∞)内恒不成立.综上,整数k的最大值为2.8.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.【分析】(1)求出原函数的导函数f′(x)=e x−a−1x+a,可得f′(x)在(0,+∞)上单调递增,再利用导数证明f′(0)<0,f′(a+1)=e−12a+1>0,可得函数f′(x)在(0,+∞)上存在唯一的零点;(2)由(1)可知,存在唯一的零点x0∈(0,+∞),使得f′(x0)=e x0−a−1x0+a=0,即e x0−a=1x0+a,结合(1)求出f(x)的最小值,得1x0+a−ln(x0+a)=1,显然x0+a=1是方程的解,结合y=1x−lnx是单调递减函数,可知方程1x0+a−ln(x0+a)=1有且仅有唯一解x0+a=1,把x0=1﹣a代入e x0−a=1x0+a即可求得a的值.【解答】(1)证明:∵f(x)=e x﹣a﹣ln(x+a)(a>0),∴f′(x)=e x−a−1x+a,∵e x﹣a在区间(0,+∞)上单调递增,1x+a在区间(0,+∞)上单调递减,∴f′(x)=e x−a−1x+a在(0,+∞)上单调递增,又f′(0)=e−a−1a=a−eaae a,令g(a)=a﹣e a(a>0),g′(a)=1﹣e a<0.则g(a)在(0,+∞)上单调递减,g(a)<g(0)=﹣1,故f′(0)<0.令m =a +1,则f ′(m )=f ′(a +1)=e −12a+1>0. ∴函数f ′(x )在(0,+∞)上存在唯一的零点;(2)解:由(1)可知,存在唯一的零点x 0∈(0,+∞),使得f ′(x 0)=e x 0−a −1x 0+a =0,即e x 0−a =1x 0+a .而函数f ′(x )=e x−a −1x+a 在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减,当x ∈(x 0,+∞)时,f ′(x )>0,f (x )单调递增.∴f(x)min =f(x 0)=e x 0−a −ln(x 0+a)=1x 0+a −ln(x 0+a).∴1x 0+a−ln(x 0+a)=1,显然x 0+a =1是方程的解.又∵y =1x −lnx 是单调递减函数,方程1x 0+a−ln(x 0+a)=1有且仅有唯一解x 0+a =1,把x 0=1﹣a 代入e x 0−a =1x 0+a ,得e 1﹣2a=1,即a =12.∴所求a 的值为12.9.已知函数f (x )=lnx −x+1x−1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线.【分析】(1)讨论f (x )的单调性,求函数导数,在定义域内根据函数零点大致区间求零点个数,(2)运用曲线的切线方程定义可证明.【解答】解析:(1)函数f (x )=lnx −x+1x−1.定义域为:(0,1)∪(1,+∞); f ′(x )=1x +2(x−1)2>0,(x >0且x ≠1),∴f (x )在(0,1)和(1,+∞)上单调递增, ①在(0,1)区间取值有1e2,1e 代入函数,由函数零点的定义得, ∵f (1e)<0,f (1e)>0,f (1e)•f (1e)<0, ∴f (x )在(0,1)有且仅有一个零点,②在(1,+∞)区间,区间取值有e,e2代入函数,由函数零点的定义得,又∵f(e)<0,f(e2)>0,f(e)•f(e2)<0,∴f(x)在(1,+∞)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x0是f(x)的一个零点,则有lnx0=x0+1 x0−1,曲线y=lnx,则有y′=1 x;由直线的点斜式可得曲线的切线方程,曲线y=lnx在点A(x0,lnx0)处的切线方程为:y﹣lnx0=1x0(x﹣x0),即:y=1x0x﹣1+lnx0,将lnx0=x0+1x0−1代入,即有:y=1x0x+2x0−1,而曲线y=e x的切线中,在点(ln 1x0,1x0)处的切线方程为:y−1x0=1x(x﹣ln1x0)=1x0x+1x0lnx0,将lnx0=x0+1x0−1代入化简,即:y=1x0x+2x0−1,故曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.故得证.。
阶段检测四一、选择题1.(2017烟台)某城市几条道路的位置关系如图所示,已知AB∥CD,AE 与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为( )A.48°B.40°C.30°D.24°2.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是( )A.①②B.①④C.②③D.③④3.根据下列条件,能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=DFC.∠B=∠E,∠A=∠D,AC=EFD.AB=DE,BC=EF,∠B=∠D4.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边的长,则△ABC的周长为( )A.7B.10C.11D.10或115.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是( )A.①②③B.②③④C.①③⑤D.①③④6.如图,在△ABC中,D,E分别是AB,AC的中点,下列说法中不正确的是( )A.DE=BCB.=C.△ADE∽△ABCD.S△ADE∶S△ABC=1∶27.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为( )A.1B.2C.3D.48.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB'C'D',边BC与D'C'交于点O,则四边形ABOD'的周长是( )A.6B.6C.3D.3+39.如图,已知AD为△ABC的高,AD=BC,以AB为底边作等腰Rt△ABE,EF∥AD,交AC于点F,连接ED,EC,有以下结论:①△ADE≌△BCE;②CE⊥AB;③BD=2EF;④S△BDE=S△ACE.其中正确的是( )A.①②③B.②④C.①③D.①③④10.如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P,Q分别在直线BC 上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为( )11.若点O是等腰三角形ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为( )A.2+B.C.2+或2-D.4+2或2-二、填空题12.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C,直线DF 分别交l1,l2,l3于点D,E,F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则= .13.(2017湖北黄冈)已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4 cm,将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D= cm.14.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O 为位似中心,相似比为,把△ABO缩小,则点A的对应点A'的坐标是.15.如图所示,△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是.16.如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C 出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.若△BPQ与△ABC相似,则t的值为.17.如图,已知点A(1,2)是反比例函数y=的图象上的一点,连接AO并延长交双曲线的另一分支于点B,点P是x轴上一动点.若△PAB是等腰三角形,则点P的坐标是.三、解答题18.如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数;(2)求线段CE的长.19.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF并延长交AC于点E.若AB=10,BC=16,求线段EF的长.20.如图,已知:在Rt△ABC中,∠C=90°,BD平分∠ABC且交AC于点D.(1)若∠BAC=30°,求证:AD=BD;(2)若AP平分∠BAC且交BD于点P,求∠BPA的度数.21.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”形道路连通,其中AB段与高速公路l1成30°角,长为20 km;BC段与AB,CD段都垂直,长为10 km,CD段长为30 km.求两高速公路间的距离(结果保留根号).22.(2017泰安模拟)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)当点P与点Q重合时,如图1,写出QE与QF的数量关系,不证明;(2)当点P在线段AB上且不与点Q重合时,如图2,(1)中的结论是否成立?并证明;(3)当点P在线段BA(或AB)的延长线上时,如图3,此时(1)中的结论是否成立?请画出图形并给予证明.阶段检测四一、选择题1.D ∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E,∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故选D.2.C ①相似图形不一定是位似图形,位似图形一定是相似图形,故①错误;②位似图形一定有位似中心,故②正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形,故③正确;④位似图形上任意一对对应点到位似中心的距离之比等于位似比,故④错误.故选C.3.B 根据三角形的判定定理ASA可得选项B可以判定两个三角形全等,故选B.4.D 把x=3代入方程得9-3(m+1)+2m=0,解得m=6,则原方程为x2-7x+12=0,解得x1=3,x2=4.由题意得这个方程的两个根恰好是等腰三角形ABC的两边长,①当△ABC的腰长为4,底边长为3时,△ABC的周长为4+4+3=11;②当△ABC的腰长为3,底边长为4时,△ABC的周长为3+3+4=10. 综上所述,△ABC的周长为10或11.5.D ∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);③△BDA≌△CEA(ASA);④△BOE≌△COD(AAS或ASA).故选D.6.D ∵D,E分别是AB,AC的中点, ∴DE∥BC,DE=BC,∴===,△ADE∽△ABC,∴S△ADE∶S△ABC==.∴选项A,B,C正确,选项D错误.7.A ∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB.∵AD平分∠CAB,∴∠CAD=∠DAB.∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°.∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD.∵BC=3,∴CD=DE=1.8.A 连接BC'.∵旋转角∠BAB'=45°,∴∠BAD'=45°,∴B在对角线AC'上.∵B'C'=AB'=3,∴在Rt△AB'C'中,AC'='''=3,∴BC'=3-3.在等腰Rt△OBC'中,OB=BC'=3-3,OC'=×(3-3)=6-3,∴OD'=3-OC'=3-3,∴四边形ABOD'的周长为2AD'+OB+OD'=6+3-3+3-3=6.故选A.9.D 如图,延长CE交AD于点K,交AB于点H.设AD交BE于点O.∵∠ODB=∠OEA,∠AOE=∠DOB,∴∠OAE=∠OBD.∵AE=BE,AD=BC,∴△ADE≌△BCE,故①正确.∴∠AED=∠BEC,DE=EC,∴∠AEB=∠DEC=90°,∴∠ECD=∠ABE=45°.∵∠AHC=∠ABC+∠HCB=90°+∠EBC>90°,∴EC不垂直于AB,故②错误.∵∠AEB=∠HED,又∵AE=BE,∠KAE=∠EBD,∴△KAE≌△DBE,∴BD=AK.∵△DCK是等腰直角三角形,DE平分∠CDK,∴EC=EK.∵EF∥AK,∴AF=FC,∴AK=2EF,∴BD=2EF,故③正确.∵EK=EC,∴S△AKE=S△AEC.∵△KAE≌△DBE,∴S△KAE=S△BDE,∴S△BDE=S△AEC,故④正确.故选D.10.A ∵△ABC中,AB=AC,∠BAC=20°,∴∠ACB=80°,又∵∠PAQ=∠PAB+∠BAC+∠CAQ=100°,∴∠PAB+∠CAQ=80°.在△ABC中,∠ACB=∠CAQ+∠AQC=80°,同理,∠P=∠CAQ.∴△APB∽△QAC,∴=,即=.则函数解析式是y=.故选A.11.C 由题意可得,如图所示.存在两种情况:①当△ABC为△A1BC时,连接OB,OC.∵点O是等腰三角形ABC的外心,且∠BOC=60°,底边BC=2,OB=OC, ∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=-=,∴△==(-)=2-.②当△ABC为△A2BC时,连接OB,OC.∵点O是等腰三角形ABC的外心,且∠BOC=60°,底边BC=2,OB=OC, ∴△OBC为等边三角形,OB=OC=BC=2,OA2⊥BC于点D,∴CD=1,OD=-=,∴△==()=2+.由上可得,△ABC的面积为2-或2+,二、填空题12.答案解析∵AH=2,HB=1,∴AB=AH+BH=3.∵l1∥l2∥l3,∴==.13.答案 1.5解析∵在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm,∴AB==5 cm.∵点D为AB的中点,∴OD=AB=2.5 cm.∵将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,∴OB1=OB=4 cm,∴B1D=OB1-OD=1.5 cm.14.答案(-1,2)或(1,-2)解析∵点A(-3,6),以原点O为位似中心,相似比为,把△ABO缩小, ∴点A的对应点A'的坐标是(-1,2)或(1,-2).15.答案30解析BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△GEC,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△GEC+S△GDC=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.16.答案1或解析设运动时间为t秒(0<t<2),则BP=5t cm,CQ=4t cm,BQ=(8-4t)cm.∵∠ACB=90°,AC=6 cm,BC=8 cm,∴AB==10(cm).当△BPQ∽△BAC时,=,即=-,解得t=1;当△BPQ∽△BCA时,=,即=-,解得t=,即当t=1或时,△BPQ与△ABC相似.故答案为1或.17.答案(-3,0)或(5,0)或(3,0)或(-5,0)解析∵反比例函数y=的图象关于原点对称,∴A,B两点关于原点对称,∴B点的坐标为(-1,-2).∴当△PAB为等腰三角形时,有PA=AB或PB=AB.设P点坐标为(x,0).∵A(1,2),B(-1,-2),∴AB=-(-) -(-) =2,PA=(-)(-),PB=()().当PA=AB时,则有(-)(-)=2,解得x=-3或5,此时P点坐标为(-3,0)或(5,0);当PB=AB时,则有()()=2,解得x=3或-5,此时P点坐标为(3,0)或(-5,0).综上可知P点的坐标为(-3,0)或(5,0)或(3,0)或(-5,0).三、解答题18.解析(1)∵△ABE≌△ACD,∴∠EBA=∠C=42°,∴∠EBG=180°-42°=138°.(2)∵△ABE≌△ACD,∴AC=AB=9,AE=AD=6,∴CE=AC-AE=9-6=3.19.解析∵AF⊥BF,∴∠AFB=90°.∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即=,解得DE=8,∴EF=DE-DF=3.20.解析(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°.又∵BD平分∠ABC,∴∠ABD=30°,∴∠BAC=∠ABD,∴BD=AD.(2)解法一:∵∠C=90°,∴∠BAC+∠ABC=90°,∴(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠BAP=∠BAC,∠ABP=∠ABC,即∠BAP+∠ABP=45°,∴∠APB=180°-45°=135°.解法二:∵∠C=90°,∴∠BAC+∠ABC=90°,∴(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠DBC=∠ABC,∠PAC=∠BAC,∴∠DBC+∠PAD=45°.∴∠BPA=∠PDA+∠PAD=∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.21.解析过B点作BE⊥l1,交l1于点E,交CD于F点,交l2于点G. 在Rt△ABE中,BE=AB sin 30°=20×=10(km),在Rt△BCF中,BF=BC÷cos 30°=10÷=(km),CF=BF sin 30°=×=(km),DF=CD-CF=-km.在Rt△DFG中,FG=DF sin 30°=-×=-km,∴EG=BE+BF+FG=(25+5)km.故两高速公路间的距离为(25+5)km.22.解析(1)QE=QF.理由:∵Q为AB的中点,∴AQ=BQ.∵BF⊥CP,AE⊥CP,∴∠BFQ=∠AEQ=90°.在△BFQ和△AEQ中,,,,∴△BFQ≌△AEQ(AAS),∴QE=QF.(2)(1)中的结论仍然成立.证明:如图①,延长FQ交AE于点D.∵Q为AB的中点,∴AQ=BQ.∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠QAD=∠FBQ.在△FBQ和△DAQ中,,,,∴△FBQ≌△DAQ(ASA),∴QF=QD.∵AE⊥CP,∴EQ是Rt△DEF斜边上的中线,∴QE=QF=QD,即QE=QF.(3)(1)中的结论仍然成立.证明:如图②,点P在线段BA的延长线上,延长EQ,FB交于点D. ∵Q为AB的中点,∴AQ=BQ.∵BF⊥CP,AE⊥CP,∴BF∥AE,∴∠1=∠D.在△AQE和△BQD中,, , ,∴△AQE≌△BQD(AAS),∴QE=QD.∵BF⊥CP,∴FQ是Rt△DEF斜边DE上的中线,∴QE=QF.同样,点P在线段AB的延长线上时,(1)中的结论也成立.。
导数零点不可求考点与题型归纳导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢? 考点一 猜出方程f ′(x )=0的根[典例] 设f (x )=1+ln x x. (1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围;(2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围.[解题观摩] (1)因为f ′(x )=-ln x x 2,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以⎩⎪⎨⎪⎧a <1,a +1>1,即0<a <1,故所求实数a 的取值范围是(0,1). (2)方程f (x )=x 2-2x +k 有实数解,即f (x )-x 2+2x =k 有实数解.设g (x )=f (x )-x 2+2x ,则g ′(x )=2(1-x )-ln x x 2. 接下来,需求函数g (x )的单调区间,所以需解不等式g ′(x )≥0及g ′(x )≤0,因而需解方程g ′(x )=0.但此方程不易求解,所以我们可以先猜后解.因为g ′(1)=0,且当0<x <1时,g ′(x )>0,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2].[关键点拨]当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x 时,常猜x =0.考点二 隐零点代换[典例] 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)求证:当a >0时,f (x )≥2a +a ln 2a. [解题观摩] (1)法一:f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.当a >0时,设u (x )=e 2x ,v (x )=-a x, 因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x在(0,+∞)上单调递增, 所以f ′(x )在(0,+∞)上单调递增.又因为f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0, 所以当a >0时,f ′(x )存在唯一零点.法二:f ′(x )=2e 2x -a x(x >0). 令方程f ′(x )=0,得a =2x e 2x (x >0).因为函数g (x )=2x (x >0),h (x )=e 2x (x >0)均是函数值为正值的增函数,所以由增函数的定义可证得函数u (x )=2x e 2x (x >0)也是增函数,其值域是(0,+∞). 由此可得,当a ≤0时,f ′(x )无零点;当a >0时,f ′(x )有唯一零点.(2)证明:由(1)可设f ′(x )在(0,+∞)上的唯一零点为x 0.当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.所以f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,当且仅当x =x 0时,f (x )取得最小值,最小值为f (x 0).因为2e2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a (当且仅当x 0=12时等号成立). 所以当a >0时,f (x )≥2a +a ln 2a. [关键点拨]本题第(2)问的解题思路是求函数f (x )的最小值,因此需要求f ′(x )=0的根,但是f ′(x )=2e 2x -a x=0的根无法求解.故设出f ′(x )=0的根为x 0,通过证明f (x )在(0,x 0)和(x 0,+∞)上的单调性知f (x )min =f (x 0)=a 2x 0+2ax 0+a ln 2a,进而利用基本不等式证得结论,其解法类似解析几何中的设而不求. 考点三 证——证明方程f ′(x )=0无根[典例] 已知m ∈R ,函数f (x )=mx -m x -2ln x ,g (x )=2e x,若∃x 0∈[1,e],使得f (x 0)>g (x 0)成立,求实数m 的取值范围.[解题观摩] 因为当x =1时,f (x )=0,g (x )=2e ,不存在f (x 0)>g (x 0),所以关于x 的不等式f (x )>g (x )在[1,e]上有解,即关于x 的不等式2e +2x ln x x 2-1<m (1<x ≤e)有解. 设u (x )=2e +2x ln x x 2-1(1<x ≤e), 则u ′(x )=2x 2-4e x -2-(2x 2+2)ln x (x 2-1)2(1<x ≤e),但不易求解方程u ′(x )=0. 可大胆猜测方程u ′(x )=0无解,证明如下:由1<x ≤e ,可得-(2x 2+2)ln x <0,2x 2-4e x -2=2(x -e)2-2e 2-2<0,所以u ′(x )<0,u (x )在(1,e]上是减函数,所以函数u (x )的值域是⎣⎢⎡⎭⎪⎫4e e 2-1,+∞, 故所求实数m 的取值范围是⎝ ⎛⎭⎪⎫4e e 2-1,+∞. [关键点拨]当利用导函数求函数f (x )在区间[a ,b ],[a ,b )或(a ,b ]上的最值时,可首先考虑函数f (x )在该区间上是否具有单调性,若具有单调性,则f (x )在区间的端点处取得最值(此时若求f ′(x )=0的根,则此方程是无解的).第五课时 构造函数利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,如何恰当构造函数,往往成为解题的关键.考点一 “比较法”构造函数证明不等式当试题中给出简单的基本初等函数,例如f (x )=x 3,g (x )=ln x ,进而证明在某个取值范围内不等式f (x )≥g (x )成立时,可以类比作差法,构造函数h (x )=f (x )-g (x )或φ(x )=g (x )-f (x ),进而证明h (x )min ≥0或φ(x )max ≤0即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明g (x )>0(f (x )>0)的前提下,也可以类比作商法,构造函数h (x )=f (x )g (x )⎝⎛⎭⎫φ(x )=g (x )f (x ),进而证明h (x )min ≥1(φ(x )max ≤1).[典例] 已知函数f (x )=e x -ax (e 为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)求证:当x >0时,x 2<e x .[解题观摩] (1)由f (x )=e x -ax ,得f ′(x )=e x -a .因为f ′(0)=1-a =-1,所以a =2,所以f (x )=e x -2x ,f ′(x )=e x -2,令f ′(x )=0,得x =ln 2,当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-2ln 2,f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x .由(1)得g ′(x )=f (x )≥f (ln 2)>0,故g (x )在R 上单调递增.所以当x >0时,g (x )>g (0)=1>0,即x 2<e x .[关键点拨]在本题第(2)问中,发现“x 2,e x ”具有基本初等函数的基因,故可选择对要证明的“x 2<e x ”构造函数,得到“g (x )=e x -x 2”,并利用(1)的结论求解.考点二 “拆分法”构造函数证明不等式当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为f (x )≤g (x )的形式,进而证明f (x )max ≤g (x )min 即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.[典例] 已知函数f (x )=eln x -ax (a ∈R).(1)讨论f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0.[解题观摩] (1)f ′(x )=e x-a (x >0), ①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;②若a >0,则当0<x <e a 时,f ′(x )>0,当x >e a时,f ′(x )<0, 故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫e a ,+∞上单调递减. (2)证明:法一:因为x >0,所以只需证f (x )≤e x x-2e , 当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=-e.记g (x )=e x x-2e(x >0), 则g ′(x )=(x -1)e xx 2, 所以当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,所以g (x )min =g (1)=-e.综上,当x >0时,f (x )≤g (x ),即f (x )≤e x x-2e ,即xf (x )-e x +2e x ≤0.法二:要证xf (x )-e x +2e x ≤0,即证e x ln x -e x 2-e x +2e x ≤0,从而等价于ln x -x +2≤e x e x. 设函数g (x )=ln x -x +2,则g ′(x )=1x-1. 所以当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0,故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而g (x )在(0,+∞)上的最大值为g (1)=1.设函数h (x )=e x e x ,则h ′(x )=e x(x -1)e x 2. 所以当x ∈(0,1)时,h ′(x )<0,当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而h (x )在(0,+∞)上的最小值为h (1)=1.综上,当x >0时,g (x )≤h (x ),即xf (x )-e x +2e x ≤0.[关键点拨]对于第(2)问xf (x )-e x +2e x ≤0的证明直接构造函数h (x )=x eln x -ax 2-e x +2e x ,求导后不易分析,故可将不等式合理拆分为f (x )≤e x x -2e 或ln x -x +2≤e x e x,再分别对不等式两边构造函数证明不等式. 考点三 “换元法”构造函数证明不等式若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m (x 1,x 2)的表达式(其中m (x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m (x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.[典例] 已知函数f (x )=ln x x-k 有两个不同的零点x 1,x 2,求证:x 1x 2>e 2. [解题观摩] f (x )=ln x x-k ,设x 1>x 2>0, 由f (x 1)=f (x 2)=0,可得ln x 1-kx 1=0,ln x 2-kx 2=0,两式相加减,得ln x 1+ln x 2=k (x 1+x 2),ln x 1-ln x 2=k (x 1-x 2).要证x 1x 2>e 2,即证ln x 1x 2>2,只需证ln x 1+ln x 2>2,也就是证k (x 1+x 2)>2,即证k >2x 1+x 2. 因为k =ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即证ln x 1x 2>2(x 1-x 2)x 1+x 2. 令x 1x 2=t (t >1),则只需证ln t >2(t -1)t +1(t >1). 令h (t )=ln t -2(t -1)t +1(t >1), 则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 故函数h (t )在(1,+∞)上单调递增,所以h (t )>h (1)=0,即ln t >2(t -1)t +1. 所以x 1x 2>e 2.[关键点拨]不妨设x 1>x 2>0,由f (x 1)=f (x 2)=0,可得ln x 1-kx 1=0,ln x 2-kx 2=0,两式相加减,利用分析法将要证明的不等式转化为ln x 1-ln x 2x 1-x 2>2x 1+x 2,再利用换元法,通过求导证明上述不等式成立. 考点四 “转化法”构造函数在关于x 1,x 2的双变元问题中,若无法将所给不等式整体转化为关于m (x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.[典例] 设函数f (x )=ln x +m x ,m ∈R ,若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.[解题观摩] 对任意的b >a >0,f (b )-f (a )b -a<1等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +m x-x (x >0), 故(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立,故m ≥14,当且仅当x =12时等号成立,所以m 的取值范围为⎣⎡⎭⎫14,+∞.。
导数零点不可求的四种破解策略法一:利用零点存在性定理零点存在性定理:如果函数()f x 在区间[]a b ,上的图象是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()f x 在区间()a b ,内有零点,即存在()0x a b ∈,,使得()0f x 0=.进一步,若()f x 在区间()a b ,内有具有单调性,则函数()f x 在区间()a b ,内有唯一的零点.在实际解题中,经常先判断出()/f x 在给定区间上的单调性(可以通过求二阶导或者直接观察导函数解析式进行判断),然后在给定区间内取两个特殊值,计算出相应的()/f x ,与零比较大小,再利用零点存在性定理得出()/f x 在给定的区间上存在唯一的零点. 例1.已知函数()2ln x f x x e x =-,证明:当0x >时,不等式()1f x >.证明:()()/12xf x x x e x =+-,0x >.由()()//22142xf x x x e x=+++0>,得()/f x 在()0+∞,上单调递增. 又1/419=40416f e ⎛⎫-< ⎪⎝⎭,1/215=2024f e ⎛⎫-> ⎪⎝⎭,根据零点存在定理可知,存在01142x ⎛⎫∈ ⎪⎝⎭,,使得()/0f x 0=.当()00x x ∈,时,()/f x 0<,()f x 在()00x ,上单调递减; 当()0x x ∈+∞,时,()/f x 0>,()f x 在()0x +∞,上单调递增. 故()()0min f x f x ==0200ln x x e x -.由()/0f x 0=得()0000120x x x e x +-=,即()000012x x x e x +=,()020012x e x x =+.故()0f x =0200ln x x e x -=001ln 2x x -+,其中01142x ⎛⎫∈ ⎪⎝⎭,. 令()g x =1ln 2x x -+,1142x ⎛⎫∈ ⎪⎝⎭,.由()/g x =()21102x x --<+得()g x 在1142x ⎛⎫∈ ⎪⎝⎭,上单调递减. 故()g x >12g ⎛⎫ ⎪⎝⎭21=ln 152->,即()0f x 1>.综上,有()min 1f x >,则当0x >时,不等式()1f x >.评析:要证()1f x >,等价于证()min 1f x >.导函数()()/12x f x x x e x=+-,其零点无法求出.借助()//0f x >判断出()/f x 的单调性,结合零点存在性定理得出()/f x 存在唯一的零点0x 且01142x ⎛⎫∈ ⎪⎝⎭,.另一方面,0x 将()0+∞,分成两个区间,分别考查()f x 在这两个区间上的单调性.借助()/0f x 0=得到()020012x e x x =+,将指数式进行转化,从而判断出()min 1f x >. 法二:利用函数与方程思想函数有零点等价于相应的方程有实根,然后将方程进行适当的变形,转化为两个函数图象有交点.交点的个数就是函数零点个数.在实际解题中,通常先求出()/f x ,然后令()/0f x =,移项,转化为判断两个函数图象的交点个数.例2.已知函数()2ln x f x e a x =- .证明:当0a >时,()22ln f x a a a≥+.证明:()/22x af x e x=-,0x >.()/f x 有零点,等价于方程22=0x a e x -有实根,等价于方程22x ae x =有实根,等价于函数22x y e =与函数ay x=图象有交点.显然当0a <时,两个函数图象无交点;当0a >时,两个函数图象有一个交点;因此,当0a <时,()/f x 无零点,当0a >时,()/f x 只有一个零点.当0a >时,()/f x 在()0+∞,上单调递增,且只有一个零点,设为0x .即()/00f x =. 当()00x x ∈,时,()/0f x <,()f x 在()00x ,上单调递减; 当()0x x ∈+∞,时,()/0f x >,()f x 在()0x +∞,上单调递增.故()()0min f x f x =020ln x e a x =-. 由()/00fx =得,02020x a ex -=,020=2x a e x ,020ln =ln ln 2x e a x -,化简得00ln =ln ln 22x a x --.故()0f x =()00ln ln 222a a a x x ---002ln 2aax a ax =++22ln a a a ≥+. 故()min 22ln f x a a a ≥+,即当0a >时,()22ln f x a a a≥+.评析:利用函数与方程思想,将判断()/f x 的零点个数问题转化为图象交点问题.不难得出结论:当0a >时,()/f x 只有一个零点0x .对于()/22x a f x e x=-,观察其结构特征容易发现其在()0+∞,上单调递增(也可以求出二阶导进行判断).要证()22ln f x a a a ≥+,等价于证()min 22ln f x a a a≥+.0x 将()0+∞,分成两个区间,分别考查()f x 在这两个区间上的单调性.借助()/00f x =得到20=2x a e x ,00ln =ln ln 22x a x --,将指数式进行转化,从而得证. 法三:构造新的函数如果导函数的解析式具有分式特征,且容易判断出分母是正数,此时往往将分子看成一个新的函数,进而对该函数进行研究从而得到相应的结论.例3.已知函数()1ln(1)x f x x ++=,当0x >时,()1kf x x >+恒成立,求正整数k 的最大值.解析:由已知有()1[1ln(1)]x x k x+++<在0x >上恒成立.令()1[1ln(1)]()x x h x x+++=,0x >.只需()min k h x <.()/21ln(1)x x h x x--+=, 令()1ln(1)x x x ϕ=--+,由()/01x x x ϕ=>+得()x ϕ在()0+∞,上单调递增. 又()2=1ln30ϕ-<,()3=2ln 40ϕ->,根据零点存在定理可知,存在()023x ∈,,使得()00x ϕ=.当()00x x ∈,时,()0x ϕ<,()/0h x <,()h x 在()00x ,上单调递减; 当()0x x ∈+∞,时,()0x ϕ>,()/0h x >,()h x 在()0x +∞,上单调递增. 故()()0min h x h x =()0001[1ln(1)]x x x +++=.由()00x ϕ=得,001ln(1)=0x x --+,即001ln(1)x x =++. 则()0h x =01x +()34∈,. 故正整数k 的最大值为3.评析:导函数()/21ln(1)x x h x x--+=,分母显然是正数,将分子看成一个新的函数()x ϕ,借助法一考查()x ϕ的性质,从而得到()h x 的单调性. 法四:利用极限思想法一中,对于给定的区间()a b ,,如果要通过取特殊值来判断()/f x 与零的大小比较困难,那么可以利用极限思想,考查当x a →时以及当x b →时()/f x 的取值情况.例4.已知函数()()1210xa f x ae a x+=+-+≥对任意的()0x ∈+∞,恒成立,其中0a >.求a 的取值范围.解析:由已知有()min 0f x ≥,其中0x >,0a >.()/21xa f x ae x +=-()221x ax e a x-+=. 令()()21x g x ax e a =-+,其中0x >,0a >.由()()/220x g x a x x e =+>得()g x 在()0+∞,上单调递增. 又()()010g a =-+<,当x →+∞时,()g x →+∞, 故存在()00x ∈+∞,,使得()00g x =. 当()00x x ∈,时,()0g x <,()/0f x <,()f x 在()00x ,上单调递减; 当()0x x ∈+∞,时,()0g x >,()/0f x >,()f x 在()0x +∞,上单调递增.故()()0min f x f x =()0121x a ae a x +=+-+.由()00g x =得,()0201=0x ax e a -+,即0201=x a ae x +.则()0f x =()00121x a ae a x ++-+201a x +=+()0121a a x +-+.令()20011210a a a x x +++-+≥,由00x >,0a >,解得001x <≤.因为()()21x g x ax e a =-+在()0+∞,上单调递增,001x <≤,所以()()01g g x ≥=0. 故()10g ≥,即()10ae a -+≥,解得11a e ≥-.评析:导函数()/f x ()221x ax e a x-+=,分母显然是正数,利用法三的方法将分子看成一个新的函数()g x .在考查()g x 的性质时,先考虑左端点的函数值情况,即()()010g a =-+<,再考查当x →+∞时,()g x →+∞,从而确定故存在()00x ∈+∞,,使得()00g x =.。
专题29 单变量恒成立之参变分离后导函数零点不可求型【方法总结】单变量恒成立之参变分离法参变分离法是将不等式变形成一个一端是f (a ),另一端是变量表达式g (x )的不等式后,若f (a )≥g (x )在x ∈D 上恒成立,则f (a )≥g (x )max ;若f (a )≤g (x )在x ∈D 上恒成立,则f (a )≤g (x )min .特别地,经常将不等式变形成一个一端是参数a ,另一端是变量表达式g (x )的不等式后,若a ≥g (x )在x ∈D 上恒成立,则a ≥g (x )max ;若a ≤g (x )在x ∈D 上恒成立,则a ≤g (x )min .利用分离参数法来确定不等式f (x ,a )≥0(x ∈D ,a 为实参数)恒成立问题中参数取值范围的基本步骤:(1)将参数与变量分离,化为f 1(a )≥f 2(x )或f 1(a )≤f 2(x )的形式.(2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(a )≥f 2(x )max 或f 1(a )≤f 2(x )min ,得到a 的取值范围.【例题选讲】[例1] 已知函数f (x )=ax e x -ln x +b 在x =1处的切线方程为y =(2e -1)x -e .(1)求a ,b 的值;(2)若f (x )≥mx 恒成立,求实数m 的取值范围.解析 (1)f ′(x )=a e x +ax e x -1x, ∵函数f (x )=ax e x -ln x +b 在x =1处的切线方程为y =(2e -1)x -e ,∴⎩⎪⎨⎪⎧f (1)=a e +b =e -1,f ′(1)=2a e -1=2e -1,∴a =1,b =-1. (2)由f (x )≥mx 得,x e x-ln x -1≥mx (x >0),即m ≤x e x -ln x -1x , 令φ(x )=x e x -ln x -1x ,则φ′(x )=x 2e x +ln x x 2, 令h (x )=x 2e x +ln x ,易知h (x )在(0,+∞)上单调递增,又h ⎝⎛⎭⎫1e =1e 2e 1e -1<e 2e 2-1=0,h (1)=e>0, 故h (x )在⎝⎛⎭⎫1e ,1上存在零点x 0,即h (x 0)=x 20e x 0+ln x 0=0,即x 0e x 0=-ln x 0x 0=⎝⎛⎭⎫ln 1x 0·e ln 1x 0 , 由于y =x e x 在(0,+∞)上单调递增,故x 0=ln 1x 0=-ln x 0,即e x 0=1x 0, 且φ(x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,∴φ(x )min =φ(x 0)=1+x 0-1x 0=1,∴m ≤1. [例2] 已知函数f (x )=x ln x +ax (a ∈R ).(1)若函数f (x )在区间[e 2,+∞)上为增函数,求a 的取值范围;(2)若对任意x ∈(1,+∞),f (x )>k (x -1)+ax -x 恒成立,求正整数k 的值.解析:(1)由f (x )=x ln x +ax ,得f ′(x )=ln x +a +1,∵函数f (x )在区间[e 2,+∞)上为增函数, ∴当x ∈[e 2,+∞)时,f ′(x )≥0,即ln x +a +1≥0在区间[e 2,+∞)上恒成立,∴a ≥-1-ln x . 又当x ∈[e 2,+∞) 时,ln x ∈[2,+∞),∴-1-ln x ∈(-∞,-3].∴a ≥-3.(2)若对任意x ∈(1,+∞),f (x )>k (x -1)+ax -x 恒成立,即x ln x +ax >k (x -1)+ax -x 恒成立, 也就是k (x -1)<x ln x +ax -ax +x 恒成立,∵x ∈(1,+∞),∴x -1>0.则问题转化为k <x ln x +x x -1对任意x ∈(1,+∞)恒成立. 设函数h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2,再设m (x )=x -ln x -2,则m ′(x )=1-1x . ∵x ∈(1,+∞),∴m ′(x )>0,则m (x )=x -ln x -2在(1,+∞)上为增函数,∵m (1)=1-ln 1-2=-1,m (2)=2-ln 2-2=-ln 2,m (3)=3-ln 3-2=1-ln 3<0,m (4)=4-ln 4-2=2-ln 4>0.∴∃x 0∈(3,4),使m (x 0)=x 0-ln x 0-2=0,∴当x ∈(1,x 0)时,m (x )<0,h ′(x )<0,∴h (x )=x ln x +x x -1在(1,x 0)上单调递减,当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0, ∴h (x )=x ln x +x x -1在(x 0,+∞)上单调递增,∴h (x )的最小值为h (x 0)=x 0ln x 0+x 0x 0-1. ∵m (x 0)=x 0-ln x 0-2=0,∴ln x 0+1=x 0-1,代入函数h (x )=x ln x +x x -1得h (x 0)=x 0, ∵x 0∈(3,4),且k <h (x )对任意x ∈(1,+∞)恒成立,∴k <h (x )min =x 0,∴k ≤3,∴k 的值为1,2,3.[例3] 已知函数f (x )=a e x -x e x +x -a (a ∈R ).(1)若a =2,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若对任意x >0都有f (x )<x +1恒成立,求a 的最大整数值.解析 (1)当a =2时,f (x )=2e x -x e x +x -2,∴f ′(x )=2e x -(e x +x e x )+1=e x -x e x +1,因此f (0)=0,f ′(0)=2.所以曲线y =f (x )在点(0,f (0))处的切线方程为y -0=2(x -0),即y =2x .(2)对任意x >0,恒有f (x )<x +1,即a (e x -1)<x e x +1.因为x >0,所以e x-1>0,所以a <x e x +1e x -1=x +x +1e x -1. 设g (x )=x +x +1e x -1(x >0),则只需a <g (x )min ,则g ′(x )=1-x e x +1(e x -1)2=e x (e x -x -2)(e x -1)2. 令h (x )=e x -x -2(x >0),则h ′(x )=e x -1>0恒成立.所以h (x )在(0,+∞)上单调递增.因为h (1)=e -3<0,h (2)=e 2-4>0.所以存在唯一一个x 0使得h (x 0)=0,且1<x 0<2.所以当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,当x ∈(x 0,+∞)时,h (x )>0,g ′(x )>0.所以g (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以g (x )min =g (x 0)=x 0+x 0+1e x 0-1.由e x 0-x 0-2=0,得e x 0=x 0+2,所以g (x 0)=x 0+x 0+1x 0+2-1=x 0+1∈(2,3). 故a 的最大整数值为2.[例4] 已知函数f (x )=(x +a )ln x -12x 2-ax +a -1. (1)若a =1,求函数f (x )的单调区间;(2)若f (x )>a ln x -12x 2-2x 在(1,+∞)上恒成立,求整数a 的最大值. 解析 (1)若a =1,则f (x )=(x +1)ln x -12x 2-x , 函数f (x )的定义域为(0,+∞),f ′(x )=ln x -x +1x. 设g (x )=ln x -x +1x ,则g ′(x )=1x -1-1x 2=x -x 2-1x 2=-⎝⎛⎭⎫x -122-34x 2<0, 故g (x )在(0,+∞)上单调递减,且g (1)=0,故当x ∈(0,1)时,g (x )>0,即f ′(x )>0,f (x )单调递增;当x ∈(1,+∞)时,g (x )<0,即f ′(x )<0,f (x )单调递减.综上,函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)原不等式等价于x ln x -a (x -1)+2x -1>0,即a <x ln x +2x -1x -1在(1,+∞)上恒成立. 设φ(x )=x ln x +2x -1x -1,x >1,则φ′(x )=x -ln x -2(x -1)2. 设h (x )=x -ln x -2(x >1),则h ′(x )=1-1x =x -1x>0,所以h (x )在(1,+∞)上单调递增. 又h (3)=3-ln 3-2=1-ln 3<0,h (4)=4-ln 4-2=2-2ln 2>0,所以根据函数零点存在定理,可知h (x )在(1,+∞)上有唯一零点.设该零点为x 0,则x 0∈(3,4),且h (x 0)=x 0-ln x 0-2=0,即x 0-2=ln x 0.当x ∈(1,x 0)时,h (x )<0,即φ′(x )<0,故φ(x )在(1,x 0)上单调递减;当x ∈(x 0,+∞)时,h (x )>0,即φ′(x )>0,故φ(x )在(x 0,+∞)上单调递增.所以φ(x )min =φ(x 0)=x 0ln x 0+2x 0-1x 0-1=x 0+1. 由题意可知a <x 0+1,由x 0∈(3,4),得4<x 0+1<5,又a ∈Z ,所以整数a 的最大值为4.【对点精练】1.已知函数f (x )=ln x +a x. (1)若函数f (x )的图象在x =1处的切线为y =1,求f (x )的极值;(2)若f (x )≤e x +2x-1恒成立,求实数a 的取值范围. 1.解析 (1)f ′(x )=1-a -ln x x 2,由题意可得f ′(1)=1-a 12=0,解得a =1.此时f (1)=a =1, 所以f (x )=ln x +1x ,f ′(x )=-ln x x 2,由f ′(x )>0可得0<x <1,由f ′(x )<0可得x >1, 所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以f (x )的极大值为f (1)=1,不存在极小值.(2)由f (x )≤e x +2x -1,可得ln x +a x ≤e x +2x-1,分离参数a 可得,a ≤x (e x -1)-ln x +2(x >0), 令F (x )=x (e x -1)-ln x +2,x >0,F ′(x )=e x -1+x e x -1x =e x (x +1)-x +1x=(x +1)⎝⎛⎭⎫e x -1x ,x >0. 令h (x )=e x -1x ,x >0,则h ′(x )=e x +1x 2>0,所以h (x )在(0,+∞)上单调递增, 又h ⎝⎛⎭⎫12=e -2<0,h (1)=e -1>0,所以存在唯一的x 0∈⎝⎛⎭⎫12,1,使得h (x 0)=0e x -1x 0=0, 当0<x <x 0时,h (x )<0,即F ′(x )<0,当x >x 0时,h (x )>0,即F ′(x )>0,故F (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增.F (x )min =x 0(0e x -1)-ln x 0+2=x 00e x-x 0-ln x 0+2,由h (x 0)=0e x -1x 0=0,得x 00e x =1,再对x 00e x =1两边取对数可得x 0+ln x 0=0, 所以F (x )min =x 00e x -x 0-ln x 0+2=1-0+2=3,所以a ≤3,即实数a 的取值范围为a ≤3.2.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.2.解析 (1) f ′(x )=(x +1)e x +1-ln x x 2,x ∈(0,+∞),易知当0<x <1时,f ′(x )>0, 所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点,所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0.原不等式可化为x e x -ln x -1x ≥k ,令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增,故g (x 0)为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t ,可得⎩⎪⎨⎪⎧ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].3.已知函数f (x )=5+ln x ,g (x )=kx x +1(k ∈R ). (1)若函数f (x )的图象在点(1,f (1))处的切线与函数y =g (x )的图象相切,求k 的值;(2)若k ∈N *,且x ∈(1,+∞)时,恒有f (x )>g (x ),求k 的最大值.(参考数据:ln 5≈1.61,ln 6≈1.791 8,ln(2+1)≈0.881 4)3.解析:(1)∵f (x )=5+ln x ,∴f (1)=5,且f ′(x )=1x,从而得到f ′(1)=1. ∴函数f (x )的图象在点(1,f (1))处的切线方程为y -5=x -1,即y =x +4.设直线y =x +4与g (x )=kx x +1(k ∈R )的图象相切于点P (x 0,y 0),从而可得g ′(x 0)=1,g (x 0)=x 0+4, 又g ′(x )=k (x +1)2,∴⎩⎨⎧ k (x 0+1)2=1,kx 0x 0+1=x 0+4,解得⎩⎪⎨⎪⎧ x 0=2,k =9或⎩⎪⎨⎪⎧x 0=-2,k =1.∴k 的值为1或9. (2)由题意知,当x ∈(1,+∞)时,5+ln x >kx 1+x恒成立, 等价于当x ∈(1,+∞)时,k <(x +1)(5+ln x )x恒成立. 设h (x )=(x +1)(5+ln x )x (x >1),则h ′(x )=x -4-ln x x 2(x >1),记p (x )=x -4-ln x (x >1), 则p ′(x )=1-1x =x -1x>0,∴p (x )在x ∈(1,+∞)上单调递增.又p (5)=1-ln 5<0,p (6)=2-ln 6>0, ∴在x ∈(1,+∞)上存在唯一的实数m ,且m ∈(5,6),使得p (m )=m -4-ln m =0,①∴当x ∈(1,m )时,p (x )<0,即h ′(x )<0,则h (x )在x ∈(1,m )上单调递减;当x ∈(m ,+∞)时,p (x )>0,即h ′(x )>0,则h (x )在x ∈(m ,+∞)上单调递增,∴当x ∈(1,+∞)时,h (x )min =h (m )=(m +1)(5+ln m )m,由①可得ln m =m -4,∴h (m )=(m +1)(m +1)m =m +1m+2, 而m ∈(5,6),∴m +1m+2∈⎝⎛⎭⎫365,496,又h (3+22)≈7.9,p (3+22)=22-1-ln(3+22)>0, ∴m ∈(5,3+22),∴h (m )∈⎝⎛⎭⎫365,8.又k ∈N *,∴k 的最大值是7. 4.设函数f (x )=e x -ax -2.(1)求f (x )的单调区间;(2)若a =1,k 为整数,且当x >0时,(x -k )f ′(x )+x +1>0,求k 的最大值.4.解析 (1)f (x )的定义域为(-∞,+∞),f ′(x )=e x -a .若a ≤0,则f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增.若a >0,则当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)由于a =1,所以(x -k )f ′(x )+x +1=(x -k )(e x -1)+x +1.故当x >0时,(x -k )f ′(x )+x +1>0等价于k <x +1e x -1+x (x >0).① 令g (x )=x +1e x -1+x ,则g ′(x )=e x (e x -x -2)(e x -1)2. 由(1)知,函数h (x )=e x -x -2在(0,+∞)上单调递增.而h (1)<0,h (2)>0,所以h (x )在(0,+∞)上存在唯一的零点.故g ′(x )在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x ∈(0,α)时,g ′(x )<0;当x ∈(α,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)上的最小值为g (α).又由g ′(α)=0,可得e α=α+2,所以g (α)=α+1∈(2,3). 由于①式等价于k <g (α),故整数k 的最大值为2.5.设函数f (x )=x ln x -ax 22+a -x (a ∈R ). (1)若函数f (x )有两个不同的极值点,求实数a 的取值范围;(2)若a =2,k ∈N ,g (x )=2-2x -x 2,且当x >2时不等式k (x -2)+g (x )<f (x )恒成立,试求k 的最大值.5.解析 (1)由题意知,函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1-ax -1=ln x -ax ,令f ′(x )=0,可得a =ln x x ,令h (x )=ln x x(x >0), 则由题可知直线y =a 与函数h (x )的图象有两个不同的交点,h ′(x )=1-ln x x 2,令h ′(x )=0,得x =e ,可知h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, h (x )max =h (e)=1e,当x →0时,h (x )→-∞,当x →+∞时,h (x )→0,故实数a 的取值范围为⎝⎛⎭⎫0,1e . (2)当a =2时,f (x )=x ln x -x 2+2-x ,k (x -2)+g (x )<f (x ),即k (x -2)+2-2x -x 2<x ln x -x 2+2-x ,整理得k (x -2)<x ln x +x ,因为x >2,所以k <x ln x +x x -2.设F (x )=x ln x +x x -2(x >2),则F ′(x )=x -4-2ln x (x -2)2. 令m (x )=x -4-2ln x (x >2),则m ′(x )=1-2x>0,所以m (x )在(2,+∞)上单调递增, m (8)=4-2ln 8<4-2ln e 2=4-4=0,m (10)=6-2ln 10>6-2ln e 3=6-6=0, 所以函数m (x )在(8,10)上有唯一的零点x 0,即x 0-4-2ln x 0=0,故当2<x <x 0时,m (x )<0,即F ′(x )<0,当x >x 0时,F ′(x )>0,所以F (x )min =F (x 0)=x 0ln x 0+x 0x 0-2=x 0⎝⎛⎭⎫1+x 0-42x 0-2=x 02,所以k <x 02, 因为x 0∈(8,10),所以x 02∈(4,5),故k 的最大值为4.。
导数零点不可求题型
1.(2012课标卷文科第21题)设函数()2x f x e ax =--.
(1)求()f x 的单调区间;
(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '--+> ,求k 的最大值.
2.已知函数1ln(1)()(0)x f x x x
++=>. (1)函数()f x 在区间(0,)+∞上是增函数还是减函数?证明你的结论;
(2)当0x >时,()1k f x x >
+恒成立,求整数k 的最大值.
3.(2014年广东省六校第二次联考)已知函数(1ln )(),(1)1
x x f x x x +=>-. (1)设0x 为函数()f x 的极值点,求证: 00()f x x =;
(2)若当1x >时,ln (1)0x x k x k +-+>恒成立,求正整数...k 的最大值.
4.已知函数()ln f x ax x x =+的图像在点x e =(e 为自然对数的底数)处的切线斜率为3.
(1)求实数a 的值;
(2)若k Z ∈,且()1
f x k x <-对任意1x >恒成立,求k 的最大值; (3)证明:2)
1(ln 3ln 32ln 2->+++n n n ()
1,*>∈n N n .
5.(2013年长春市二模理科21)已知函数cx bx ax x f ++=2
3)(的导函数为)(x h ,)(x f 的图像在点())2(,2--f )处的切线方程为083=+-y x ,且0)3
2(=-h ,又函数x kxe x g =)(与函数)1ln(+=x y 的图像在原点处有相同的切线.
(1)求函数)(x f 的解析式及k 的值;
(2)若1)()(++-≤x m x g x f 对于任意[)+∞∈,0x 恒成立,求m 的取值范围.
6.(2013年高考全国卷2理科21)已知函数)ln()(m x e x f x
+-=.
(1)设0=x 是()f x 的极值点,求m ,并讨论()f x 的单调性;
(2)当2≤m 时,证明:0)(>x f .
7.(2013年高考全国卷1理科21)设函数b ax x x f ++=2)(,)()(d cx e x g x
+=.若曲线)(x f y =和曲线)(x g y =都过点()2,0P ,且在点P 处有相同的切线24+=x y .
(1)求a ,b ,c ,d 的值;
(2)当2-≥x 时,)()(x kg x f ≤,求k 的取值范围.。