新基因功能研究的策略与方法
- 格式:ppt
- 大小:1.41 MB
- 文档页数:28
基因功能研究一般先用生物信息学分析对基因的结构和功能做预测,然后就要对我们的推测进行验证,如何验证一个基因的功能,目前最常用的基因功能研究策略为功能获得与功能失活。
1、功能获得策略是指将基因直接导入某一细胞或个体中,通过该基因在机体内的表达,观察细胞生物学行为或个体表型遗传性状的变化,从而鉴定基因的功能。
常用的功能获得的具体方法有基因过表达技术以及CRISPR-SAM技术等。
2、基因的过表达技术:基因过表达技术是指将目的基因构建到组成型启动子或组织特异性启动子的下游,通过载体转入某一特定细胞中,实现基因的表达量增加的目的,可以使用的载体类型有慢病毒载体,腺病毒载体,腺相关病毒载体等多种类型。
当基因表达产物超过正常水平时,观察该细胞的生物学行为变化,从而了解该基因的功能。
基因过表达技术可用于在体外研究目的基因在DNA、RNA和蛋白质水平上的变化以及对细胞增殖、细胞凋亡等生物学过程的影响。
可使用产品:过表达慢病毒、cDNA克隆(可用作ORF克隆)CRISPR-SAM技术:CRISPR-SAM系统由三部分组成:第一个部分是dCas9与VP64融合蛋白;第二个部分是含2个MS2 RNA adapter的sgRNA;第三个是MS2-P65-HSF1激活辅助蛋白。
CRISPR-SAM系统借助dCas9-sgRNA的识别能力,通过MS2与MS2 adapter的结合作用,将P65/HSF1/VP64等转录激活因子拉拢到目的基因的启动子区域,成为一种强效的选择性基因活化剂,从而达到增强基因表达的作用。
可使用产品:全基因Cas9 SAM-慢病毒文库2、功能获得两种方法的比较:基因的过表达技术与CRISPR-SAM技术都能达到基因表达的上调,但是由于基因的过表达技术使用的载体容量的限制,导致基因的过表达技术只能用于研究一定长度内的基因。
而CRISPR-SAM技术是通过增强目的基因启动子的转录而实现基因的过表达,可以不受基因大小的限制。
植物基因定位和基因功能分析的方法研究随着现代生物学和遗传学的发展,人们对植物基因定位和基因功能分析的方法进行了深入研究,这不仅可以帮助人们更好地理解植物发育和生长的机理,还能为植物育种和生产提供有用的信息和工具。
本文将重点介绍当前主要的植物基因定位和基因功能分析方法。
一、植物基因定位方法1.遗传连锁图谱遗传连锁图谱是一种利用遗传标记来分析不同基因之间遗传联系的方法。
通过对多个遗传标记在植物基因组中的位置进行测定和分析,可以建立起一张遗传图谱,用于揭示不同基因之间的距离和相对位置。
这种方法通常使用分子标记进行,如限制性片段长度多态性(RFLP)、简单重复序列(SSR)、随机扩增多态性(RAPD)等等。
2.基因组关联分析基因组关联分析是一种利用大规模基因组数据来解析复杂性状遗传基础的方法。
这种方法可以在典型生境群体中寻找有影响的变异位点,并确定它们与复杂性状之间的关系。
这种方法使用的主要技术是基因芯片和全基因组二代测序等高通量技术。
3.定位克隆定位克隆是一种在表型、遗传连锁图谱和基因组关联分析的基础上,利用分子遗传学的技术从候选区域中精确定位基因的方法。
这种方法最初是通过描述多态性突变体的表型特征并与别的单基因遗传性神经病的解决方案进行议会比较,通过遗传性状继承模式的推断、基因组DNA库筛选和分子标记标示等技术逐渐细化到定位至遗传连锁图谱中的一个小区域或物理图谱上的一小段碎片。
目前随着技术不断升级,整个过程已经极度自动化,能够对基因进行深准碎片定位和氨基酸序列注释,进一步明确植物基因的功能和作用机制。
二、基因功能分析方法1.反相留出反向遗传(反相留出)是一种采用RNA干扰技术降低或抑制嘌呤和非嘌呤物种基因表达的途径。
这种技术利用RNAi的调控机制,特异性破坏mRNA分子,并通过RNA的剪切或配对等方式,实现对靶基因的抑制。
这种技术能够有效地研究基因在发育、生长、代谢等过程中的功能,并探究不同基因之间的互相作用。
基因分析的基本策略引言基因分析是生物领域中一项重要的研究工具,通过对基因的分析可以揭示生物的遗传信息、功能以及与疾病相关的遗传变异。
基因分析的基本策略是一系列针对基因组的实验和计算方法,旨在深入理解基因的结构、功能和作用机制。
本文将介绍基因分析的基本策略和常用的分析方法。
1. 基因组测序基因组测序是基因分析的第一步,通过测序技术可以获取基因组的完整序列。
现代基因组测序技术包括传统的链终止法(Sanger测序),以及高通量测序技术,如 Illumina HiSeq、Pacific Biosciences 和Oxford Nanopore Technologies 等。
基因组测序的产出是一系列的DNA片段,通过生物信息学工具进行序列拼接和组装,可以得到完整的基因组序列。
2. 基因注释基因注释是对基因组进行功能和结构的标注,将序列信息翻译成有意义的生物学信息。
基因注释可以分为结构注释和功能注释两个层次。
结构注释结构注释主要用于预测基因的结构和组织结构。
常见的结构注释方法包括基因预测、剪接位点预测和重复序列识别等。
基因预测是确定基因的位置和转录本的起始和终止位点的过程。
剪接位点预测用于确定基因的剪接方式,即基因转录本的选择性剪接。
重复序列识别可以帮助鉴定基因组中的重复序列,例如转座子等。
功能注释功能注释主要通过比对基因组序列和已知功能基因库,将未知基因序列进行功能注释。
常见的功能注释方法包括BLAST、GO富集分析和KEGG通路分析等。
BLAST是一种比对算法,可以通过比对基因组序列和已知序列库,找到相似的序列并推断基因的功能。
GO富集分析是根据基因的注释信息,统计出某一功能术语在基因集中的富集程度,从而推断基因集的功能。
KEGG通路分析则是通过比对基因组序列和KEGG数据库,分析基因在代谢通路中的功能。
3. 基因表达分析基因表达分析是研究基因在不同条件下的表达水平和变化趋势。
通过基因表达分析可以了解基因在发育和疾病等生物过程中的功能和调控机制。
植物基因功能研究的主要方法随着植物基因组计划的实施和完成,大量的基因组数据库和EST数据库得以建立和完成,因此产生的问题是成千上万新基因的功能有待分子生物学家鉴定。
研究植物基因功能主要有两种策略:正向遗传学和反向遗传学策略。
正向遗传学是传统的方法,策略是通过筛选天然或人工产生的突变体进而克隆相关目标基因,即从功能(表型)-突变体-基因,最后得到具有相关功能(如对干旱敏感或耐旱)的基因,常用手段是图位克隆并结合一些基因差异表达筛选技术(如差减杂交、差异显示PCR、差异显示分析等)。
反向遗传学的策略是从已知的基因序列入手鉴定其功能,研究手段包括基因的互补实验、超表达、反义抑制、基因敲除、基因激活等。
采用反向遗传学鉴定基因功能是基因组计划由结构基因组学过渡到功能基因组学的必然要求。
目前,植物抗逆性功能基因的研究策略主要集中在利用差减杂交、差异显示PCR、差异显示分析、cDNA微阵列(或基因芯片)等技术筛选与逆境胁迫相关的表达序列标签(EST)或转录因子,然后利用反向遗传学等技术对转录因子的功能进行研究。
正向遗传学手段主要集中在抗逆性状的遗传分析和QTL定位方面,然而目前尚无抗逆性状QTL基因克隆的报道;通过突变体抗逆筛选的途径主要是在模式植物拟南芥中,特别是克隆了一大批与ABA合成或ABA 敏感性有关的基因,例如ABA不敏感的abi8突变体(Brocard-Gifford et al., 2004)。
近年来许多国家(特别是我国)的水稻突变体数量剧增,为通过抗逆筛选克隆基因奠定了基础。
综合利用这些研究手段可以全面地了解植物对胁迫响应的复杂机制和相互作用以及相应的信号传导途径,从而为更加高效地利用基因工程技术来提高植物的抗逆性奠定基础。
下面就几种常见的研究抗逆基因功能的策略作简要介绍。
1. 超量表达(Over-expression)超量表达是指将目的基因全长序列与高活性的组成型或组织特异型启动子融合,通过转化获得该基因产物大量积累的植株,从而扩大该基因在生理生化过程中的效应,这部分扩大的效应带来的与正常植株在各种表型上的差异有助于帮助理解基因功能。