2013-2014人教版八年级数学上册期末试卷
- 格式:doc
- 大小:111.27 KB
- 文档页数:2
八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。
图2ABED F C图1NPOMACB2013-2014新人教版八年级数学上册第一学期期末试卷一.填空题(本题共10题,每小题3分,共30分)1.△ABC ≌△DEF ,且△ABC 的周长为18,若AB =5,AC =6,则EF = .2. 化简=-+-a b bb a a . 3.如图1,PM =PN ,∠BOC =30°,则∠AOB = .4.如图2,在△ABC 中,AB =AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中 点,则图中共有全等三角形 对.5. 已知△ABC ≌△DEF , 且∠A =30°, ∠E =75°, 则∠F = .6. 分解因式x 2+ax+b 时,甲看错了a 的值,分解的结果是(x+6)(x-1),乙看错了b,分解的结果是(x-2)(x+1),那么x 2+ax+b 分解因式正确的结果是 .7. 若(x 2+y 2)(x 2+y 2-1)-12=0,那么x 2+y 2= . 8.等腰三角形中有一个角等于500,则另外两个角的度为 . 9. 生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为 ㎜. 10. 如右图,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 与△ABC 全等,则点D 坐标可以是 。
二.选择题(本题共10题,每小题3分,共30分)1等腰三角形一腰上的高与另一腰的夹角为60 ,则顶角的度数为 ( )A.30° B.30°或150° C.60150或D.60或1202. .如图,把长方形ABCD 沿EF 对折后使两部分重合, 若∠AEF=110°则∠1=( )A.30°B.35°C.40°D.50° 3.下列图形是轴对称图形的有( )ABCxyEFCBAD A.2个 B.3个 C.4个 D.5个4. 若x+y=2,xy=-2 ,则(1-x)(1-y)的值是 ( )A.-1B.1C.5D.-35.已知:在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32,且BD :DC=9:7,则点D 到AB 边的距离为( )A.18B.16C.14D.126. 某地为了发展旅游业,要在三条公路围成的一块平地建一 个度假村,使度假村到三条公路的距离相等,这个度假村的选址地点共有( )处A 1B 2C 3D 4 7等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是( ) A .横坐标 B .纵坐标 C .横坐标及纵坐标D .横坐标或纵坐标8. 有游客m 人,如果每n 个人住一个房间,结果还有一个人无房住,则客房有( )间 A.n m 1- B.1-n m C.n m 1+ D.1+nm9.下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 10. 如右图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB, 若AE=8,则DF 等于( ) A.5 B.4C . 3D .2三.解答题(共60分) 21、计算题:(1) 20071)1()23()14.3(-+-+--π (2)2211b a ab b a -÷⎪⎭⎫⎝⎛--B CEAF22. 因式分解(每小题5分,共10分)⑴8a-4a 2-4 ⑵161212+-y y23在ABC △中,AB ⊥CB ,∠ABC=90°,E 为CB 延长线上一点,点F 在AB 上,且AE ⊥CF .(1)求证:Rt Rt ABE CBF △≌△; (2)若∠CAE=60°,求∠ACF 的度数.24. 列方程解应用题:同一条高速公路沿途有三座城市A 、B 、C ,C 市在A 市与B 市之间,A 、C 两市的距离为540千米,B 、C 两市的距离为600千米.现有甲、乙两辆汽车同时分别从A 、B 两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C 市.求两车的速度.AB C M N A BC HM D AHB C M D25如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接E,F证明:(1)AE=AF ; (2)DA 平分∠EDF ;(3)请你猜想:AD 与EF 有何关系,不必说明理由。
2013--2014学年度八年级数学上册期末测试题一.选择题(共12小题,满分36分,每小题3分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.B. C. D.C. D.D.2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根A. 0根 B. 1根 C. 2根 D. 3根0根 B. 1根 C. 2根 D. 3根B. 1根 C. 2根 D. 3根1根 C. 2根 D. 3根C. 2根 D. 3根2根 D. 3根D. 3根3根3.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEA. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEAB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEB. ∠BAE=∠CAD C. BE=DC D. AD=DE∠BAE=∠CAD C. BE=DC D. AD=DEC. BE=DC D. AD=DEBE=DC D. AD=DED. AD=DEAD=DE4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°A. 180° B. 220° C. 240° D. 300°180° B. 220° C. 240° D. 300°B. 220° C. 240° D. 300°220° C. 240° D. 300°C. 240° D. 300°240° D. 300°D. 300°300°5.下列计算正确的是()A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=12a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1(x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1C. (ab3)2=ab6 D. (﹣1)0=1(ab3)2=ab6 D. (﹣1)0=1D. (﹣1)0=1(﹣1)0=16..黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B. C. D. 7.下列式子变形是因式分解的是()B. C. D. 7.下列式子变形是因式分解的是()C. D. 7.下列式子变形是因式分解的是()D. 7.下列式子变形是因式分解的是()7.下列式子变形是因式分解的是()7.下列式子变形是因式分解的是()A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3)B. x2﹣5x+6=(x﹣2)(x﹣3)x2﹣5x+6=(x﹣2)(x﹣3)C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)(x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x+2)(x+3)有意义,则a的取值范围是()8.若分式A. a=0 B. a=1 C. a≠﹣1 D. a≠0 9、下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A . a=0B . a=1C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( ) a=0 B . a=1 C . a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )B . a=1C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a=1 C . a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )C . a ≠﹣1D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a ≠﹣1 D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )D . a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )a ≠0 9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )9、下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( )A . ①②③B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A . ①②③B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )①②③ B . ①③⑤ C . ②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )B . ①③⑤C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )①③⑤ C . ②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )C . ②③④D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )②③④ D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )D . ②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )②④⑤ 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10.如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值11.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A . B . C . D .A .B .C .D .B .C .D . B . C . D .C .D . C . D .D . D .12.如图,A 、C 、B 三点在同一条直线上,△DAC 和△EBC 是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N 结论:①△ACE ≌△DCB ;②CM=CN ;③AC=DN .其中,正确结论的个数是( A .3个 B .2个 C .1个 D .0二.填空题(共5小题,满分20分,每小题4分)13.分解因式:x 3﹣4x 2﹣12x= _________ .14.若分式方程:有增根,则k= _________ .15.如图所示,已知点A 、D 、B 、F 在一条直线上,AC=EF ,AD=FB ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是 _________ .(只需填一个即可)三.解答题(共7小题,满分64分)18.(5分)先化简,再求值:5(3a 2b ﹣ab 2)﹣3(ab 2+5a 2b ),其中a= ,b=﹣.19.(5分)给出三个多项式: x 2+2x ﹣1, x 2+4x+1,x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解. 20.(5分)解方程:.21.(5分)作图.(1)已知△ABC ,在△ABC 内求作一点P ,使点P 到△ABC 三条边的距离相等.(2)要在高速公路旁边修建一个飞机场,使飞机场到A 、B 两个城市的距离之和最小,请作出飞机场的位置.22、(7分)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度?23、(7分)如图,①AB=DE 、②CB=CE 、③∠1=∠2、④CA=CD 结论,写出所有成立的命题,并选择其中一个加以证明.24、(8分)已知:如图,△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F.求证:AB-AC=2CF.25.(10分)(2012•百色)某县为了落实中央的“需天数是规定天数的1.55天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?26、(12分)如图1,小明将一张矩形纸片沿对角线剪开,得到两张全等直角三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、F、D在同一条直线上,F为公共直角顶点.(1)将图3中的△ABF绕点F顺时针方向旋转30°到图4的位置,A1F交DE于点G,请你求出线段FG的长度;.(2)将图附加题;1、(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC=BC;②AD+AB=AC.请你证明结论②;(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.2、将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.3、如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)如图1,请你写出AB与AP所满足的数量关系和位置关系;(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点O,连接AP,BO.猜想并写出BO与AP 所满足的数量关系和位置关系,并说明理由;(3)将△EFP沿直线l继续向左平移到图3的位置时,EP的延长线交AC的延长线于点O,连接AP,BO.此时,BO与AP还具有(2)中的数量关系和位置关系吗?请说明理由.2013--2014新人教版八年级数学上期末测试题带详细讲解(超经典)参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)(2012•湛江)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .B. C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .C. D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .D. 考点: HYPERLINK"/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .考点: HYPERLINK "/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .考点: HYPERLINK "/math/ques/detail/569ec5e8-bbd1-4624-8a42-ae677c87259a" 轴对称图形 .分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)(2011•绵阳)王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?()A. 0根 B. 1根 C. 2根 D. 3根A. 0根 B. 1根 C. 2根 D. 3根0根 B. 1根 C. 2根 D. 3根B. 1根 C. 2根 D. 3根1根 C. 2根 D. 3根C. 2根 D. 3根2根 D. 3根D. 3根3根考点: 三角形的稳定性. 专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,三角形的稳定性. 专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,专题: 存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,存在型. 分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,分析:根据三角形的稳定性进行解答即可.解答:解:加上AC后,原不稳定的四边形ABCD 中具有了稳定的△ACD及△ABC,分析: 根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,根据三角形的稳定性进行解答即可. 解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解答:解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解答: 解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,解:加上AC后,原不稳定的四边形ABCD中具有了稳定的△ACD及△ABC,故这种做法根据的是三角形的稳定性.故选B.点评: 本题考查的是三角形的稳定性在实际生活中的应用,比较简单.点评:本题考查的是三角形的稳定性在实际生活中的应用,比较简单.点评: 本题考查的是三角形的稳定性在实际生活中的应用,比较简单.本题考查的是三角形的稳定性在实际生活中的应用,比较简单.3.(3分)如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEA. AB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEAB=AC B. ∠BAE=∠CAD C. BE=DC D. AD=DEB. ∠BAE=∠CAD C. BE=DC D. AD=DE∠BAE=∠CAD C. BE=DC D. AD=DEC. BE=DC D. AD=DEBE=DC D. AD=DED. AD=DEAD=DE考点: 全等三角形的性质. 分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,全等三角形的性质. 分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,分析:根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,分析: 根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断. 解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解答:解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解答: 解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D. 点评: 本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.点评:本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.点评: 本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键. 4.(3分)(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A. 180° B. 220° C. 240° D. 300°A. 180° B. 220° C. 240° D. 300°180° B. 220° C. 240° D. 300°B. 220° C. 240° D. 300°220° C. 240° D. 300°C. 240° D. 300°240° D. 300°D. 300°300°考点: 等边三角形的性质;多边形内角与外角. 专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,等边三角形的性质;多边形内角与外角. 专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,专题: 探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,探究型. 分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,分析:本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,分析: 本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数. 解答: 解:∵等边三角形的顶角为60°,解答:解:∵等边三角形的顶角为60°,解答: 解:∵等边三角形的顶角为60°,解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C. 点评: 本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题点评:本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题点评: 本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题5.(3分)(2012•益阳)下列计算正确的是()A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1A. 2a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=12a+3b=5ab B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1B. (x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1(x+2)2=x2+4 C. (ab3)2=ab6 D. (﹣1)0=1C. (ab3)2=ab6 D. (﹣1)0=1(ab3)2=ab6 D. (﹣1)0=1D. (﹣1)0=1(﹣1)0=1考点: 完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂. 分析: A、不是同类项,不能合并;完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂. 分析: A、不是同类项,不能合并;分析:A、不是同类项,不能合并;分析: A、不是同类项,不能合并;A、不是同类项,不能合并;B、按完全平方公式展开错误,掉了两数积的两倍;C、按积的乘方运算展开错误;D、任何不为0的数的0次幂都等于1. 解答: 解:A、不是同类项,不能合并.故错误;解答:解:A、不是同类项,不能合并.故错误;解答: 解:A、不是同类项,不能合并.故错误;解:A、不是同类项,不能合并.故错误;B、(x+2)2=x2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D、(﹣1)0=1.故正确.故选D. 点评: 此题考查了整式的有关运算公式和性质,属基础题.点评:此题考查了整式的有关运算公式和性质,属基础题.点评: 此题考查了整式的有关运算公式和性质,属基础题.此题考查了整式的有关运算公式和性质,属基础题.6.(3分)黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A. B. C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .B. C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .C. D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .D. 考点: HYPERLINK"/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .考点: HYPERLINK "/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .考点: HYPERLINK "/math/ques/detail/89e866d1-71d7-40f6-9675-09e024a9b1ba" 剪纸问题 .分析:本题主要考查学生的动手能力及空间想象能力.解答:解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.点评:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.(3分)(2012•济宁)下列式子变形是因式分解的是()A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)A. x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=x(x﹣5)+6 B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)B. x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x﹣2)(x﹣3) C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)C. (x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)(x﹣2)(x﹣3)=x2﹣5x+6 D. x2﹣5x+6=(x+2)(x+3)D. x2﹣5x+6=(x+2)(x+3)x2﹣5x+6=(x+2)(x+3)考点: 因式分解的意义. 分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;因式分解的意义. 分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:分析: 根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断. 解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解答:解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解答: 解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B. 点评: 本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.点评: 本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.有意义,则a的取值范围是()8.(3分)(2012•宜昌)若分式A. a=0 B. a=1 C. a≠﹣1 D. a≠0A. a=0 B. a=1 C. a≠﹣1 D. a≠0a=0 B. a=1 C. a≠﹣1 D. a≠0B. a=1 C. a≠﹣1 D. a≠0a=1 C. a≠﹣1 D. a≠0C. a≠﹣1 D. a≠0a≠﹣1 D. a≠0D. a≠0a≠0考点: 分式有意义的条件. 专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,分式有意义的条件. 专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,专题:计算题.分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,专题: 计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,计算题. 分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,分析:根据分式有意义的条件进行解答.解答:解:∵分式有意义,分析: 根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,根据分式有意义的条件进行解答. 解答: 解:∵分式有意义,解答:解:∵分式有意义,解答: 解:∵分式有意义,解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C. 点评: 本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:点评:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:点评: 本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;9.(3分)(2011•鸡西)下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤A. ①②③ B. ①③⑤ C. ②③④ D. ②④⑤①②③ B. ①③⑤ C. ②③④ D. ②④⑤B. ①③⑤ C. ②③④ D. ②④⑤①③⑤ C. ②③④ D. ②④⑤C. ②③④ D. ②④⑤②③④ D. ②④⑤D. ②④⑤②④⑤考点: 负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂. 专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;负整数指数幂;有理数的混合运算;合并同类项;同底数幂的乘法;零指数幂. 专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;专题:计算题.分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;专题: 计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;计算题. 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误;分析:分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 分析: 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可. 解答: 解:①当a=0时不成立,故本小题错误; 解答:解:①当a=0时不成立,故本小题错误;解答: 解:①当a=0时不成立,故本小题错误;解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2= ,根据负整数指数幂的定义a ﹣p = (a ≠0,p 为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确; ⑤x 2+x 2=2x 2,符合合并同类项的法则,本小题正确.故选D . 点评: 本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )点评:本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )点评: 本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )本题考查的是零指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则,熟知以上知识是解答此题的关键. 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( ) 10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )10、(3分)(2001•宁波)如图:D ,E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,则( )A .当∠B 为定值时,∠CDE 为定值 B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . B .当∠α为定值时,∠CDE 为定值 C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .B .当∠α为定值时,∠CDE 为定值C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .C .当∠β为定值时,∠CDE 为定值D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . C .当∠β为定值时,∠CDE 为定值 D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .D .当∠γ为定值时,∠CDE 为定值 考点: HYPERLINK"/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 . 考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .考点: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 等腰三角形的性质 .专题: HYPERLINK "/math/ques/detail/fab48270-67ac-4c20-bb47-91d64d572030" 压轴题 .分析:问题即是判断∠CDE 与∠α、∠β、∠γ有无确定关系,通过等边对等角及外角与内角的关系探索求解. 解答: 解:由AB=AC 得∠B=∠C ,由AD=AE 得∠ADE=∠AED=γ,根据三角形的外角等于不相邻的两个内角的和可知,∠AED=∠C+∠CDE ,∠ADC=∠B+∠BAD ,即γ=∠C+∠CDE ,γ+∠CDE=∠B+α,代换得2∠CDE=α.故选B .点评:本题充分运用等腰三角形的性质,三角形的外角的性质,列等式代换,得出结论.11.(3分)(2012•本溪)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为( ) A . B . C . D .A .B .C .D .B .C .D .B .C .D .C .D .C .D .D .。
广西北海市合浦县教育局教研室2013-2014学年八年级上学期期末考试数学试题 新人教版第一卷 客观题一、选择题(每小题3分,共36分) 1.下列说法错误的是( )A. 三角形的中线、高、角平分线都是线段B. 任意三角形内角和都是180°C. 三角形按角可分为锐角三角形、直角三角形和等腰三角形D. 直角三角形两锐角互余 2.下列各式①πx 6、②x x 1-、③(2a-1)÷(2b-5)、④213+x 中,是分式的有: ( ) A. ②③ B. ②③④ C. ①②③ D. ③3.若两个直角三角形的两直角边对应相等,则这两个三角形全等的依据是( ) A. HL B. SSS C. AAS D. SAS4.小明在镜子里看到自己的像在用右手拿着梳子向左梳头,那么他实际是( ) A.用右手向左梳头 B.用左手向右梳头 C.用右手向右梳头 D.用左手向左梳头5.等腰三角形ABC 在直角坐标系中,底边的两点坐标是(-2,0)、(6,0),则可以确定其顶点的( )A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标 6.如图所示,四边形OABC 为正方形,边长为3, 点A ,C 分别在x 轴,y 轴的正半轴上,点D 在 OA 上,且D 的坐标为(1,0),P 是OB 上的一动点, 则“求PD+PA 和的最小值”要用到的数理依据是( ) A. “两点之间,线段最短” B. “轴对称的性质”C. “两点之间,线段最短”以及“轴对称的性质”D. 以上答案都不正确7.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:+-=---y x xy x y xy 22612)124.(3空格的地方被钢笔水弄污了,你认为空格内上应填写( )A. xy 3B. xy 3-C. -1D. 1 8.下列多项式乘法中,能用平方差公式计算的是( ) A. (x +1)(-1-x ) B. )21)(21(b a b a -+ C. (3b +2a)(2a -3b) D. (x 2-y )(x +y 2)9.已知)2311)(1713()1713)(3119(-----x x x x 可因式分解成(a x +b)(8x +c),其中a 、b 、c 均为整数,则a+b+c=( )A. 72B. 38C. -32D. -12第6题图10.93122--÷--y a a y a 化简结果为( ) A. a y 3- B. a y 3+ C. )3()3()1(22+--y y a a D. )3)(3()1(2-+-y y a a 11.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=25°,则∠E 的度数是( ) A.25° B.65° C.25°或55° D.25°或65°12.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务。
2013-2014八年级数学上期末复习试卷一、选择题(本大题共有8题,每题3分,共24分) 1、已知6x y +=,2xy =-,则2211x y+= . 2、以下五家银行行标中,是轴对称图形的有( )A 、1个 B. 2个 C. 3个 D. 4个 3、下列条件中,不能确定....△ABC ≌△C B A '''的是( ) A 、BC = B 'C ' ,AB =A 'B ' ,∠B =∠B ' B 、∠B =∠B ' AC =A 'C ' AB =A 'B 'C 、∠A =∠A ',AB = A 'B ', ∠C =∠C 'D 、BC = B 'C ' 4、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ) A.11㎝ B.7.5㎝ C. 11㎝ 或7.5㎝ D.以上都不对 5、下列计算中正确的是( )A 、a 2+a 3=a 5 B.a 4÷a =a 4 C.a 2×a 4=a 8 D.(—a 2)3=—a 66、△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =3cm ,最长边AB 的长为( )A. 9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A.a 2-b 2=(a +b )(a -b )B. (a +b )2=a +2ab +b 2C.(a -b )2=a 2-2ab +b 2D.a 2-ab =a (a -b )8、.若关于x 的分式方程233x m m x x -=--无解,则m 的值为 . 二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。
ABCD21DECBA2013-2014学年第一学期八年级数学期末模拟测试卷班级姓名 分数第Ⅰ卷(共100分)一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是 ( )2.一个三角形任意一边上的高都是这边上的中线,则对这个三角形的形状最准确的判断是( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形3.如右图,△ABC 与△DEF 是全等三角形,则图中相等的线段的组数是 ( )A .3B . 4C .5D .64、如右图:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=90°, 则∠B 的度数为( ) A.30° B.20° C.40° D.25° 4. 已知m6x =,3n x =,则2m nx-的值为( )A 、9B 、43 C 、12 D 、345. 下列各式由左边到右边的变形中,是分解因式的为( )。
A 、a (x + y) =a x + a y B 、x 2-4x+4=x(x -4)+4C 、10x 2-5x=5x(2x -1)D 、x 2-16+3x=(x -4)(x+4)+3x 6.下列各式中计算正确的是 ( )A 、(2p+3q )(-2p+3q)=4p 2-9q 2B 、( 12a 2b -b)2=14a 4b 2-12a 2b 2+b 2C 、(2p -3q )(-2p -3q)=-4p 2+9q 2D 、 ( -12a 2b -b)2=-14a 4b 2-a 2b 2-b 27.分式方程2114339x x x +=-+-的解是( ) A .x=±2 B .x=2 C .x=-2 D .无解 8.若224x x +-=0,则 x 值为( ) A .2 B .-2 C .±2 D .不存在10.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x=+二、填空题(每题3分,共18分) 11、计算())43(82b a ab ⋅-=________12、已知(a+b)2=16,ab=6,则a 2+b 2的值是13、如右图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC =8cm ,BD =5cm ,那么D 点到直线AB 的距离是 cm .14、当x 时,分式3912++x x 的值是负数15、若分式方程4142-=--x ax 有增根,则a= . 16、如右图,已知∠1=∠2,AC=AD ,增加一个条件能使△ABC ≌△AED三、解答题(共52分)17、因式分解(每题4分,共8分)(1)3x x - (2)3269a a a -+18、解下列分式方程(每题5分,共10分)(1)511x =+(2)0324256=++-++x x x xABECFD EBCAED19、(10分) 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=220、(12分)已知:如图,∠1=∠2,,3=∠4,求证:△ABE ≌△ADE4321BAEDC21、(12分)A 、B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运20千克,A 型机器人搬运1000千克所用时间与B 型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?第Ⅱ卷(共50分)22、(12分)下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.23、(12分)观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯, 将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)直接写出下列各式的计算结果:1111122334(1)n n ++++=⨯⨯⨯+ . (2)猜想并写出:)2(1+n n = .24、(12分)海珠区在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程. 已知甲工程队比乙工程队每天能多铺设20米. 甲工程队铺设350米所用的天数与乙工程队铺设250 米所用的天数相同.⑴甲、乙工程队每天各能铺设多少米?⑵如果要求完成该工程的工期不超过10天,且各队的工程量恰好为100的整数倍,那么应为两工程队分配工作量的方案有几种?请你帮忙设计出来.25、(14分)在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.2013-2014八年级数学上期末复习试卷一、选择题(本大题共有8题,每题3分,共24分)1、已知6x y+=,2xy=-,则2211x y+=.2、以下五家银行行标中,是轴对称图形的有()A、1个 B. 2个 C. 3个 D. 4个3、下列条件中,不能确定....△ABC≌△CBA'''的是()A、BC= B'C',AB=A'B',∠B=∠B'B、∠B=∠B'AC=A'C'AB= A'B'C、∠A=∠A',AB= A'B', ∠C=∠C'D、BC= B'C'4、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11㎝B.7.5㎝C. 11㎝或7.5㎝D.以上都不对5、下列计算中正确的是()A、a2+a3=a5 B.a4÷a=a4 C.a2×a4=a8 D.(—a2)3=—a66、△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,最长边AB的长为()A.9cmB. 8 cmC. 7 cmD.6 cm7、在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图),通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.a2-b2=(a+b)(a-b)B. (a+b)2=a+2ab+b2C.(a-b)2=a2-2ab+b2D.a2-ab=a(a-b)8、.若关于x的分式方程233x mmx x-=--无解,则m的值为.二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写在题后的横线上。
2013年秋季学期八 年 级 数 学 试 题一、选择题:(下列各小题都给出了四个选项,其中只有一项符合题目要求,请你选 出来.本大题共10小题,每小题3分,计30分.) 1、下列多项式乘法中,可以用平方差公式计算的是( ).A.)32)(2(b a b a -+B.)1)(1(x x ++C.)2)(2(y x y x +-D.))((y x y x +-- 2.某种生物细胞的直径约为0.00056m ,将0.00056用科学记数法表示为( ). A .0.56310-⨯ B.5.6410-⨯ C.5.6510-⨯ D.56510-⨯ 3.下列各说法中,正确的是( ).A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的等边三角形都全等D.周长相等的等腰直角三角形都全等 4.图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是( ).5.一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是( ). A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 6、已知三根木棒的长度如下,其中首尾相接能拼成三角形的是( ). A.1,2,3 B.3,3,6, C.5,6,12 D.5,12,13 7. 下列分式变形正确的为( ). A.ab =11++a b B.a b =11a -b - C.a b =b a D.a b =ax bx(x ≠0)8.如图,OP 平分∠MON,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( ). A.2 B.3 C.4 D.无法确定9、多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单 项式不可以...是( ) A .4x B .-4x C .4x 4 D .-4x 410.在△ABC 中,AB >AC,点D 、E 分别是边AB,AC 的中点,点F 在BC 边上,连接DE,DF,EF,恰好DE ∥BC.则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( ). A .EF ∥AB B .BF=CF C .∠A=∠DFE D .∠B=∠DFE二、填空题:(本大题共5小题,每小题3分,计15分.) 11、分式23-x 有意义,则x 的取值范围是_________12、(x+2)(x -3)是二次三项式x 2+ax+b 分解因式的答案,则a=_____,b=_____13.根据里氏震级的定义,地震所释放出的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放出的相对能量是7级地震所释放出的相对能量的倍数是 .14、已知x=2y ,则y y x +2= . 431133--⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=________15.如图,AB =AD ,∠1=∠2,请你添加一个适当的条件,使得△ABC ≌△ADE ,则需添加的条件是 .三、解答题(本大题共有10小题,计75分.)16.计算: ①、3×107×105÷1014-0.02 ②、201320132013201322013323--+⨯17、①、先化简,再求值:212)14(-÷-+-a a a a a ,其中31=a②、已知c b a 、、是△ABC 的三边的长,试判断代数式2222224-b a c b a -+)(的符号.18、如图,四边形ABCD 中,AD ∥BC ,∠A =90°,BD =BC ,CE ⊥BD 于点E .试探究AD 与 BE 的大小关系,并说明理由.EBC AD 2 1第15题图 第10题图A B C D第8题图QE A D C B19.解方程:(1)、214222-=--+x x x x (2)、23112-+=--x x x x20、如图,已知BE ⊥AD,CF ⊥AD,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请说明你判断的理由.21.如图,某城市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划 部门计划将阴影部分进行绿化,中间部分将修建一座雕像,求绿化的面积是多少 平方米?并求出当3=a ,2=b 时的绿化面积.22、红肉脐橙是秭归的特色时令水果.红肉脐橙一上市,水果店的小李就用3000元购进了一批红肉脐橙,前两天以高于进价40% 的价格共卖出150kg ,第三天她发现市场上红肉脐橙数量陡增,而自己的红肉脐橙卖相已不大好,于是果断地将剩余红肉脐橙以低于进价20%的价格全部售出, 前后一共获利750元,求小李所进脐橙的数量.23、如图,在△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE=CF ,BD=CE(1)求证:△DEF 是等腰三角形; (2)当∠A=40°时,求∠DEF 的度数;(3)△DEF 可能是等腰直角三角形吗?为什么? (4)请你猜想:当∠A 为多少度时,∠EDF+∠EFD=120°,并请说明理由24、如图,已知点D 为等腰直角△ABC 内一点,BC=AC,∠CAD=∠CBD=15°,E 为AD 延长线上的一点,且CE =CA . (1)求∠EDC 的大小;(2)若点M 在DE 上,且DC=DM,请猜想ME 与AD 的数量关系,并说明理由.D A B CF EA C E D F。
2013—2014八年级上数学期末试卷(一)一.选择题(每小题3分,共30分)1.在下列长度的各组线段中,能组成直角三角形的是( ) A .5,6,7 B .1,4,9 C .3,4,5 D .5,11,12 2.下列四个图案中,是轴对称图形的是 ( )3、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个 4、能使分式1212+--x x x 的值为零的所有x 的值是( )A 、1=xB 、1-=xC 、1=x 或1-=xD 、2=x 或1=x 5.已知一个等腰三角形两边长分别为5,6,则它的周长为( )A .16B .17C .16或 17D .10或12 6、下列运算不正确...的是 ( ) A 、 x 2·x 3 = x 5 B 、 (x 2)3= x 6 C 、 x 3+x 3=2x 6 D 、 (-2x)3=-8x 3 7.下列各式由左边到右边的变形中,是分解因式的为( ). A .ay ax y x a +=+)( B .4)4(442+-=+-x x x x C .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162++-=+-8.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.角三角形 C.直角三角形 D.不能确定 9.果把分式yx xy+中的x 和y 都扩大2倍,即分式的值( ) A 、扩大4倍; B 、扩大2倍; C 、不变; D 缩小2倍10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )(A )1515112x x -=+ (B )1515112x x -=+(C )1515112x x -=- (D )1515112x x -=-二.填空题(每小题3分,共30分)11.点M (3,-4)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是12.在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是______.13. 三角形的三边长分别为5,1+2x ,8,则x 的取值范围是________. 14. 计算(31)(21)_____________x x -+=15. 如果一个正多边形的内角和是900°,则这个正多边形是正______边形.16.等腰三角形的顶角为100°,则它腰上的高与底边的夹角是_______. 17.若9x 2-kxy +4y 2是一个完全平方式,则k 的值是_______. 18.分解因式3x 3-12x 2y +12xy 2=__________.19.方程3470x x =-的解是 . 20.知a +a 1=3,则a 2+21a的值是______________.三、作图题(每小题5分,共10分)21.画出∠AOB 的角平分线(要求: 22. 如图5,在平面直角坐标系中,尺规作图, 不写作图过程, A (1, 2),B (3, 1),C (-2, -1). 在图中保留作图痕迹)。
2013-2014学年新人教版八年级(上)期末数学检测卷3一、选择题(每小题3分,共24分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列各式中计算正确的是()A.x+x3=x4B.(x﹣4)2=x8C.x﹣2•x5=x3D.x8÷x2=x4(x≠0)3.(3分)下列各式中与分式相等的是()A.B.C.D.﹣4.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能5.(3分)(2012•陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:46.(3分)等腰三角形腰上的高与底边的夹角等于()A.底角B.底角的一半C.顶角D.顶角的一半7.(3分)下列各式是最简分式的是()A.B.C.D.8.(3分)若关于x 的方程=有正数根,则k的取值范围是()A.k<2 B.k≠3 C.﹣3<k<﹣2 D.k<2且k≠﹣3二、填空题(每小题3分,共24分)9.(3分)观察图形规律:(1)图①中一共有_________个三角形,图②中共有_________个三角形,图③中共有_________个三角形.(2)由以上规律进行猜想,第n个图形共有_________个三角形.10.(3分)计算:(﹣)﹣2÷(﹣2)2=_________.11.(3分)若(2x+3)0=1,则x满足条件_________.12.(3分)a2+b2=5,ab=2,则a﹣b=_________.13.(3分)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=_________度.14.(3分)若分式=0,则x=_________.15.(3分)在公式E=+Ir中,所有字母都不等于零,则用E、n、R、r表示I为_________.16.(3分)如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为_________.三、解答题(其中17、18题各9分,19,21,22,24,26题各l0分,20-N12分,23题8分,25题14分,共102分)17.(9分)先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.18.(9分)(1)计算:1﹣÷.(2)解方程:+=﹣1.19.(10分)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)20.(12分)如图,将Rt△ABC的直角顶点C置于直线l上,AC=BC,过A、B两点分别作直线l的垂线,垂足分别是点D、E.若BE=3,DE=5,求AD的长.21.(10分)甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?22.(10分)如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.23.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);(2)问甲、乙两队哪队先完成任务?24.(10分)已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.25.(14分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE_________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE_________DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).26.(10分)如图1,在△ABC中,AB=AC,D是AC延长线上一点,点E在射线DB上,且有∠BAC=∠CED=α,连接EA.求证:EA平分∠BEC.(说明:如果反复探索没有解题思路,可以从下列条件中选取一个加以解决:①如图2,α=60°;②如图3,α=90°.)2013-2014学年新人教版八年级(上)期末数学检测卷3参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列各式中计算正确的是()A.x+x3=x4B.(x﹣4)2=x8C.x﹣2•x5=x3D.x8÷x2=x4(x≠0)考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;同底数幂的除法;负整数指数幂.分析:根据同底数幂的乘除法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解即可.解答:解:A、不是同类项,不能合并,故本选项错误;B、(x﹣4)2=x﹣8,故本选项错误;C、x﹣2•x5=x3,故本选项正确;D、x8÷x2=x6(x≠0),故本选项错误;故选C.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.(3分)下列各式中与分式相等的是()A.B.C.D.﹣考点:分式的基本性质.专题:计算题.分析:根据分式的基本性质对选项进行判断即可得出答案.解答:解:根据分式的基本性质只有C符合要求.故选C.点评:本题主要考查了分式的基本性质,比较简单.4.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能考点:多边形内角与外角.分析:根据一个四边形截一刀后得到的多边形的边数即可得出结果.解答:解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能减少180°,可能不变,可能增加180°.故选D.点评:本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.5.(3分)(2012•陕西)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2 B.2:3 C.1:3 D.1:4考点:相似三角形的判定与性质;三角形中位线定理.分析:在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面积比等于相似比的平方,即可求得答案.解答:解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=()2=.故选D.点评:此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.6.(3分)等腰三角形腰上的高与底边的夹角等于()A.底角B.底角的一半C.顶角D.顶角的一半考点:等腰三角形的性质.分析:先根据三角形内角和定理求出底角的度数,再利用直角三角形两锐角互余即可求出.解答:解:设等腰三角形的顶角为α,根据题意得底角=(180°﹣α)=90°﹣α,∴夹角为90°﹣(90°﹣α)=α.即等腰三角形腰上的高与底边的夹角等于顶角的一半.故选D.点评:本题考查了等腰三角形的性质及三角形内角和定理和直角三角形的两锐角互余;本题的结论可以记住,分析别的问题时可直接应用.7.(3分)下列各式是最简分式的是()A.B.C.D.考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:A、=;B、分子、分母都不能再分解,且不能约分,是最简分式;C、=﹣;D、=;故选B.点评:本题考查了最简分式的定义及求法,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.8.(3分)若关于x的方程=有正数根,则k的取值范围是()A.k<2 B.k≠3 C.﹣3<k<﹣2 D.k<2且k≠﹣3考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,表示出x,根据方程有正数根列出关于k的不等式,求出不等式的解集即可得到k的范围.解答:解:去分母得:2x+6=3x+3k,解得:x=6﹣3k,根据题意得:6﹣3k>0,且6﹣3k≠﹣3,解得:k<2且k≠3.故选A.点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.二、填空题(每小题3分,共24分)9.(3分)观察图形规律:(1)图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.(2)由以上规律进行猜想,第n个图形共有个三角形.考点:三角形.专题:规律型.分析:(1)根据图形直接数出三角形个数即可;(2)根据(1)中所求得出数字变化规律,进而求出即可.解答:解:(1)如图所示:图①中一共有3个三角形,图②中共有6个三角形,图③中共有10个三角形.故答案为:3,6,10;(2)∵1+2=3,1+2+3=6,1+2+3+4=10,∴第n个图形共有:1+2+3+…+(n+1)=.故答案为:.点评:此题主要考查了数字变化规律,根据已知得出数字是连续整数的和是解题关键.10.(3分)计算:(﹣)﹣2÷(﹣2)2=1.考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式=4÷4=1.故答案为:1.点评:本题考查的是负整数指数幂,熟知负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.11.(3分)若(2x+3)0=1,则x满足条件x≠﹣.考点:零指数幂.分析:根据0指数幂的运算法则进行计算即可.解答:解:∵(2x+3)0=1,∴2x+3≠0,即x≠﹣.故答案为:x≠﹣.点评:本题考查的是0指数幂,即非0数的0次幂等于1.12.(3分)a2+b2=5,ab=2,则a﹣b=±1.考点:完全平方公式.专题:计算题.分析:将所求式子平方,利用完全平方公式展开,将各自的值代入计算,开方即可求出a﹣b的值.解答:解:∵a2+b2=5,ab=2,∴(a﹣b)2=a2+b2﹣2ab=5﹣4=1,则a﹣b=±1.故答案为:±1.点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.13.(3分)如图,在△ABC中,AB=AC,D,E分别是AC,AB上的点,且BC=BD,AD=DE=EB,则∠A=45度.考点:等腰三角形的性质;三角形内角和定理.分析:根据已知条件结合图形,列出相关角的关系,然后利用三角形的内角和求解.解答:解:∵AB=AC,BC=BD,∴∠C=∠ABC=∠BDC,∵AD=DE=EB,∴∠EBD=∠EDB,∠A=∠AED,又∠EBD+∠EDB=∠AED,即2∠EDB=∠A,又∠A+∠AED=∠EDB+∠BDC,即2∠A=∠EDB+∠BDC,由⇒∠A=⇒∠A=∠C,又由三角形内角和定理得:∠A+∠ABC+∠C=180°,即4∠A=180°,∴∠A=45°.故答案为:45.点评:本题考查了等腰三角形的性质,及三角形内角和定理;此题需灵活运用等腰三角形的性质,通过寻找相关角之间的关系求解是正确解答本题的关键.14.(3分)若分式=0,则x=﹣3.考点:分式的值为零的条件;解一元二次方程-因式分解法.分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:由题意,得x2﹣9=0,且x2﹣x﹣6≠0,即(x+3)(x﹣3)=0,(x+2)(x﹣3)≠0所以x+3=0,解得,x=﹣3.故答案是:﹣3.点评:本题考查了分式的值为零的条件以及解一元二次方程﹣因式分解法.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.(3分)在公式E=+Ir中,所有字母都不等于零,则用E、n、R、r表示I为.考点:分式的加减法.专题:计算题.分析:将I看着未知数,其他字母为常数,求出I即可.解答:解:E=+Ir,去分母得:nE=IR+nIr,解得:I=.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.(3分)如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为(1,﹣1),(5,3)或(5,﹣1).考点:全等三角形的性质;坐标与图形性质.分析:根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案.解答:解:如图所示,共有3个符合条件的点,∵△ABD与△ABC全等,∴AB=AB,BC=AD或AC=AD,∵A(2,1)、B(4,1)、C(1,3).∴D1的坐标是(1,﹣1),D2的坐标是(5,3),D3的坐标是(5,﹣1),故答案为:(1,﹣1),(5,3)或(5,﹣1).点评:本题考查了全等三角形的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解此题的关键.三、解答题(其中17、18题各9分,19,21,22,24,26题各l0分,20-N12分,23题8分,25题14分,共102分)17.(9分)先化简,再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.考点:整式的混合运算—化简求值;平方差公式.专题:计算题.分析:先去括号,再合并,最后把a、b的值代入计算即可.解答:解:原式=b2﹣2ab+4a2﹣b2=2a(2a﹣b),当a=2,b=1时,原式=2×2×(2×2﹣1)=12.点评:本题考查了整式的化简求值,解题的关键是掌握多项式除以单项式的法则、去括号、合并同类项.18.(9分)(1)计算:1﹣÷.(2)解方程:+=﹣1.考点:解分式方程;分式的混合运算.专题:计算题.分析:(1)原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后通分并利用同分母分式的减法法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=1﹣•=1﹣=﹣;(2)去分母得:4﹣(x+2)(x+1)=1﹣x2,整理得:3x=1,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,以及分式的混合运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(10分)如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(2,3),点C的坐标是(0,3).(1)作出四边形OABC关于y轴对称的图形,并标出点B对应点的坐标.(2)在y轴上找一点P,使PA+PB的值最小,并求出点P的坐标.(要求不写作法,保留作图痕迹)考点:作图-轴对称变换;轴对称-最短路线问题.专题:作图题.分析:(1)延长BC至B′,使B′C=BC,在x轴负半轴上截取OA′,使OA′=OA,然后顺次连接A′B′CO即可,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相等写出点B的对应点的坐标;(2)根据轴对称确定最短路线问题,连接AB′与y轴的交点即为点P.解答:解:(1)四边形OABC关于y轴对称的图形如图所示;点B的对应点的坐标为(﹣2,3);(2)使PA+PB的值最小的点P如图所示.点评:本题考查了利用轴对称变换作图,轴对称确定最短路线问题,熟练掌握轴对称的性质找出对应点的位置是解题的关键.20.(12分)如图,将Rt△ABC的直角顶点C置于直线l上,AC=BC,过A、B两点分别作直线l的垂线,垂足分别是点D、E.若BE=3,DE=5,求AD的长.考点:全等三角形的判定与性质.专题:计算题.分析:由AD⊥CE,BE⊥CE得到∠ADC=∠CEB=90°,根据等角的余角相等得到∠CAD=∠BCE,则根据“AAS”可判断△ACD≌△CBE,所以CD=BE=3,AD=CE=CD+DE=3+5=8.解答:解:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∵∠ACB=90°,即∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=3,AD=CE,∵CE=CD+DE=3+5=8,∴AD=8.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.21.(10分)甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?考点:分式的混合运算.专题:应用题.分析:这是一道分式应用题,不但要进行分式的运算,更重要的是要根据题中的文字列是分式,由题中可设两次购买的饲料单价分别为m元/千克和n元/千克(m,n是正数,且m≠n),然后依题列式即可.解答:解:(1)设两次购买的饲料单价分别为m元/千克和n元/千克(m,n是正数,且m≠n),甲两次购买饲料的平均单价为=(元/千克),乙两次购买饲料的平均单价为=(元/千克).(2)甲、乙两种饲料的平均单价的差是:﹣=﹣==,由于m、n是正数,因为m≠n时,也是正数,即﹣>0,因此乙的购货方式更合算.点评:这是一道分式在实际生活中的运用,所以学生平时一定要联系生活学习,不可死学.22.(10分)如图,在△ABC中,AB=AC,∠BAC=45°,AD和CE是△ABC的高,且AD和CE相交于点H,求证:AH=2BD.考点:全等三角形的判定与性质.专题:证明题.分析:由在△ABC中,AB=AC,∠BAC=45°,可得AE=CE,∠EAH=∠ECB,继而证得△AEH≌△CEB,然后由全等三角形的性质,证得结论.解答:证明:在△ABC中,∵∠BAC=45°,CE⊥AB,∴AE=CE,∠EAH=∠ECB,在△AEH和△CEB中,,∴△AEH≌△CEB(ASA),∴AH=BC,∵BC=2BD,∴AH=2BD.点评:此题考查了全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作,甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路每天维修x千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间(用含x、y的代数式表示);(2)问甲、乙两队哪队先完成任务?考点:一元一次不等式的应用;列代数式.专题:应用题.分析:(1)甲队完成任务需要的时间=工作总量2÷工作效率;乙队完成任务需要的时间=前一千米所用的时间+后一千米所用的时间.(2)让甲队所用时间﹣减去乙队所用时间看是正数还是负数即可.解答:解:(1)甲队完成任务需要的时间为=,乙队完成任务需要的时间为=,所以甲、乙两队完成任务需要的时间分别为天,天.(2)=∵x≠y,x>0,y>0,∴(x﹣y)2>0,xy(x+y)>0∴﹣(x﹣y)2<0,∴,即t1﹣t2<0,∴t1<t2∴甲队先完成任务.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.比较两个代数式,通常让这两个代数式相减看是正数还是负数.24.(10分)已知将边长分别为a和2b(a>b)的长方形分割成四个全等的直角三角形,如图1,再用这四个三角形拼成如图2所示的正方形,中间形成一个正方形的空洞.经测量得长方形的面积为24,正方形的边长为5.试通过你获取的信息,求a2+b2和a2﹣b2的值.考点:勾股定理.分析:根据勾股定理,长方形的面积为24,正方形的面积计算方法,列出关于a、b方程组,然后求解.解答:解:根据题意得a2+b2=52=25,a•2b=24,∴a2+b2+2ab49,∴a+b=7,∵a>b,∴a=4,b=3,∴a2+b2=25,a2﹣b2=7.点评:本题考查正方形、直角三角形的性质及分析问题的推理能力和运算能力.解答该题的关键是根据图示找出大正方形、四个直角三角形、小正方形间的数量关系.25.(14分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.专题:计算题;压轴题.分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.解答:解:(1)故答案为:=.(2)过E作EF∥BC交AC于F,∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.(3)解:CD=1或3,理由是:分为两种情况:①如图1过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,∴BN=,∴CN=1+=,∴CD=2CN=3;②如图2,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=1,即CD=3或1.点评:本题综合考查了等边三角形的性质和判定,等腰三角形的性质,全等三角形的性质和判定,三角形的外角性质等知识点的应用,解(2)小题的关键是构造全等的三角形后求出BD=EF,解(3)小题的关键是确定出有几种情况,求出每种情况的CD值,注意,不要漏解啊.26.(10分)如图1,在△ABC中,AB=AC,D是AC延长线上一点,点E在射线DB上,且有∠BAC=∠CED=α,连接EA.求证:EA平分∠BEC.(说明:如果反复探索没有解题思路,可以从下列条件中选取一个加以解决:①如图2,α=60°;②如图3,α=90°.)考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:作AM⊥BD于M,AN⊥CE于N,根据三角形内角和定义可得到∠ABD=∠DCE,在根据等角的补角相等得∠ABM=∠ACN,则可根据“AAS”可判断△ABM≌△ACN,所以AM=AN,然后根据角平分线的判定定理即可得到结论.解答:证明:作AM⊥BD于M,AN⊥CE于N,如图,∵α+∠BAD+∠D=180°,α+∠DCE+∠D=180°,∴∠ABD=∠DCE,∴∠ABM=∠ACN,∵∠AMB=∠ANC=90°,在△ABM和△ACN中,,∴△ABM≌△ACN(AAS),∴AM=AN,∴EA平分∠BEC.点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了角平分线的判定定理.。
人教版八年级上册数学期末试卷
一、选择题
1. 8的立方根是()
A.2 B.-2 C.8 D.±2
2. 下列计算正确的是 ( )
A. 632
a a a
÷= B. 236
()
x x
= C. 235
x x x
+= D. 2)
2
(x
-=2
4x
-
3. 若24
x kx
++是一个完全平方式,则常数k的值为()
A. 4
B. -4
C. ±4
D.±2
4. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是()
A.222
()2
a b a ab b
+=++ B.222
()2
a b a ab b
-=-+
C.22()()
a b a b a b
-=+- D.22
(2)()2
a b a b a ab b
+-=+-
5. 如图(甲)所示的四张牌,若只将其中一张牌旋转180°后得到图(乙),
则旋转的牌是()
A. 第
一张 B. 第二张 C. 第三张 D. 第四张
6. 如图,点P为□ABCD的边CD上一点,若△PAB、△PCD和△PBC的面积分别为
s1、s2和s3,则它们之间的大小关系是( )
A. S3=S1+S2
B. 2S3=S1+S2
C. S3>S1+S2
D. S3<S1+S2
7. 如图,正方形网格中,每小格正方形边长为1,则格点△ABC中,边长为无理数的边数有()
A. 0条
B. 1条
C. 2条
D. 3条
二、填空题(每小题3分,共30分)
8. 计算:9的结果是___________.
9. 计算:(6x2-3x)÷3x=___________.
10. 分解因式:3a+3b=___________.
11. 如图,已知△ABC≌△ADC,若∠BAC=60°,∠ACD=20°,
则∠D=°.
12. 如图(甲),在俄罗斯方块游戏中,上方小方块可先(填
“顺”或“逆”)时针旋转度,再向(填左或右)平移至
边格,然后让它自己往下移动,最终拼成一个完整的图案如图
(乙),使其自动消失.
13. 一个矩形的面积为(x2-9)平方米,其长为(x+3)米,用含
有x的整式表示它的宽为米.
14. □ABCD中,AB=2,BC=3,则□ABCD的周长是 .
15. 如图,△ABC中,AC=3, BC=4,AB=5,则∠ACB= °,AB上的高
CD= .
16. 有一个数值转换器,原理如下图所示,当输入x的值为16时,输出y的值
是___________.
17. 细心观察图形,然后解答问题:
(1) OA10= ; (2)2
100
2
3
2
2
2
1
S
S
S
S+
+
+
+ = .
三、解答题
18.计算:(-a)2²a + a4÷(-a). 19.分解因式: x3-2x2y+xy2.
20.先化简,再求值:(x+1)(x-1)-x(x-1),其中x=-2.
21.如图,网格中有一个四边形和两个三角形.
⑴请你分别画出三个图形关于点O的中心对称图形;
⑵将⑴中画出的图形与原图形看成一个整体图形,请你写出这个整体图形
对称轴的条数是;这个整体图形至少旋转度后才能与自身重
合
.
2
22.如图,某校有一块长为(3a +b)米,宽为(2a+b)米的长方形地块,•学校计划将阴影部分进行绿化,中间将修建一座雕像.
(1) 用含a 、b 的代数式表示绿化面积; (2) 求出当a=3米,b=2米时的绿化面积.
23.如图,一艘渔政船从小岛A 处出发,向正北方向以每小时20海里的速度行驶了1.5小时到达B 处执行任务,再向正东方向以相同的速度行驶了2小时到达C 处继续执行任务,然后以相同的速度直接从C 处返回A 处.
(1)分别求AB 、 BC 的长;
(2)问返回时比出去时节省了多少时间?
24. 如图,在□ABCD 中,AE BC ,E 是垂足,如果∠B =50°,那么∠D 、
∠C 、∠1与∠2分别等于多少度?
25.(8分)如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,
过点D 作DE ∥AB
交BC 于点E .
(1) 请你判断四边形ABED 的形状,并说明理由; (2) 当△DEC 为等边三角形时, ① 求∠B 的度数;
② 若AD=4,DC=3,求等腰梯形ABCD 的周长.。