浅析PCIE总线信号分布及使用情况
- 格式:doc
- 大小:23.00 KB
- 文档页数:6
与PCI总线不同,PCIe总线使用端到端的连接方式,在一条PCIe链路的两端只能各连接一个设备,这两个设备互为是数据发送端和数据接收端。
PCIe总线除了总线链路外,还具有多个层次,发送端发送数据时将通过这些层次,而接收端接收数据时也使用这些层次。
PCIe总线使用的层次结构与网络协议栈较为类似。
4.1.1 端到端的数据传递PCIe链路使用“端到端的数据传送方式”,发送端和接收端中都含有TX(发送逻辑)和RX(接收逻辑),其结构如图4-1所示。
由上图所示,在PCIe总线的物理链路的一个数据通路(Lane)中,由两组差分信号,共4根信号线组成。
其中发送端的TX部件与接收端的RX部件使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX部件与接收端的TX部件使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。
一个PCIe链路可以由多个Lane组成。
高速差分信号电气规范要求其发送端串接一个电容,以进行AC耦合。
该电容也被称为AC 耦合电容。
PCIe链路使用差分信号进行数据传送,一个差分信号由D+和D-两根信号组成,信号接收端通过比较这两个信号的差值,判断发送端发送的是逻辑“1”还是逻辑“0”。
与单端信号相比,差分信号抗干扰的能力更强,因为差分信号在布线时要求“等长”、“等宽”、“贴近”,而且在同层。
因此外部干扰噪声将被“同值”而且“同时”加载到D+和D-两根信号上,其差值在理想情况下为0,对信号的逻辑值产生的影响较小。
因此差分信号可以使用更高的总线频率。
此外使用差分信号能有效抑制电磁干扰EMI(Electro Magnetic Interference)。
由于差分信号D+与D-距离很近而且信号幅值相等、极性相反。
这两根线与地线间耦合电磁场的幅值相等,将相互抵消,因此差分信号对外界的电磁干扰较小。
当然差分信号的缺点也是显而易见的,一是差分信号使用两根信号传送一位数据;二是差分信号的布线相对严格一些。
PCI总线的功能2.1 连接到PCI总线上的设备连接到PCI总线上的设备分为两类:(1)主控设备(master):PCI支持多主控设备,主控设备可以控制总线、驱动地址、数据及控制信号;(2)目标设备(target):不能启动总线操作,只能依赖于主控设备向他进行传递或从中读取数据。
2.2 有关PCI引脚信号有关PCI引脚信号说明如下:AD[31~0]:地址、数据信号复用线。
PCI总线支持写猝发和读猝发。
一个总线传输分为一个地址传送阶段和一个或多个数据传送阶段。
有效,表示地址传送阶段开始,此时AD[31~0]包含一个32位的物理地址,选中I/O的一个字节单元或主存的一个双字单元。
接下来为数据传送阶段(IRTY和TRDY同时有效),此时AD[7~0]包含最低字节数据,AD[31~24]包含最高字节数据。
C/BE[3~0]:总线指令和字节允许信号的复用线。
在地址传送阶段,C/BE[3~0]上传送的是4位编码的总线指令。
在数据传送阶段,C/BE[3~0]用作字节允许标志,以决定数据线上的哪些字节数据为有效数据,C/BE[3~0]可依次对应于字节3,2,1,0。
FRAME:周期帧信号。
由当前总线控制者产生,表示一个总线传输的开始和延续。
FRAME从无效变为有效.表明总线传输开始;保持有效,表明总线传输继续进行(1个或n个数据节拍正在继续);FRAME从有效变为无效,表明进入数据传输的最后一个数据传送阶段。
2.3 总线指令定义在地址传送阶段,C/BE[3~0]线上送出总线指令的编码信息。
总线指令用于对目标设备说明当前总线控制者正在进行的总线传输类型。
表1给出了总线指令的定义。
I/O读:用于从一个被选中的I/O单元中读取数据。
I/O写:用于写数据到一个被选中的I/O单元中。
3 测量PCI总线的I/O写时序波形的技术及分析方法测量PCI总线的I/O写时序波形共分3个部分,如图1所示。
具体的实现测量的过程及分析方法介绍如下3.1 编写测试程序用汇编语言编写测试程序,该程序如下:3.2 制作测试板PCI波形采用厦门厦华三宝计算机有限公司状元一族主板,执行标准号:Q/FSl0938-1999。
pci总线走线规则PCI总线走线规则PCI(Peripheral Component Interconnect)总线是一种用于连接计算机内部各种硬件设备的通信总线。
在设计和布线PCI总线时,需要遵循一定的走线规则,以确保信号的稳定传输和系统的正常工作。
本文将介绍PCI总线走线规则的相关内容。
一、信号传输规则在PCI总线上,不同的信号按照一定的规则进行传输。
其中,同步信号和主时钟信号是非常关键的。
同步信号(SYNCH)用于同步数据传输,而主时钟信号(CLK)则用于同步总线上各个设备的时钟。
在布线时,需要保证这些信号线的长度相等,以避免信号的相位差引起的传输错误。
二、布线规则1. 线宽和间距:PCI总线上的线宽和间距需要满足一定的规定,以确保信号的稳定传输和防止干扰。
一般来说,线宽应根据信号频率和电流大小进行合理选择,而间距则要根据线宽和阻抗匹配来确定。
2. 地线和电源线:在布线时,地线和电源线的设计也是非常重要的。
地线应尽量减少环形回路,以保证信号的良好接地;而电源线则要避免过长,以减小电源电压的变化。
3. 差分对布线:PCI总线上的差分对(D+和D-)是用于数据传输的重要信号线。
为了保证数据的准确传输,差分对的线长应相等,而且要尽量减小与其他信号线的干扰。
4. 信号线走向:PCI总线上的信号线走向也需要遵循一定的规则。
一般来说,数据线和地址线应尽量平行布线,以减小串扰;而控制线则要与数据线和地址线交错布线,以减少相互干扰。
三、线长度控制线长度的控制也是布线过程中需要考虑的重要因素。
在PCI总线中,不同的信号线有不同的最大长度限制。
一般来说,时钟信号的线长应尽量短,以保证时钟的稳定性;而数据线和地址线的线长则可以适当延长,但也要控制在一定的范围内,以避免信号的延迟和失真。
四、阻抗匹配阻抗匹配也是PCI总线布线中需要考虑的重要问题。
在布线时,信号线的阻抗应与总线的特性阻抗相匹配,以确保信号的正确传输和减小反射。
PCI-E 布线规则合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。
PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。
PCI-E是一种双单工连接的点对点串行差分低电压互联。
每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。
该信号工作在2.5 GHz并带有嵌入式时钟。
嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。
随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。
在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E的这些差分对。
图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C为可行方式。
接下来本文将对PCI-E LVDS信号走线时的注意事项进行总结:图 1 PCI-E 差分线布线规范(1)对于插卡或插槽来说,从金手指边缘或者插槽管脚到PCI-E Switch 管脚的走线长度应限制在4英寸以内。
另外,长距离走线应该在PCB上走斜线。
(2)避免参考平面的不连续,譬如分割和空隙。
(3)当LVDS 信号线变化层时,地信号的过孔应放得靠近信号过孔,对每对信号的一般要求是至少放1 至3个地信号过孔,并且永远不要让走线跨过平面的分割。
(4)应尽量避免走线的弯曲,避免在系统中引入共模噪声,这将影响差分对的信号完整性和EMI。
所有走线的弯曲角度应该大于等于135度,差分对走线的间距保持20mil以上,弯曲带来的走线最短应该大于1.5倍走线的宽度。
当一段蛇形线用来和另外一段走线来进行长度匹配,如图2所示,每段长弯折的长度必须至少有15mil(3倍于5mil的线宽)。
蛇形线弯折部分和差分线的另一条线的最大距离必须小于正常差分线距的2倍。
PCIe总线架构深入剖析PCIe(Peripheral Component Interconnect Express)是一种计算机总线标准,被广泛用于连接扩展卡和主板之间的通信。
它是替代传统PCI(Peripheral Component Interconnect)总线的一种新一代高速总线架构。
本文将深入剖析PCIe总线架构,探讨其工作原理、主要特性和应用领域。
首先,让我们了解PCIe总线的工作原理。
PCIe总线使用了串行数据传输,相较于传统的并行数据传输,串行传输更具优势。
PCIe总线将数据分为多个数据包,通过不同的数据通道同时传输,使得数据传输更加稳定和高效。
PCIe总线采用了差分信号传输,即发送方将数据编码为正负两个相等幅度但相反的点对点差分信号,接收方通过比较两个信号的幅度大小来恢复原始数据,这种差分信号传输方式可以有效抵抗干扰和噪声。
PCIe总线的主要特性之一是其高速性能。
PCIe 3.0是当前最常用的版本,其理论带宽达到了8个Gbit/s或986.67Mbyte/s。
PCIe 4.0和PCIe 5.0则更进一步提升了传输速度,分别达到了16 Gbit/s和32 Gbit/s,这使得PCIe总线成为现代计算机系统中的重要组成部分,支持高速数据传输和处理需求。
另一个重要的特性是PCIe总线架构的可扩展性。
PCIe总线可以通过添加更多的插槽和扩展卡来扩展系统的功能和性能。
每个PCIe插槽都有自己的数据通道,这意味着可以同时连接多个高速设备而不会互相干扰。
此外,PCIe总线还支持热插拔功能,用户可以在计算机工作的过程中插入或拔出PCIe扩展卡,而无需重新启动系统,这大大提高了计算机系统的可用性和灵活性。
PCIe总线还具有优秀的可靠性和稳定性。
由于采用了差分信号传输,PCIe总线的抗干扰能力较强,能够在高速数据传输中保持稳定的连接。
此外,PCIe总线还支持错误检测和重新发送机制,确保数据的完整性和准确性。
PCIE 3.0简介及信号和协议测试方法安捷伦科技(中国)有限公司:李凯一、前言PCI Express(简称PCIE)总线是PCI总线的串行版本,其采用多对高速串行的差分信号进行高速传输,每对差分线上的信号速率可以是1代的2.5Gbps、2代的5Gbps以及现在正逐渐开始应用的3代8Gbps。
PCIE标准是由PCI-SIG组织制定,自从推出以来,1代和2代标准已经在PC和Server上逐渐普及,用于支持高速显卡以及其它接口卡对于高速数据传输的要求。
出于支持更高总线数据吞吐率的目的,PCI-SIG组织在2010年制定了PCIE 3.0,即PCIE 3代的规范。
目前,PCIE 3.0已经开始出现在一些高端的Server上,而在普通PC上的应用也是指日可待。
那么PCIE 3.0总线究竟有什么特点?对于其测试有什么特殊的地方呢?我们这里就来探讨一下。
二、PCIE 3.0简介1、信号速率的变化首先我们看一下制定PCIE 3代规范的目的,其目的主要是要在现有的FR4板材和接插件的基础上提供比PCIE 2代高一倍的有效数据传输速率,同时保持和原有1代、2代设备的兼容。
别看这是个简单的目的,但实现起来可不容易。
我们知道,PCIE 2代在每对差分线上的数据传输速率是5Gbps,相对于1代提高了1倍;而3代要相对于2代把速率也提高一倍,理所当然的是把数据传输速率提高到10Gbps。
但是就是这个10Gbps把PCI-SIG给难住了,因为PC和Server上出于成本的考虑,普遍使用便宜的FR4的PCB板材以及廉价的接插件,无论采用什么技术都很难保证10Gbps的信号还能在原来的信号路径上可靠地传输很远的距离(典型距离是15~30cm)。
因此PCI-SIG最终决定把PCIE 3代的数据传输速率定在8Gbps。
但是8Gbps比着2代的5Gbps并没有高一倍,所以PCI-SIG决定在3代标准中把在1代和2代中使用的8b/10b编码去掉。
PCIE 3.0简介及信号和协议测试方法安捷伦科技(中国)有限公司:李凯一、前言PCI Express(简称PCIE)总线是PCI总线的串行版本,其采用多对高速串行的差分信号进行高速传输,每对差分线上的信号速率可以是1代的2.5Gbps、2代的5Gbps以及现在正逐渐开始应用的3代8Gbps。
PCIE标准是由PCI-SIG组织制定,自从推出以来,1代和2代标准已经在PC和Server上逐渐普及,用于支持高速显卡以及其它接口卡对于高速数据传输的要求。
出于支持更高总线数据吞吐率的目的,PCI-SIG组织在2010年制定了PCIE 3.0,即PCIE 3代的规范。
目前,PCIE 3.0已经开始出现在一些高端的Server上,而在普通PC上的应用也是指日可待。
那么PCIE 3.0总线究竟有什么特点?对于其测试有什么特殊的地方呢?我们这里就来探讨一下。
二、PCIE 3.0简介1、信号速率的变化首先我们看一下制定PCIE 3代规范的目的,其目的主要是要在现有的FR4板材和接插件的基础上提供比PCIE 2代高一倍的有效数据传输速率,同时保持和原有1代、2代设备的兼容。
别看这是个简单的目的,但实现起来可不容易。
我们知道,PCIE 2代在每对差分线上的数据传输速率是5Gbps,相对于1代提高了1倍;而3代要相对于2代把速率也提高一倍,理所当然的是把数据传输速率提高到10Gbps。
但是就是这个10Gbps把PCI-SIG给难住了,因为PC和Server上出于成本的考虑,普遍使用便宜的FR4的PCB板材以及廉价的接插件,无论采用什么技术都很难保证10Gbps的信号还能在原来的信号路径上可靠地传输很远的距离(典型距离是15~30cm)。
因此PCI-SIG最终决定把PCIE 3代的数据传输速率定在8Gbps。
但是8Gbps比着2代的5Gbps并没有高一倍,所以PCI-SIG决定在3代标准中把在1代和2代中使用的8b/10b编码去掉。
PCIe是什么?PCIe标准和PCIe布线规则总结概述PCI-Express(peripheral component interconnect express)是一种高速串行计算机扩展总线标准,它原来的名称为“3GIO”,是由英特尔在2001年提出的,旨在替代旧的PCI,PCI-X和AGP总线标准。
PCIe属于高速串行点对点双通道高带宽传输,所连接的设备分配独享通道带宽,不共享总线带宽,主要支持主动电源管理,错误报告,端对端的可靠性传输,热插拔以及服务质量(QOS)等功能。
PCIe交由PCI-SIG(PCI特殊兴趣组织)认证发布后才改名为“PCI-Express”,简称“PCI-E”。
它的主要优势就是数据传输速率高,目前最高的16X 2.0版本可达到10GB/s,而且还有相当大的发展潜力。
PCI Express也有多种规格,从PCI Express 1X到PCI Express 32X,能满足将来一定时间内出现的低速设备和高速设备的需求。
PCI-Express最新的接口是PCIe 3.0接口,其比特率为8GB/s,约为上一代产品带宽的两倍,并且包含发射器和接收器均衡、PLL改善以及时钟数据恢复等一系列重要的新功能,用以改善数据传输和数据保护性能。
INTEL、IBM、LSI、OCZ、三星(计划中)、SanDisk、STEC、SuperTalent和东芝(计划中)等,而针对海量的数据增长使得用户对规模更大、可扩展性更强的系统所应用,PCIe 3.0技术的加入最新的LSI MegaRAID控制器及HBA产品的出色性能,就可以实现更大的系统设计灵活性。
当然,主流主板都能能支持PCI Express 1.0 16X,也有部分较高端的主板支持PCI Express 2.016X。
PCIe标准PCI Express卡适合其物理尺寸或更大的插槽(使用×16作为最大的),但可能不适合更小的PCI Express插槽;例如,×16卡可能不适合×4或×8插槽。
pcie工作原理PCIE(Peripheral Component Interconnect Express)是一种计算机总线标准,用于连接计算机的主板和扩展卡,提供高速数据传输和通信能力。
PCIE采用串行通信方式,通过差分信号传输数据,具有高带宽、低延迟和稳定性强等特点。
PCIE工作的基本原理是通过发送和接收数据包来实现设备之间的通信。
PCIE总线由一个或多个通道组成,每个通道都由一个发送端和一个接收端组成。
发送端将数据包分为多个数据包,添加控制信息和错误检测信息,然后将它们转换成差分信号通过传输线发送到接收端。
接收端接收到差分信号后,将其转换为数字信号,然后还原为原始数据包。
在PCIE总线中,每个设备都有一个唯一的设备号和功能号。
当计算机启动时,主板上的PCIE根端口会扫描所有连接的设备,为每个设备分配一个资源配置空间(Configuration Space),并为其分配一个唯一的设备号和功能号。
这样,计算机可以通过设备号和功能号来识别和访问各个设备。
PCIE总线支持多种数据传输方式,包括可靠的无连接传输(Reliable Datagram)和可靠的有连接传输(Reliable Transaction)。
无连接传输适用于对延迟要求较高的应用,如数据流传输。
有连接传输适用于对可靠性要求较高的应用,如存储器读写操作。
PCIE还支持虚拟化技术,可以将一个物理设备虚拟为多个逻辑设备,每个逻辑设备都具有独立的设备号和功能号。
虚拟化技术使得多个操作系统可以同时访问同一个物理设备,提高了系统的利用率和灵活性。
PCIE总线的速度通常用一个数字来表示,例如PCIE 3.0和PCIE 4.0。
PCIE 3.0的速度为8GT/s(Gigatransfers per second),即每秒传输8亿次数据。
PCIE 4.0的速度为16GT/s,是PCIE 3.0的两倍。
随着技术的发展,PCIE的速度还会不断提升。
PCIE总线在计算机领域有着广泛的应用。
浅析PCIE总线信号分布及使用情况
PCI-Express简称PCI-E于2001年春季由Intel公司提出。
随后在2001年底,包括Intel、AMD、DELL、IBM在内的20多家业界主导公司开始起草新技术的规范,并在2002年底完成,对其正式命名为PCI Exress 。
PCI-Express的接口根据总线带宽不同而有所差异,包括X1、X4、X8以及X16(X2)模式用于内部接口而非插槽模式。
较短的PCI-Express卡可以插入较长的PCI-Express插槽中使用。
PCI-E 1X的网卡
PCI-E 4X的双端口网卡
PCI-E 16X的显卡
PCI-Express接口连接器
PCIe电源有+12V、+3.3Vcc和+3.3Vaux。
其中+12V主要给PCIe设备(如显卡)提供更大的供电能力(PCIe3.0的插槽最大有150w)。
PCIe设备使用两种电源信号供电,分别是Vcc与Vaux,其额定电压为3.3V。
其中Vcc为主电源,PCIe设备使用的主要逻辑模块均使用Vcc供电,而一些与电源管理相关的逻辑使用Vaux供电。
在PCIe设备中,一些特殊的寄存器通常使用Vaux供电,如Sticky Register,此时即使PCIe设备的Vcc被移除,这些与电源管理相关的逻辑状态和这些特殊寄存器的内容也不会发生改变。
在PCIe总线中,使用Vaux的主要原因是为了降低功耗和缩短系统恢复时间。
因为Vaux 在多数情况下并不会被移除,因此当PCIe设备的Vcc恢复后,该设备不用重新恢复使用Vaux供电的逻辑,从而设备可以很快地恢复到正常工作状状态。
PCIe链路的最大宽度为×32,但是在实际应用中,×32的链路宽度极少使用。
在一个处。