喷雾干燥优缺点
- 格式:docx
- 大小:22.74 KB
- 文档页数:4
喷雾干燥原理及过程
喷雾干燥是一种常用的干燥技术,其原理是将待干燥的液体物料通过雾化器分散成微小的雾滴,然后在高温下快速干燥。
该技术适用于大量液体的处理,常用于食品、药品和化工等行业。
喷雾干燥的过程主要包括以下步骤:
1. 液体物料通过管道进入雾化器,雾化器将其分散成微小的雾滴。
雾滴的大小和形状取决于雾化器的类型和操作条件。
2. 雾滴进入干燥塔,与热空气接触。
热空气将雾滴中的水分迅速蒸发,使雾滴变成干燥的固体颗粒。
3. 干燥后的颗粒通过重力或气力收集器收集,经过进一步处理后得到最终产品。
喷雾干燥的优点包括:
1. 处理量大,适用于大量液体的干燥。
2. 干燥速度快,可以在短时间内完成大量液体的干燥。
3. 干燥后的产品具有良好的分散性和流动性。
4. 可以根据需要调整产品的粒度和形状。
然而,喷雾干燥也存在一些缺点:
1. 干燥过程中需要消耗大量的热能,因此能耗较高。
2. 如果液体物料中含有易挥发成分,这些成分可能会在高温下挥发损失。
3. 干燥后的产品中可能会残留一些未挥发的溶剂或有害物质,
需要进行后续处理。
喷雾干燥技术在食品加工中的应用喷雾干燥是指用雾化器把料液分散成雾状液滴,同时在热风中干燥,最终获得粉状或颗粒状成品的过程。
由于料液的喷雾干燥在瞬间完成,因此必须最大限度地增加其分散度,即增加单位体积溶液中的表面积,从而加速热和质的过程(干燥过程)。
目前,在染料、医药、农药、水产、林业、冶金、食品、陶瓷等工业范围内,有数百种产品采用喷雾干燥方法得到。
按照雾化方法不同,可分为3类:①旋转式雾化器,将物料置于高速旋转盘上(转速7000~10000r/min),把液体甩出并液化;②气流式雾化器,利用压缩空气或水蒸气使物料雾化;③压力式雾化器(机械喷嘴),利用高压泵,把物料从喷嘴中高速压出而雾化。
在国外,应用最多的是旋转式雾化器,因为其操作简便、稳定可靠、节省动力,特别是处理量大的料液,旋转式更为方便;其次是压力式雾化器,若为大产量生产而采用压力式雾化器时,一般在喷雾室中安装多个喷嘴;气流式雾化器与另外2种雾化器相比,压缩空气的动力能耗大,因而其只在小型与中间采用,工厂生产很少使用。
在国内,气流式雾化器应用最普遍,其次是压力式雾化器,旋转式雾化器使用的最少。
1、喷雾干燥技术的特点喷雾干燥技术是物料经过雾化器分散成雾滴,雾滴在沉降过程中,水分被热空气气流蒸发而进行脱水干燥的过程。
干燥后得到的粉末状或颗粒状产品和空气分开后收集在一起,在这一道工序中同时完成喷雾与干燥2种工艺过程。
喷雾干燥机由雾化室、干燥室、分离器、泵等构成,干燥室是喷雾干燥技术的核心。
1.1喷雾干燥技术的优点(1)干燥速度快、时间短。
料液雾化后,表面积增大至10000倍以上。
例如,将1L料液雾化成直径为50μm的雾滴,其表面积可增大至120m2,在热风气流中可瞬时(0.01~0.04s)蒸发95%~98%的水分,完成干燥时间一般仅需5~40s。
(2)产品品质好。
喷雾干燥使用的温度范围广(80~300℃),即使采用高温热风,由于热交换主要用于蒸发物料水分,故出口温度仍不会很高,干燥产品品质较好,不易发生蛋白质变性、维生素损失、氧化等缺陷。
喷雾干燥产品研究报告喷雾干燥产品研究报告摘要:本报告主要介绍了喷雾干燥技术及其在产品制造中的应用。
通过对喷雾干燥的原理、工艺流程、设备特点等方面的分析,总结了喷雾干燥技术的优点和不足之处,并探讨了其在不同领域的应用情况。
最后,提出了进一步研究的方向和建议。
关键词:喷雾干燥;工艺流程;设备特点;应用情况;研究方向一、引言喷雾干燥是一种常用的干燥技术,广泛应用于食品、化工、制药等领域。
其原理是将液体通过喷嘴喷成微小颗粒,然后在热空气中进行干燥,最终得到干燥的产品。
喷雾干燥具有干燥速度快、产品质量好、操作简便等优点,因此备受青睐。
二、喷雾干燥的原理喷雾干燥的原理是将液体通过喷嘴喷成微小颗粒,然后在热空气中进行干燥,最终得到干燥的产品。
喷雾干燥的关键在于喷嘴的设计和热空气的控制。
喷嘴的设计决定了颗粒的大小和形状,而热空气的控制则决定了干燥的速度和质量。
三、喷雾干燥的工艺流程喷雾干燥的工艺流程包括液体预处理、喷雾干燥、干燥后处理等步骤。
液体预处理包括搅拌、过滤、调整pH值等操作,以保证液体的稳定性和均匀性。
喷雾干燥的过程中,液体通过喷嘴喷成微小颗粒,然后在热空气中进行干燥,最终得到干燥的产品。
干燥后处理包括筛分、包装等操作,以保证产品的质量和稳定性。
四、喷雾干燥的设备特点喷雾干燥的设备主要包括喷雾干燥机、热风炉、除尘器等部分。
喷雾干燥机是喷雾干燥的核心设备,其主要由喷嘴、干燥室、热风炉等部分组成。
热风炉是提供热空气的设备,其主要由燃烧室、热交换器、风机等部分组成。
除尘器是用于除去干燥过程中产生的粉尘和废气的设备,其主要由过滤器、风机等部分组成。
五、喷雾干燥的应用情况喷雾干燥技术在食品、化工、制药等领域都有广泛的应用。
在食品领域,喷雾干燥技术主要应用于乳制品、咖啡、茶叶等产品的制造中。
在化工领域,喷雾干燥技术主要应用于染料、颜料、洗涤剂等产品的制造中。
在制药领域,喷雾干燥技术主要应用于药物微粒的制造中。
六、喷雾干燥技术的优点和不足喷雾干燥技术具有干燥速度快、产品质量好、操作简便等优点。
高温喷雾干燥高温喷雾干燥是一种高效、快速的干燥方法,广泛应用于食品、医药、化工等行业。
它通过将液体喷雾成微小颗粒,接触大量的热空气,实现了液体的瞬间蒸发,使物料迅速干燥。
高温喷雾干燥的优势在于其能够保留物料的原有性质和品质,同时具有高效、节能的特点。
高温喷雾干燥的工艺过程包括液体喷雾、热空气加热和干燥过程。
首先,将待干燥的液体通过高压喷嘴雾化成微小颗粒,形成雾化液滴。
然后,将热空气通过加热器加热至高温状态,形成高温的干燥介质。
接着,将高温干燥介质与雾化液滴充分接触,液滴中的水分迅速蒸发,最终得到干燥的粉末状物料。
高温喷雾干燥具有许多优点。
首先,由于液体雾化成微小颗粒,增大了气固接触面积,使得干燥速度大大提高。
其次,高温喷雾干燥过程中的高温空气可以有效地杀菌和灭活微生物,保证了物料的卫生安全。
此外,高温喷雾干燥还可以避免物料的氧化和热敏性损失,确保产品的色泽、香气和口感。
在食品行业中,高温喷雾干燥被广泛应用于奶粉、蛋白粉、饮料粉等产品的生产过程中。
由于高温喷雾干燥能够保持物料的原有营养成分和口感,使得产品具有更好的品质。
同时,高温喷雾干燥还可以有效地杀灭微生物,延长产品的保质期。
因此,高温喷雾干燥在食品行业中被认为是一种理想的干燥方法。
在医药行业中,高温喷雾干燥被用于制备药物微粒。
传统的药物微粒制备方法存在制备周期长、粒径分布不均匀等问题,而高温喷雾干燥具有制备周期短、粒径分布均匀的优势。
通过调节喷雾参数和干燥温度,可以实现不同粒径的药物微粒的制备。
此外,高温喷雾干燥还可以保留药物的活性成分,提高药物的生物利用度。
在化工行业中,高温喷雾干燥被广泛应用于颗粒物料的干燥和粉末物料的制备。
通过调节喷雾参数和干燥温度,可以制备不同粒径的颗粒物料。
高温喷雾干燥还可以用于溶剂的回收和废水的处理,实现资源的循环利用。
尽管高温喷雾干燥具有诸多优点,但也存在一些挑战和限制。
首先,高温喷雾干燥设备的成本较高,需要投入较大的资金。
喷雾干燥与其他干燥方法比较具有许多的优点
①干燥速度十分迅速,料液滴经雾化后,表面积增大,在高温气流中,瞬间就蒸
发了95%~98%的水分,完成干燥的时间一般公需5~40s。
②干燥过程中,尽管采用高温空气80~800℃,其物料温度仍不会超过周围热空气的温度,因此,产品质量好。
③产品具有良好的分散性,流动性和溶解性。
④生产过程简化,操作控制方便。
喷雾干燥通常用于处理湿含量40%~90%溶液,不经浓缩,同样能一次干燥成粉状产品,大部分产品干燥后不需要再粉碎和筛选,减少了生产工序,简化了生产工艺。
对产品的粒径,松密度、水分在一定范围内,可改变其操作条件进行调整,便于自动控制。
⑤防止粉尘飞扬,改善生产环境,由于喷雾干燥是在密闭的干燥塔内进行,避免
了干燥产品粉尘的大量飞扬。
生产有毒气体、臭气物料时,可采取封闭循环生产流程,将毒气,臭气烧掉,防止潮热大气,能改善生产环境。
⑥适合于连续化大规模生产,现代喷雾干燥技术的发展,能够适应上大规模生产
的要求,可以连续排料,结合风力输送,自动计量包装等组成生产全自动作业线。
喷雾干燥的主要缺点
1、当热风温度低于150℃时,体积传热系数较低,h2=20~80Kcal/(m3.h.℃),蒸发
强度小,干燥塔的体积比较庞大,投资大。
2、废气加回收微粒的分离装置要求较高,当干燥粒径较小的产品时,废气中夹带
较多的微小颗粒,必须选用高效的分离装置,结构比较复杂,费用较高。
喷雾干燥的原理、优缺点及要求(一)喷雾干燥原理:通过机械作用,将需干燥的物料,分散成很细的像雾一样的微粒,(增大水分蒸发面积,加速干燥过程)与热空气接触,在瞬间将大部分水分除去,使物料中的固体物质干燥成粉末。
(二)喷雾干燥的优点:
1.干燥过程非常迅速;
2.可直接干燥成粉末;
3.易改变干燥条件,调整产品质量标准;
4.由于瞬间蒸发,设备材料选择要求不严格;
5.干燥室有一定负压,保证了生产中的卫生条件,避免粉尘在车间内飞扬,提高产品纯度;
6.生产效率高,操作人员少。
(三)喷雾干燥的缺点:
1.设备较复杂,占地面积大,一次投资大;
2.雾化器,粉末回收装置价格较高;
3.需要空气量多,增加鼓风机的电能消耗与回收装置的容量;
4.热效率不高,热消耗大。
(四)喷雾干燥对设备的要求:
1.与产品接触的部位,必须便于清洗灭菌;
2.应有防止焦粉措施,防止热空气产生涡流与逆流;
3.防止空气携带杂质进入产品;
4.配置温度、压力指示纪录仪装置,便于检查生产运转;
5.具有高回收率的粉尘回收装置;
6.应迅速出粉冷却,以提高溶解度、速溶性;
7.干燥室内温度极排风温度,不允许超过100℃,保证安全与质量;
8.喷雾时浓奶液滴与热空气均匀接触,提高热效率;
9.对粘度物质尽量减少粘壁现象。
对喷雾干燥的过程阶段及优缺点进行了分析,综述了喷雾干燥技术的研究进展,并对喷雾干燥技术的应用前景进行了分析,最后给出了喷雾干燥技术在中药制药生产中的应用实例——中药液一步喷雾干燥造粒。
该项技术将中药稀药液直接喷雾干燥制成干颗粒,将中药加工中药液的浓缩、多效浓缩、造粒、干燥四步合为一步,大大简化并缩短了中药提取液到半成品或成品的工艺和时间,提高了生产效率和产品质量。
可为喷雾干燥技术的推广应用以及提高中药制药水平提供借鉴与帮助。
关键词喷雾干燥雾化技术喷雾造粒中药制药一步造粒喷雾干燥是将原料液用雾化器分散成雾滴,并用热空气(或其它气体)与雾滴直接接触的方式而获得粉粒状产品的一种干燥过程。
原料液可以是溶液、乳浊液或悬浮液,也可以是熔融液或膏状物。
干燥产品可以根据需要,制成粉状、颗粒状、空心球状或团粒状。
喷雾干燥技术已有一百多年的历史。
自1865年喷雾干燥最早用于蛋品处理以来,这种由液态经雾化和干燥在极短时间直接变为固体粉末的过程,已经取得了长足的进步。
它使许多有价值但不易保存的物料得以大大延长保质期,使一些物料便于包装、使用和运输,同时也简化了一些物料的加工工艺。
由于喷雾干燥具有“瞬时干燥”、“干燥产品质量好”、“干燥过程简单”等特点,明显优于其它干燥方式,到20世纪三四十年代,该技术已经被广泛地应用于乳制品、洗涤剂、脱水食品以及化肥、染料、水泥的生产,目前常见的速溶咖啡、奶粉、方便食品汤料等就是由喷雾干燥得到的产品[1,2]。
我国最早将喷雾干燥用于工业化规模生产的是乳品行业,之后是洗涤剂和染料行业等,目前应用已十分广泛,遍及了以上所涉及的所有行业,尤其在陶瓷和制药行业喷雾干燥的应用更为普遍。
对于中药制药行业,喷雾干燥技术的应用有其独特的作用,大大简化并缩短了中药提取液到制剂半成品或成品的工艺和时间,提高了生产效率和产品质量。
本文对喷雾干燥的过程阶段及优缺点进行分析,综述喷雾干燥技术的研究进展,并对喷雾干燥技术的应用前景进行分析,最后给出喷雾干燥技术在中药制药生产中的应用实例——中药液一步喷雾干燥造粒。
干喷和湿喷工艺的优缺点
干喷和湿喷是两种常见的喷涂工艺,它们各自有优点和缺点。
干喷的优点:
1. 喷涂过程中不需要添加液体溶剂,不会产生化学反应和液体残留。
2. 喷涂后干燥迅速,不会造成水分滞留或涂层变形。
3. 可以在低温环境下进行喷涂,不受环境湿度的限制。
4. 可以在室内进行喷涂,不会对周围环境造成污染。
干喷的缺点:
1. 固体粉末颗粒较细,易产生浮尘,对操作人员的健康有一定危害。
2. 固体粉末在喷涂前需要通过设备进行处理,增加了额外的工序和成本。
3. 对于某些特殊材料,干喷可能无法实现均匀涂层的覆盖。
湿喷的优点:
1. 涂层表面光滑、均匀,可实现较精细的喷涂效果。
2. 涂料在喷涂过程中可以调整稀释、附着力和流动性,适应多种材料和表面。
3. 可以在较高温度和潮湿环境下进行喷涂。
湿喷的缺点:
1. 涂料中常常含有溶剂,喷涂完成后需要较长时间进行干燥,不适合快速生产需求。
2. 喷涂过程中对周围环境有一定的污染风险,对操作人员的健康可能有一定危害。
3. 不适合用于涂饰较小的工件,由于涂料流动性较大,容易造成过度喷涂和浪费。
压力喷雾干燥和离心喷雾干燥一、压力喷雾干燥压力喷雾干燥是一种将液态物质通过喷嘴喷雾成小颗粒,并在高温高压的环境下快速蒸发的干燥方法。
其原理是通过将液体物料喷入干燥室,利用压缩空气将液滴雾化为微小颗粒,然后在干燥室中通过加热和通风使其迅速蒸发,最终得到干燥的粉末。
压力喷雾干燥具有以下优点:1. 干燥速度快:喷雾成小颗粒后,表面积大大增加,利于蒸发,从而实现快速干燥。
2. 适用范围广:适用于多种物料的干燥,包括液体、悬浮液、乳液等。
3. 干燥后的粉末颗粒均匀:喷雾干燥可获得均匀的颗粒尺寸,有利于产品的质量控制。
然而,压力喷雾干燥也存在一些缺点:1. 能耗较高:由于需要加热和通风,所以能耗相对较高。
2. 设备复杂:压力喷雾干燥设备需要具备喷雾、加热、通风等多种功能,设备复杂,维护成本较高。
二、离心喷雾干燥离心喷雾干燥是一种将液态物质通过离心力将其喷雾成小颗粒,并在高速旋转的离心机内迅速蒸发的干燥方法。
其原理是通过离心机的高速旋转将液体物料喷入旋转碟中,使其受到离心力的作用从而形成液滴雾化,然后在高温环境下迅速蒸发,最终得到干燥的粉末。
离心喷雾干燥具有以下优点:1. 干燥效果好:由于离心力的作用,液滴雾化更加均匀,干燥效果更好。
2. 适用范围广:适用于多种物料的干燥,包括液体、悬浮液、乳液等。
3. 设备相对简单:相比压力喷雾干燥,离心喷雾干燥设备相对简单,维护成本较低。
然而,离心喷雾干燥也存在一些缺点:1. 干燥速度较慢:相比压力喷雾干燥,离心喷雾干燥的干燥速度相对较慢。
2. 粉末颗粒不够均匀:由于离心力的作用,离心喷雾干燥得到的粉末颗粒尺寸分布相对不均匀。
压力喷雾干燥和离心喷雾干燥都是常见的干燥方法,各有优缺点。
在选择干燥方法时,需要根据物料的性质、干燥要求以及设备投资等方面进行综合考虑。
希望本文对读者有所帮助,增加对这两种干燥方法的了解。
对喷雾干燥的过程阶段及优缺点进行了分析, 综述了喷雾干燥技术的研究进展, 并对喷雾干燥技术的应用前景进行了分析, 最后给出了喷雾干燥技术在中药制药生产中的应用实例——中药液一步喷雾干燥造粒。
该项技术将中药稀药液直接喷雾干燥制成干颗粒, 将中药加工中药液的浓缩、多效浓缩、造粒、干燥四步合为一步, 大大简化并缩短了中药提取液到半成品或成品的工艺和时间, 提高了生产效率和产品质量。
可为喷雾干燥技术的推广应用以及提高中药制药水平提供借鉴与帮助。
关键词喷雾干燥雾化技术喷雾造粒中药制药一步造粒喷雾干燥是将原料液用雾化器分散成雾滴, 并用热空气(或其它气体) 与雾滴直接接触的方式而获得粉粒状产品的一种干燥过程。
原料液可以是溶液、乳浊液或悬浮液, 也可以是熔融液或膏状物。
干燥产品可以根据需要, 制成粉状、颗粒状、空心球状或团粒状。
喷雾干燥技术已有一百多年的历史。
自1865 年喷雾干燥最早用于蛋品处理以来, 这种由液态经雾化和干燥在极短时间直接变为固体粉末的过程, 已经取得了长足的进步。
它使许多有价值但不易保存的物料得以大大延长保质期, 使一些物料便于包装、使用和运输, 同时也简化了一些物料的加工工艺。
由于喷雾干燥具有“瞬时干燥”、“干燥产品质量好”、“干燥过程简单”等特点, 明显优于其它干燥方式, 到20 世纪三四十年代, 该技术已经被广泛地应用于乳制品、洗涤剂、脱水食品以及化肥、染料、水泥的生产, 目前常见的速溶咖啡、奶粉、方便食品汤料等就是由喷雾干燥得到的产品[ 1, 2 ]。
我国最早将喷雾干燥用于工业化规模生产的是乳品行业, 之后是洗涤剂和染料行业等, 目前应用已十分广泛, 遍及了以上所涉及的所有行业, 尤其在陶瓷和制药行业喷雾干燥的应用更为普遍。
对于中药制药行业, 喷雾干燥技术的应用有其独特的作用, 大大简化并缩短了中药提取液到制剂半成品或成品的工艺和时间, 提高了生产效率和产品质量。
本文对喷雾干燥的过程阶段及优缺点进行分析, 综述喷雾干燥技术的研究进展, 并对喷雾干燥技术的应用前景进行分析, 最后给出喷雾干燥技术在中药制药生产中的应用实例——中药液一步喷雾干燥造粒。
1 喷雾干燥的过程阶段及优缺点分析1.1 喷雾干燥的过程阶段喷雾干燥可分为三个基本过程阶段: 一是料液雾化成雾滴二是雾滴和干燥介质接触、混合及流动, 即进行干燥三是干燥产品与空气分离。
1.1.1 喷雾干燥的第一阶段——料液的雾化料液雾化为雾滴和雾滴与热空气的接触、混合, 是喷雾干燥独有的特征。
雾化的目的在于将料液分散成微细的雾滴, 使其具有很大的表面积, 当其与热空气接触时, 雾滴中水分迅速汽化而干燥成粉末或颗粒状产品。
雾滴的大小及其均匀程度对产品质量和技术经济指标影响很大, 特别是对热敏性物料的干燥尤为重要。
如果喷出的雾滴其大小很不均匀, 就会出现大颗粒还没达到干燥要求、小颗粒却已干燥过度而变质的现象。
因此料液雾化所用的雾化器是喷雾干燥的关键部件。
目前常用的雾化器有气流式、压力式、旋转式和声能雾化器等。
1.1.2 喷雾干燥的第二阶段——雾滴和空气的接触雾滴和空气的接触、混合及流动是同时进行的传热传质过程, 即干燥过程, 此过程在干燥塔内进行。
雾滴和空气的接触方式、混合与流动状态决定于热风分布器的结构型式、雾化器在塔内的安装位置及废气排出方式等。
在干燥塔内, 雾滴- 空气的流向有并流、逆流及混合流。
雾滴与空气的接触方式不同, 对干燥塔内的温度分布、雾滴(或颗粒) 的运动轨迹、颗粒在塔内的停留时间及产品性质等均有很大影响。
雾滴的干燥过程也经历着恒速和降速阶段。
研究雾滴的运动及干燥过程, 主要是确定干燥时间及干燥塔的主要尺寸。
1.1.3 喷雾干燥的第三阶段——干燥产品与空气分离喷雾干燥的产品大多采用塔底出料, 部分细粉夹带在排放的废气中, 废气在排放前必须将这些细粉收集下来, 以提高产品收率, 降低生产成本。
排放的废气必须符合环境保护的排放标准, 以防止环境污染。
1.2 喷雾干燥的优缺点分析1.2.1 喷雾干燥的优点只要干燥条件保持恒定, 干燥产品特性就保持恒定喷雾干燥的操作是连续的, 其系统可以是全自动控制操作喷雾干燥系统适用于热敏性和非热敏性物料的干燥, 适用于水溶液和有机溶剂物料的干燥原料液可以是溶液、泥浆、乳浊液、糊状物或熔融物, 甚至是滤饼等均可处理喷雾干燥操作具有非常大的灵活性,喷雾能力可达每小时几千克至200 吨[ 4 ]。
1.2.2 喷雾干燥的缺点喷雾干燥投资费用比较高喷雾干燥属于对流型干燥, 热效率比较低(除非利用非常高的干燥温度) ,一般为30%~ 40%。
2 喷雾干燥技术的研究进展喷雾干燥技术的核心是流化技术, 具有从流体到固体瞬时干燥的突出优势。
其设备一般是由雾化器(喷头) 、干燥塔、进出气及物料收集回收系统等组成。
其中使料液雾化所用的雾化器是喷雾干燥装置的关键部件。
2.1 雾化器的种类和雾化形式一般在生产中常用的雾化器有气流式雾化器、压力式雾化器和旋转式雾化器几种。
不同的雾化器可以产生不同的雾化形式, 按照不同的雾化形式可以将喷雾干燥分为气流式雾化、压力式雾化和旋转式雾化。
雾化形式的选择取决于料液的性质和最终产品所要求的特性。
对于液体的雾化机理, 基本上可分为三种类型, 即滴状分裂、丝状分裂和膜状分裂。
在喷雾干燥操作中, 雾化机理与雾化方法、操作条件、流体的物性等有关。
雾化机理可以指导我们进行合理的雾化器的设计和操作。
气流式雾化利用压缩空气(或水蒸气) 高速从喷嘴喷出并与另一通道输送的料液混合,借助空气(或水蒸气) 与料液两相间相对速度不同产生的摩擦力, 把料液分散成雾滴。
根据喷嘴的流体通道数及其布局, 气流式雾化器又可以分为二流体外混式、二流体内混式、三流体内混式、三流体内外混式以及四流体外混式、四流体二内一外混式等等[ 3 ]。
气流式雾化器的结构简单, 处理对象广泛, 但能耗大。
压力式雾化利用压力泵将料液从喷嘴孔内高压喷出, 直接将压力转化为动能, 使料液与干燥介质接触并被分散为雾滴。
压力式雾化器生产能力大, 耗能小细粉生成少, 能产生小颗粒, 固体物回收率高。
旋转式雾化利用高速旋转的盘或轮产生的离心力将料液甩出, 使之与干燥介质接触形成雾滴。
旋转式雾化器受进料影响(如压力) 变化小控制简单。
三种雾化器的比较见表1[ 3, 4, 5 ]。
三种雾化原理的理论研究, 主要围绕着喷雾器的关键参数与雾化性能而展开, 黄立新等[ 3 ]对此做了综述报道。
这方面的研究将有助于喷雾器性能的改进, 也有利于应用过程中根据喷雾料液及其产品要求对雾化器进行选择。
中药提取液的喷雾干燥, 基本上是以旋转式雾化和气流式雾化形式进行的, 而后者以小型试验设备多见。
从雾化的实现而言, 压力式雾化需要高压泵和较大的雾化空间, 气流式雾化能耗又很高, 这些都限制了它们的应用。
相对而言, 旋转式雾化器技术要求相对较低, 是最容易实现的。
2.2 喷雾干燥机理的研究影响喷雾干燥效果的因素很多, 除雾化器外, 还有干燥塔、进出气及物料收集回收系统以及整个干燥器系统。
国内外许多学者对喷雾干燥的数学模型进行了研究, 以期给出干燥塔内气体流动状态和各种热力学参数的分布信息, 这对喷雾干燥器的设计、优化以及干燥效果等的提高都具有很重要的意义。
吴中华等[ 6 ]应用气- 粒两相流理论和计算流体力学(CFD) , 结合喷雾干燥的特点, 建立了模拟喷雾干燥塔内气体- 颗粒两相湍流流动的CFD 模型, 并对实验室脉动燃烧喷雾干燥过程进行了数值模拟。
其结果具有详细、直观的特点模拟得到的喷雾干燥塔内气相流场和各种热力学参数的分布信息, 可以为喷雾干燥器的设计、干燥过程的优化等提供参考。
戴命和等[ 7 ]进行了喷雾干燥过程的热力学建模及仿真, 根据质量平衡原理、热平衡原理和牛顿定律推导了逆流喷雾干燥过程的一维双向静态热力学数学模型它包括了物料温度方程、热风温度方程、颗粒速度方程、热风湿含量方程、物料含水率方程, 用MA TLA 仿真后, 得到了增大空气量比提高空气温度更具技术经济性的结论。
2.3 喷雾工艺优化的研究在喷雾干燥的实验研究方面, 康智勇[ 8 ]研究了压力式喷雾干燥塔喷嘴孔径对粉料的影响, 认为大孔径更适于喷雾颗粒的分布向大颗粒集中。
王晓兰等[ 9 ]在工厂大生产的条件下研究了影响喷雾干燥粉粒粒度分布的因素, 分析了陶瓷坯料泥浆粘度、含水率、喷雾压力、喷雾器孔径与粉粒粒度分布之间的关系, 得出其影响系数由大至小分别为喷雾器孔径、压力、粘度、含水率等。
杨志生等[ 10 ]在对农药水分散性颗粒喷雾干燥过程的研究中, 分析了干燥进气温度、进料量对干燥产品的悬浮率、粒子密度、粒子形状等的影响。
喷雾干燥在越来越广泛的应用中, 已经不仅限于传统的干燥模式, 刘相东等[ 11 ]进行了脉动气流的喷雾干燥研究。
利用脉动燃烧产生的高频脉动气流对 aCl 溶液进行了喷雾干燥试验, 结果表明: 高温、高频振荡气流下的喷雾干燥比传统喷雾干燥的蒸发速率提高了2.5倍。
2.4 喷雾干燥技术的发展趋势喷雾干燥技术应用广泛, 其优势明显, 但其理论仍然落后于实践, 突出表现在干燥理论的实践指导性差。
干燥动力学、非球形颗粒的干燥模拟、喷雾干燥等领域有待进行更深入的研究[ 3 ]。
喷雾干燥热效率低, 因此, 喷雾干燥的节能降耗问题就比较突出[ 1 ] 亚高温喷雾干燥(进风温度60~ 150 ℃) 、常温喷雾干燥(进风温度60℃以下) 、降低能耗与多级干燥等都将是今后的研究重点。
另外, 喷雾干燥技术与具体的应用领域结合还将用于喷雾冷却造型、喷雾反应、喷雾吸收、喷雾涂层和喷雾造粒等领域。
笔者认为, 在今后还应注意加强下述几方面的研究与开发。
(1) 采用组合干燥。
当喷雾干燥本身不能完成干燥任务时, 首先要想到组合干燥。
如喷雾干燥加流化床(干燥及冷却)、喷雾干燥加带式干燥等。
(2) 雾化器的改进。
当某种物料雾化很困难时, 可改进原有雾化器的结构, 以适应新物料的雾化要求。
例如, 对旋转雾化器已做了多种改进, 能够雾化粘性大的物料及喷雾造粒等。
(3) 静电雾化技术的研究与开发。
此项技术正处于研究与开发阶段, 它可以制造出微米及亚微米级粒子, 制造机能性粒子, 制造薄膜和喷涂等, 预测其将来有广阔的发展前景。
(4) 开发和完善在线测量系统。
使系统操作自动化, 确保产品的质量和产量。
(5) 开发过热蒸汽的喷雾干燥系统。
这是一个闭路循环系统, 可以节省能量, 省去氮气循环的操作。
(6) 利用计算流体力学(CFD) 的方法, 解决喷雾干燥器的设计问题。
将来可以利用一些可靠的实验数据(包括流动图形) , 利用CFD 的方法, 比较准确地算出干燥器尺寸及热风分布方式, 代替目前的半理论、半经验的方法(目前的方法误差太大)。