当前位置:文档之家› 南京中考数学试题 解析版

南京中考数学试题 解析版

南京中考数学试题 解析版
南京中考数学试题 解析版

2014年江苏省南京市中考数学试卷及解析(word版)

一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2014年江苏南京)下列图形中,既是轴对称图形,又是中心对称图形的是()

A.B.C.D.

分析:根据轴对称图形与中心对称图形的概念求解.

解:A、是轴对称图形,不是中心对称图形.故错误;

B、不是轴对称图形,是中心对称图形.故错误;

C、是轴对称图形,也是中心对称图形.故正确;

D、是轴对称图形,不是中心对称图形.故错误.故选C.

点评:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.(2014年江苏南京)计算(﹣a2)3的结果是()

A.a5B.﹣a5C.a6D.﹣a6

分析:根据积的乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.

解:原式=﹣a2×3=﹣a6.故选:D.

点评:本题考查了幂的乘方与积的乘方,积的乘方等于每个因式分别乘方,再把所得的幂相乘.

3.(2014年江苏南京)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()

A.1:2 B.2:1 C.1:4 D.4:1

分析:根据相似三角形面积的比等于相似比的平方计算即可得解.

解:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.

点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.

4.(2014年江苏南京)下列无理数中,在﹣2与1之间的是()

A.﹣B.﹣C.D.

分析:根据无理数的定义进行估算解答即可.

解:A.,不成立;B.﹣2,成立;

C.,不成立;

D.,不成立,故答案为B.

点评:此题主要考查了实数的大小的比较,解答此题要明确,无理数是不能精确地表示为两个整数之比的数,即无限不循环小数.

5.(2014年江苏南京)8的平方根是()

A.4 B.±4 C.2D.

分析:直接根据平方根的定义进行解答即可解决问题.

解:∵,∴8的平方根是.故选D.

点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

6.(2014年江苏南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()

A.(,3)、(﹣,4)B.(,3)、(﹣,4)

C.(,)、(﹣,4)D.(,)、(﹣,4)

分析:首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,易得△CAF≌△BOE,△AOD∽△OBE,然后由相似三角形的对应边成比例,求得答案.

解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A 作AF∥x轴,交点为F,

∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE,

在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),

∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,

∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即,

∴OE=,即点B(,3),∴AF=OE=,

∴点C的横坐标为:﹣(2﹣)=﹣,∴点D(﹣,4).故选B.

点评:此题考查了矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.

二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)

7.(2014年江苏南京)﹣2的相反数是,﹣2的绝对值是.

分析:根据相反数的定义和绝对值定义求解即可.

解:﹣2的相反数是2,﹣2的绝对值是2.

点评:主要考查了相反数的定义和绝对值的定义,要求熟练运用定义解题.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

8.(2014年江苏南京)截止2013年底,中国高速铁路营运里程达到11000km,居世界首位,将11000用科学记数法表示为.

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解:将11000用科学记数法表示为:×104.故答案为:×104.

点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

9.(2014年江苏南京)使式子1+有意义的x的取值范围是.

分析:根据被开方数大于等于0列式即可.

解:由题意得,x≥0.故答案为:x≥0.

点评:本题考查的知识点为:二次根式的被开方数是非负数.

10.(2014年江苏南京)2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm):168,166,168,167,169,168,则她们身高的众数是cm,极差是cm.

分析:根据众数的定义找出这组数据中出现次数最多的数,再根据求极差的方法用最大值减去最小值即可得出答案.

解:168出现了3次,出现的次数最多,则她们身高的众数是168cm;

极差是:169﹣166=3cm;故答案为:168;3.

点评:此题考查了众数和极差,众数是一组数据中出现次数最多的数;求极差的方法是最大值减去最小值.

11.(2014年江苏南京)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.

分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,

∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.

点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.

12.(2014年江苏南京)如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.

分析:设O是正五边形的中心,连接OD、OB,求得∠DOB的度数,然后利用圆周角定理即可求得∠BAD的度数.

解:设O是正五边形的中心,连接OD、OB.则∠DOB=×360°=144°,

∴∠BAD=∠DOB=72°,故答案是:72°.

点评:本题考查了正多边形的计算,正确理解正多边形的内心和外心重合是关键.13.(2分)(2014年江苏南京)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.

分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,

且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.

解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,

∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案

为2.

点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.

14.(2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为cm.

分析:易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求

得圆锥的母线长.

解:圆锥的底面周长=2π×2=4πcm,设圆锥的母线长为R,则:=4π,

解得R=6.故答案为:6.

点评:本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底

面周长;弧长公式为:.

15.(2014年江苏南京)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.

分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.

解:设长为3x,宽为2x,由题意,得:5x+30≤160,

解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.

点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.

16.(2014年江苏南京)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:

x …﹣1 0 1 2 3 …

y …10 5 2 1 2 …

则当y<5时,x的取值范围是.

分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.

解:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,

所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.

点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)

17.(2014年江苏南京)解不等式组:.

分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,就是不等式组的解集.

解:,解①得:x≥1,解②得:x<2,

则不等式组的解集是:1≤x<2.

点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.

18.(2014年江苏南京)先化简,再求值:﹣,其中a=1.

分析:原式通分并利用同分母分式的减法法则计算,约分得到最简结果,将a的值代入计算即可求出值.

解:原式=﹣==﹣,

当a=1时,原式=﹣.

点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

19.(2014年江苏南京)如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.

(1)求证:四边形DBFE是平行四边形;

(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?

分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;

(2)根据邻边相等的平行四边形是菱形证明.

(1)证明:∵D、E分别是AB、AC的中点,

∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBEF是菱形.

理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,

∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是

菱形.

点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.20.(2014年江苏南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;

(1)抽取1名,恰好是甲;

(2)抽取2名,甲在其中.

分析:(1)由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案;

(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.

解:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率

为:;

(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情

况,∴抽取2名,甲在其中的概率为:.

点评:本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

21.(2014年江苏南京)为了了解某市120000名初中学生的视力情况,某校数学兴趣小组,并进行整理分析.

(1)小明在眼镜店调查了1000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由.

(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.

请你根据抽样调查的结果,估计该市120000名初中学生视力不良的人数是多少?

分析:(1)根据学生全部在眼镜店抽取,样本不具有代表性,只抽取20名初中学生,那么样本的容量过小,从而得出答案;

(2)用120000乘以初中学生视力不良的人数所占的百分比,即可得出答案.

解:(1)他们的抽样都不合理;

因为如果1000名初中学生全部在眼镜店抽取,那么该市每个学生被抽到的机会不相等,样本不具有代表性;

如果只抽取20名初中学生,那么样本的容量过小,样本不具有广泛性;

(2)根据题意得:

×120000=72000(名),

该市120000名初中学生视力不良的人数是72000名.

点评:此题考查了折线统计图,用到的知识点是用样本估计总体和抽样调查的可靠性,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.

22.(8分)(2014年江苏南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为万元,设可变成本平均的每年增长的百分率为x.

(1)用含x的代数式表示第3年的可变成本为(1+x)2万元.

(2)如果该养殖户第3年的养殖成本为万元,求可变成本平均每年增长的百分率x.

分析(1)根据增长率问题由第1年的可变成本为万元就可以表示出第二年的可变成本为(1+x),则第三年的可变成本为(1+x)2,故得出答案;

(2)根据养殖成本=固定成本+可变成本建立方程求出其解即可.

解:(1)由题意,得第3年的可变成本为:(1+x)2,故答案为:(1+x)2;

(2)由题意,得4+(1+x)2=,

解得:x1=,x2=﹣(不合题意,舍去).

答:可变成本平均每年增长的百分率为10%.

点评:本题考查了增长率的问题关系的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据增长率问题的数量关系建立方程是关键.

23.(2014年江苏南京)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.

(参考数据:sin51°18′≈,cos51°18′≈,tan51°18′≈)

分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,

根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解:设梯子的长为xm.

在Rt△ABO中,cos∠ABO=,∴OB=AB?cos∠ABO=x?cos60°=x.

在Rt△CDO中,cos∠CDO=,∴OD=CD?cos∠CDO=x?cos51°18′≈.

∵BD=OD﹣OB,∴﹣x=1,解得x=8.故梯子的长是8米.

点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.

24.(2014年江苏南京)已知二次函数y=x2﹣2mx+m2+3(m是常数).

(1)求证:不论m为何值,该函数的图象与x轴没有公共点;

(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?

分析:(1)求出根的判别式,即可得出答案;

(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.

(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,

∴方程x2﹣2mx+m2+3=0没有实数解,

即不论m为何值,该函数的图象与x轴没有公共点;

(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,

把函数y=(x﹣m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),

因此,这个函数的图象与x轴只有一个公共点,

所以,把函数y=x2﹣2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.

点评:本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.

25.(2014年江苏南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少

5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km 的地方,图中的折线OABCDE表示y与x之间的函数关系.

(1)小明骑车在平路上的速度为km/h;他途中休息了h;

(2)求线段AB、BC所表示的y与x之间的函数关系式;

(3)如果小明两次经过途中某一地点的时间间隔为,那么该地点离甲地多远?

分析:(1)由速度=路程÷时间就可以求出小明在平路上的速度,就可以求出返回的时间,进而得出途中休息的时间;

(2)先由函数图象求出小明到达乙地的时间就可以求出B的坐标和C的坐标就可以由待定系数法求出解析式;

(3)小明两次经过途中某一地点的时间间隔为,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+)h,根据距离甲地的距离相等建立方程求出其解即可.

解:(1)小明骑车在平路上的速度为:÷=15,

∴小明骑车在上坡路的速度为:15﹣5=10,

小明骑车在上坡路的速度为:15+5=20.

∴小明返回的时间为:(﹣)÷2+=小时,

∴小明骑车到达乙地的时间为:+2÷10=.

∴小明途中休息的时间为:1﹣﹣=小时.

故答案为:15,

(2)小明骑车到达乙地的时间为小时,∴B(,).

小明下坡行驶的时间为:2÷20=,∴C(,).

设直线AB的解析式为y=k1x+b1,由题意,得,解得:,

∴y=10x+(≤x≤);

设直线BC的解析式为y=k2+b2,由题意,得,解得:,

∴y=﹣20x+(<x≤)

(3)小明两次经过途中某一地点的时间间隔为,由题意可以得出这个地点只能在破路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+)h,由题意,得

10t+=﹣20(t+)+,解得:t=,∴y=10×+=,∴该地点离甲地.

点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次方程的运用,解答时求出一次函数的解析式是关键.

26.(2014年江苏南京)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.

(1)求⊙O的半径;

(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.

分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.

(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.解:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,

则AD=AF,BD=BE,CE=CF.

∵⊙O为△ABC的内切圆,

∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.

∵∠C=90°,

∴四边形CEOF是矩形,

∵OE=OF,

∴四边形CEOF是正方形.

设⊙O的半径为rcm,则FC=EC=OE=rcm,

在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,

∴AB==5cm.

∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,

∴4﹣r+3﹣r=5,

解得r=1,即⊙O的半径为1cm.

(2)如图2,过点P作PG⊥BC,垂直为G.

∵∠PGB=∠C=90°,∴PG∥AC.

∴△PBG∽△ABC,∴.∵BP=t,

∴PG=,BG=.

若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.①当⊙P与⊙O外切时,

如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.

∵∠PHE=∠HEG=∠PGE=90°,

∴四边形PHEG是矩形,

∴HE=PG,PH=CE,

∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.

在Rt△OPH中,

由勾股定理,,

解得t=.

②当⊙P与⊙O内切时,

如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.

∵∠MGE=∠OEG=∠OMG=90°,

∴四边形OEGM是矩形,

∴MG=OE,OM=EG,

∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,

在Rt△OPM中,

由勾股定理,,解得t=2.

综上所述,⊙P与⊙O相切时,t=s或t=2s.

点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.

27.(2014年江苏南京)【问题提出】

学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则

△ABC≌△DEF.

分析:(1)根据直角三角形全等的方法“HL”证明;

(2)过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;

(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;

(4)根据三种情况结论,∠B不小于∠A即可.

(1)解:HL;

(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作DH⊥DE交DE的延长线于H,

∵∠B=∠E,且∠B、∠E都是钝角,∴180°﹣∠B=180°﹣∠E,

即∠CBG=∠FEH,

在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,

在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,

在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);

(3)解:如图,△DEF和△ABC不全等;

(4)解:若∠B≥∠A,则△ABC≌△DEF.

故答案为:(1)HL;(4)∠B≥∠A.

点评:本题考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.

2016年南京市中考数学试卷及答案

南京市2016年初中毕业生学业考试 数学 一.选择题 1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是 A .0.7?105 B. 7?104 C. 7?105 D. 70?103 2.数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 A .-3+5 B. -3-5 C. |-3+5| D. |-3-5| 3.下列计算中,结果是6a 的是 A . B. 23a a C . 122a a ÷ D. 4、下列长度的三条线段能组成钝角三角形的是 A .3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7 5.己知正六边形的边长为2,则它的内切圆的半径为 A . B. 3 C. 2 D. 23 6、若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为 A . B. C. 或6 D. 或 二.填空题 7. 化简:8=______;38=______. 8. 若式子1x x +-在实数范围内有意义,则x 的取值范围是________. 9. 分解因式 的结果是_______. 10.比较大小:5-3________52 2 -.(填“>””<”或“=”号) 11.方程 13 2x x =-的解是_______. 12.设12,x x 是方程 的两个根,且12x x +-12x x =1, 则12x x +=______,=_______. 13. 如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则_____°.

人教版中考数学模拟试题及答案(含详解)

中考数学模拟试卷 一、选择题(每题只有一个正确选项,本题共10 小题,每题3分,共30分)1.(3.00分)﹣的相反数是() A.﹣B.C.﹣D. 2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为() A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉B.害C.了D.我 4.(3.00分)下列运算正确的是() A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3?x4=x7 D.2x3﹣x3=1 5.(3.00分)河南省旅游资源丰富,2013~2017 年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是() A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45钱;若每人出7钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为() A.C.B.D. 7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()

A .x 2 +6x +9=0 B .x 2 =x C .x 2 +3=2x D .(x ﹣1)2 +1=0 8.(3.00 分)现有 4 张卡片,其中 3 张卡片正面上的图案是“ ”,1 张卡片正 面上的图案是“ ”,它们除此之外完全相同.把这 4 张卡片背面朝上洗匀,从 中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A . B . C . D . 9.(3.00 分)如图,已知 AOBC 的顶点 O (0,0),A (﹣1,2),点 B 在 x 轴正 半轴上按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧,分别交边 OA , OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于 DE 的长为半径作弧,两弧在∠ AOB 内交于点 F ;③作射线 OF ,交边 AC 于点 G ,则点 G 的坐标为( ) A .( ﹣1,2) B .( ,2) C .(3﹣ ,2) D .( ﹣2,2) 10.(3.00 分)如图 1,点 F 从菱形 ABCD 的顶点 A 出发,沿 A →D→B 以 1cm/s 的速度匀速运动到点 B ,图 2 是点 F 运动时 △,FBC 的面积 y (cm 2 变化的关系图象,则 a 的值为( ) )随时间 x (s ) A . B .2 C . D .2 二、细心填一填(本大题共 5 小题,每小题 3 分,满分 15 分,请把答案填在答 題卷相应题号的横线上) 11.(3.00 分)计算:|﹣5|﹣ = .

2017年南京市中考数学试题及答案解析

第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 计算12+(-18)÷(-6)-(-3)×2的结果是( ) A . 7 B . 8 C . 21 D .36 【答案】C 考点:有理数的混合运算 2. 计算的结果是( ) A . B . C . D . 【答案】C 【解析】 试题分析:根据乘方的意义及幂的乘方,可知=. 故选:C 考点:同底数幂相乘除 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( ) A .三棱柱 B .四棱柱 C . 三棱锥 D .四棱锥 【答案】D 【解析】 试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱 . () 3 6 241010 10?÷3 107 108 109 106 23 4 10(10)10?÷664810101010?÷=

故选:D 考点:几何体的形状 4. 若,则下列结论中正确的是 ( ) A . B . C. D . 【答案】B 【解析】 试题分析:根据二次根式的近似值可知,而,可得1<a <4. 故选:B 考点:二次根式的近似值 5. 若方程的两根为和,且,则下列结论中正确的是 ( ) A .是19的算术平方根 B .是19的平方根 C.是19的算术平方根 D .是19的平方根 【答案】C 考点:平方根 6. 过三点(2,2),(6,2),(4, 5)的圆的圆心坐标为( ) A .(4, ) B .(4,3) C.(5,) D .(5,3) 【答案】A 【解析】 试题分析:根据题意,可知线段AB 的线段垂直平分线为x=4,然后由C 点的坐标可求得圆心的横坐标为x=4,然后设圆的半径为r ,则根据勾股定理可知,解得r=,因此圆心的纵坐标为,因此圆心的坐标为(4,). 故选:A 考点:1、线段垂直平分线,2、三角形的外接圆,3、勾股定理 第Ⅱ卷(共90分) 310a <<13a <<14a <<23a <<24a <<134=2<<3=9104<<()2 519x -=a b a b >a b 5a -5b +A B C 176176 2 2 2 2(52)r r =+--13 6 1317566- = 17 6

南京市中考数学试卷及答案资料

南京市2016年初中毕业生学业考试数学 一.选择题 1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是 A.0.7?105 B. 7?104 C. 7?105 D. 70?103 2.数轴上点A、B表示的数分别是5、-3,它们之间的距离可以表示为 A.-3+5 B. -3-5 C. |-3+5|D. |-3-5| 3.下列计算中,结果是6a的是 A. B. 23 ÷ D. a a a a C. 122 4、下列长度的三条线段能组成钝角三角形 的是 A.3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7 5.己知正六边形的边长为2,则它的内切圆的半径为A. B. 3 C. 2 D. 23 6、若一组数据2,3,4,5,x的方差与另一组数据

5,6,7,8,9的方差相等,则x 的值为 A . B. C. 或6 D. 或 二.填空题 7. 化简: 8=______;38=______. 8. 若式子1x x +-在实数范围内有意义,则 x 的取值范 围是________. 9. 分解因式 的结果是_______. 10.比较大小:5-3________ 52-.(填“>””<”或 “=”号) 11.方程 13 2x x =-的解是_______. 12.设1 2 ,x x 是方程的两个根,且1 2 x x +-12 x x =1, 则1 2x x +=______,=_______. 13. 如图,扇形OAB 的圆心角为122°,C 是弧AB 上 一点,则 _____°. 14. 如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABO ≌△ADO ,下列结论 ①AC ⊥BD ;②CB=CD ;③△ABC ≌△ADC ;④DA=DC ,其中正确结论的序号是_______.

中考数学计算题大全及答案解析

中考数学计算题大全及答案解析 1.计算: (1); (2). 【来源】2018年江苏省南通市中考数学试卷 【答案】(1)-8;(2) 【解析】 【分析】 (1)先对零指数幂、乘方、立方根、负指数幂分别进行计算,然后根据实数的运算法则,求得计算结果; (2)用平方差公式和完全平方公式,除法化为乘法,化简分式. 【详解】 解:(1)原式; (2)原式. 【点睛】 本题考查的知识点是实数的计算和分式的化简,解题关键是熟记有理数的运算法则. 2.(1)计算: (2)化简: 【来源】四川省甘孜州2018年中考数学试题 【答案】(1)-1;(2)x2 【解析】 【分析】 (1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,计算即可得到结果.

(2)先把除法转化为乘法,同时把分子分解因式,然后约分,再相乘,最后合并同类项即可. 【详解】 (1)原式=-1-4× =-1- =-1; (2)原式=-x =x(x+1)-x =x2. 【点睛】 此题考查了实数和分式的运算,熟练掌握运算法则是解本题的关键. 3.(1)解不等式组: (2)化简:(﹣2)?. 【来源】2018年山东省青岛市中考数学试卷 【答案】(1)﹣1<x<5;(2). 【解析】 【分析】 (1)先求出各不等式的解集,再求出其公共解集即可. (2)根据分式的混合运算顺序和运算法则计算可得. 【详解】 (1)解不等式<1,得:x<5, 解不等式2x+16>14,得:x>﹣1, 则不等式组的解集为﹣1<x<5; (2)原式=(﹣)?

=? =. 【点睛】 本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则. 4.先化简,再求值:,其中. 【来源】内蒙古赤峰市2018年中考数学试卷 【答案】, 【解析】 【分析】 先根据分式混合运算顺序和运算法则化简原式,再利用二次根式性质、负整数指数幂及绝对值性质计算出x的值,最后代入计算可得. 【详解】 原式(x﹣1) . ∵x=22﹣(1)=21,∴原式.【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.5.先化简,再求值.(其中x=1,y=2) 【来源】2018年四川省遂宁市中考数学试卷 【答案】-3. 【解析】 【分析】

中考数学试题分类

中考数学试题分类 荟萃之基本 图形 1?如图1,已知△ ABC的周长为m,分别连接的中点 A, B" Ci得厶ABiCi,再连接AiB,B1C1, GA,的中点 A2,B2, C2 得厶A Q B2C2,再连接A2B2, B2C2, C2A2 的中点 A B3,C3得厶A3B3C3L L,这样延续下去,最后得△ A n B n C n. 设^ A1B1C1的周长为11, △ A Q B2C2的周长为12 , △ A3 B3C3的周长为l3 L l n , B

X 则I n _____________________ . (06广东梅州) 2.如图 2,已知直线 AB // CD , / ABE 60o , / CDE 20o , 度.(06广东湛江) ②OB = OC ;③/ ABE = Z ACD ; @ BE = CD 。 (1) 请你选出两个条件作为题设,余下的两个作为结论,写出一个正确 . 命题的条件是 —和—,命题的结论是 —和—(均填序号)。 (2) 证明你写出的命题。 已知: 求证: 证明: (06广东佛山) B 9. 已知:Rt A OAB 在直角坐标系中的位置如图所示, P(3, 4)为OB 的中点,点C 为折线OAB 上的动点,线段 PC 把Rt A OAB 分割成两部分。 问:点C 在什么位置时,分割得到的三角形与 Rt A OAB 相似?(注:在图 3.如图,若△ OAD^A OBC 且/ 0=65。,/ C=20°, 则/ OAD= . (06 珠海) 4.如图 4,已知 AD AE , AB AC . (1)求证:/ B / C ; (2)若/ A 50°,问△ ADC 经过怎样的变换能与 (06广东肇庆) 5.在△ ABC 中, 1 CF -BC . 2 (1) 求证: (2) 求证: AB AC ,点D ,E 分别是 DE BE AB, AC 的中点 F 是BC 延长线上的一点,且 图5 CF ; EF . (06广东肇庆) AB// CD,若/ 2=135 °,则么/ l 的度数是() (B)45 ° (C)60 ° (D)75 ° 6. 如图1, (A)30 ° 7. 已知四组线段的长分别如下,以各组线段为边,能组成三角形的是 (A)l ,2,3 (B)2 ,5,8 (C)3 ,4,5 (D)4 ,5,10 .(06 广州) .(06广州) 8..如图,D 、E 分别为△ ABC 的边AB 、AC 上的点, BE 与CD 相交于O 点。现有四个条件:① AB = AC ;

南京中考数学试题及答案 高清版

二0一0年南京市初中毕业考试 数 学 一、选择题(本大题共6小题,每小题2分,共12分。在每小题所给出的四个选项中,恰有一项是符合题目要求 的,请将正确选项前的字母代号填涂在答题卡相应位置....... 上) 1.-3的倒数是 A. -3 B. 3 C. 13- D. 13 2. 3 4 a a ?的结果是 A. 4 a B. 7 a C.6 a D. 12 a 3.如图,下列各数中,数轴上点A 表示的可能是 A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根 4.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是 A. 1℃~3℃ B. 3℃~5℃ C. 5℃~8℃ D. 1℃~8℃ 5.如图,在平面直角坐标系中,菱形OABC 的顶点坐标是(3,4)则顶点A 、B 的坐标分别是 A. (4,0)(7,4) B. (4,0)(8,4) C. (5,0)(7,4) D. (5,0)(8,4) 6.如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致为 二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位.......置. 上) 7. -2的绝对值的结果是 。 8.函数1 1 y x = -中,自变量x 的取值范围是 。 9.南京地铁2号线(含东延线)、4号线南延线来开通后,南京地铁总里程约为85000m 。将85000用科学记数法表示为 。 10.如图,O 是直线l 上一点,∠AOB=100°,则∠1 + ∠2 = 。

2018年中考数学模拟试卷及答案解析

2018年中考数学模拟试卷 一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7的相反数是() A.7 B.﹣7 C.D.﹣ 2.数据3,2,4,2,5,3,2的中位数和众数分别是() A.2,3 B.4,2 C.3,2 D.2,2 3.如图是一个空心圆柱体,它的左视图是() A.B.C. D. % 4.下列二次根式中,最简二次根式是() A.B. C.D. 5.下列运算正确的是() A.3a2+a=3a3B.2a3?(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 7.下列命题中假命题是() A.正六边形的外角和等于360° B.位似图形必定相似 C.样本方差越大,数据波动越小 ) D.方程x2+x+1=0无实数根 8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概

率是() A.B.C.D.1 9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是() A.45°B.60°C.75°D.85° 10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是() A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是() \ A.4 B.3 C.2 D.1 12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()

全国各地中考数学试题分类汇编 网格专题

2011年全国各地中考数学试卷试题分类汇编网格专题 一、选择题 1.(2011年浙江省杭州市中考数学模拟22)如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于( ) A 、 55 B 、552 C 、5 D 、3 2 答案:B 2.(2011年北京四中模拟28)下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是( ) (A) (B) (C) (D) 答案:A 3.(2011山西阳泉盂县月考)如图△ABC 的顶点都是正方形网格中的格点,则sin∠ABC 等于( ) A 、5 B 、 552 C 、 55 D 、3 2 答案:C 4.(2011北京四中模拟)如图,点A 、B 、C 、D 、E 、F 、G 、H 、K 都是7×8方格纸中的格点,为使△DEM ∽△ABC ,则点M 应是F 、G 、H 、K 四点中的 ( ) A .F B .G C .H D . K (第1题)

答案:C 5.(2011年浙江省杭州市中考数学模拟22)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于() A、 5 5 B、 5 5 2 C、5 D、 3 2 答案:B 6.(2011年北京四中模拟28)下列位于方格纸中的两个三角形,既不成轴对称又不成中心对称的是() (A)(B)(C)(D) 答案:A 7. (2011浙江慈吉模拟)如图所示网格中, 已知②号三角形是由①号三角形经旋转变化得到的, 其旋转中心是下列各点中的() A. P B. Q C. R D. S 答案:C 8. (安徽芜湖2011模拟)如图,一圆弧过方格的格点A、B、C,试在方格中 建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的圆心坐标是()A.(-1,2)B. (1,-1)C. (-1,1)D. (2,1). 答案: C (第5题)

最新南京市中考数学试题及解析

2012年南京市中考数学试卷 (本试卷满分120分,考试时间120分钟) 一、选择题(本大题共6小题,每小题2分,共12分) 1、(2012江苏南京2分)下列四个数中,负数是【 】 A . -2 B . ()2 -2 C . -2 D . () 2 -2 【答案】C 。 【考点】实数的运算,正数和负数,绝对值的性质,有理数的乘方的定义,算术平方根。 【分析】根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解: A 、|-2|=2,是正数,故本选项错误; B 、()2 -2=4,是正数,故本选项错误; C 、-2 <0,是负数,故本选项正确;D 、 () 2 -2=4=2,是正数,故本选项 错误。 故选C 。 2、(2012江苏南京2分)PM 2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为【 】 A . -5 0.2510? B . -6 0.2510? C . -5 2.510? D . -6 2.510? 【答案】C 。 【考点】科学记数法。 【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。在确定n 的值时,看该数是大于或等于1还是小于1。当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。0.0000025第一个有效数字前有6个0,从而0.0000025=-5 2.510?。故选C 。 3、(2012江苏南京2分)计算()() 32 22a a ÷的结果是【 】 A . a B . 2 a C . 3 a D . 4 a 【答案】B 。 【考点】整式的除法,幂的乘方,同底幂的除法。 【分析】根据幂的乘方首先进行化简,再利用同底数幂的除法的运算法则计算后直接选取答案:

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

最新全国各地中考数学试题分类解析(1)

全国各地中考数学试题分类解析 第一篇 基础知识篇 第一单元 实数 考点1 实数分类 [考题精选]例1、(2000年哈尔滨市中考题)在实数80108.0,71,3, 13.,2..πo 中,无理数的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个 例2、(2000年四川省中考题)在实数16,,14.3,4,5,2o --中,无理数共有( ) A 、1个 B 、2个 C 、3个 D 、4个 考点2 倒数、相反数 [考题精选]例1、(2000年广西壮族自治区中考题)如果211,21-=+ =b a ,那么a 与b ( ) A 、互为倒数 B 、互为相反数 C 、互为有理化因式 D 、相等 例2、(2000年陕西省汉中市中考题)一个数的相反数的倒数是,2 12-则这个数是( ) A 、-2/5 B 、5/2 C 、2/5 D 、-5/2 考点3 绝对值 [考题精选]例1、(2000年宿迁市中考题)若a ≤0,则a+|a|= 例2、(2000年河北省中考题)已知:|x|=3 , |y|=2 ,且xy<0,则x+y 的值等于 例3、(2000年潜江市中考题)已知|a+b|+|a-b|-2b=0,在数轴给出关于的四种位置 关系,则可能成立的有( ) A 、1种 B 、2种 C 、3种 D 、4种 例4、(1999年十堰市中考题)对于负实数a ,下列各式成立的是( ) A 、|a-(-a)|=2a B 、|a-(-a)|= -2a C 、|a-(-a)|=0 D 、|a-(-a)|= ±a 考点4 平方根与算术平方根 [考题精选]例1、(2000年荆门市中考题)(-6)2的算术平方根是 例2、(2000年孝感市中考题)16的平方根是( ) A 、2 B 、±2 C 、4 D 、±4 考点5 近似数与不效数字 [考题精选]例1、(2000年河南省中考题)用四舍五入法,对200626取近似值,保留四个有效数字, 200626≈ 例2、(1997年四川省中考题)近似数0.03020的有效数字的个数的精确试分别是

2017江苏南京中考数学试卷word版(含答案)

2017江苏南京中考数学试卷word版(含答案)

南京市2017年初中毕业生学业考试 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.计算()()()1218632÷-÷---?的结果是( ) A . 7 B . 8 C . 21 D .36 2.计算()3 624101010?÷的结果是( ) A . 310 B . 710 C . 410 D .910 3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( ) A .三棱柱 B .四棱柱 C . 三棱锥 D .四棱锥 4.a << ( ) A .13a << B .14a << C. 23a << D .24a << 5.若方程()2 519x -=的两根为a 和b ,且a b >,则下列结论中正确的是 ( ) A .a 是19的算术平方根 B .b 是19的平方根 C.5a -是19的算术平方根 D .5b +是19的平方根 6.过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( ) A .(4,176) B .(4,3) C.(5,176) D .(5,3) 第Ⅱ卷(共90分) 二、填空题(每题5分,满分20分,将答案填在答题纸上) 7.计算:3-= ;= . 8.2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 . 9.若式子21 x -在实数范围内有意义,则x 的取值范围是 . 10.的结果是 . 11.方程2102x x -=+的解是 .

2019江苏南京中考数学试卷

2019年江苏省南京市中考数学试卷 一、选择题(本大题共6小题,每小题2分,共12分.) 1. 2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是() A.0.13×105B.1.3×104C.13×103D.130×102 2.计算(a2b)3的结果是() A.a2b3B.a5b3C.a6b D.a6b3 3.面积为4的正方形的边长是() A.4的平方根 B.4的算术平方根C.4开平方的结果 D.4的立方根 4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B. C.D. 5.下列整数中,与10﹣最接近的是() A.4 B.5 C.6 D.7 6.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到? 下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是() A.①④B.②③C.②④D.③④ 二、填空题(本大题共10小题,每小题2分,共20分。) 7.﹣2的相反数是;的倒数是. 8.计算﹣的结果是. 9.分解因式(a﹣b)2+4ab的结果是. 10.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=. 11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.

12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm. 13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表: 根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是. 14.如图,PA、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=. 15.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长. 16.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是. 三、解答题(本大题共11小题,共88分) 17.计算(x+y)(x2﹣xy+y2) 18.解方程:﹣1=.

中考数学方案设计试题分类汇编

中考数学方案设计试题分类汇编 一、图案设计 1、(xx 四川乐山)认真观察图(10.1)的4个图中阴影部分构成的图案,回答下列问题: (1)请写出这四个图案都具有的两个共同特征. 特征1:_________________________________________________; 特征2:_________________________________________________. (2)请在图(10.2)中设计出你心中最美丽的图案,使它也具备你所写出的上述特征 解:( 1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;等 ··························································································· 6分 (2)满足条件的图形有很多,只要画正确一个,都可以得满分. ······················· 9分 2、(xx 福建福州)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案. 提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种. 解:以下为不同情形下的部分正确画法,答案不唯一.(满分8分) 3、(xx 哈尔滨)现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、 图(10.1) 图(10.2) ① ② ③ ④ ⑤

2020年江苏省南京市中考数学试题(含答案)-最新推荐

1 南京市2019年初中学业水平考试 数 学 一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置....... 上) 1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13 000亿美元.用科学记数法表示13 000是 A .50.1310? B .41.310? C .31310? D .2 13010? 2.计算23()a b 的结果是 A .23a b B .53a b C .6a b D .63a b 3.面积为4的正方形的边长是 A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根 4.实数a 、b 、c 满足a >b 且ac <bc ,它们在数轴上的对应点的位置可以是 5.下列整数中,与10 13-最接近的是 A .4 B .5 C .6 D .7 6.如图,△A ′B ′C ′是由△ABC 经过平移得到的,△A ′B ′C ′还可以看作是△ABC 经过怎样的图形变化得到?下列结论: ①1次旋转; ②1次旋转和1次轴对称; ③2次旋转; ④2次轴对称. 其中所有正确结论的序号是 A .①④ B .②③ C .②④ D .③④ 二、填空题(本大题共10小题,每小题2分,本大题共20分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置....... 上) 7.﹣2的相反数是 ; 12的倒数是 . 8.计算287 -的结果是 . 9.分解因式2()4a b ab -+的结果是 . 10.已知23+是关于x 的方程2 40x x m -+=的一个根,则m = . 11.结合下图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵ ,∴a ∥b . 12.无盖圆柱形杯子的展开图如图所示.将一根长为20 cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm . 13.为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,视力 4.7以下 4.7 4.8 4.9 4.9以上 人数 102 98 80 93 127 的人数是 . 14.如图,PA 、PB 是OO 的切线,A 、B 为切点,点C 、D 在⊙O 上.若∠P =102°,则∠A +∠C = °.

中考数学试题及答案解析

2019-2020年中考数学试题及答案解析 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(xx?北京)截止到xx年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=1.4×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

2.(3分)(xx?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考点:实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3, 所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(xx?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D. 考点:概率公式. 专题:计算题. 分析:直接根据概率公式求解. 解答:解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.

全国中考数学试题分类汇编

A B C D P E 2015年全国中考数学试题分类汇编————压轴题 1. 在平面直角坐标系xOy 中,抛物线的解析式是y = 2 4 1x +1,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标; (2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值. (1)M(0,2)(2)1AC:y= 21x+1.PQ // MC.t x x --+0 14 12 =21 2. 如图,已知在矩形ABCD 中,AB =2,BC =3,P 是线段AD 边上的任意一点(不含端点 A 、D ),连结PC , 过点P 作PE ⊥PC 交A B 于E (1)在线段AD 上是否存在不同于P 的点Q ,使得QC ⊥QE ?若存在,求线段AP 与AQ 之间的数量关系;若不存在,请说明理由; (2)当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求BE 的取值范围. (3)存在,理由如下: 如图2,假设存在这样的点Q ,使得QC ⊥QE. 由(1)得:△PAE ∽△CDP , ∴ , ∴ ,

∵QC ⊥QE ,∠D =90 ° , ∴∠AQE +∠DQC =90 ° ,∠DQC +∠DCQ =90°, ∴∠AQE=∠DCQ. 又∵∠A=∠D=90°, ∴△QAE ∽△CDQ , ∴ , ∴ ∴ , 即 , ∴ , ∴ , ∴ . ∵AP≠AQ ,∴AP +AQ =3.又∵AP≠AQ ,∴AP≠ ,即P 不能是AD 的中点, ∴当P 是AD 的中点时,满足条件的Q 点不存在, 综上所述, 的取值范围8 7 ≤ <2; 3.如图,已知抛物线y =-1 2 x 2+x +4交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设P (x ,y )(x >0)是直线y =x 上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF ,若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值. (1)令x=0,得y=4 即点B 的坐标为(0,4) 令y=0,得(-1/2)x2+x+4=0 则x2-2x-8=0 ∴x=-2或x=4 ∴点A 的坐标为(4,0) 直线AB 的解析式为 (y-0)/(x-4)=(4-0)/(0-4) ∴y=-x+4 (2)由(1),知直线AB 的解析式为y=-x+4

2016年南京市中考数学试卷及答案

南京市2016 年初中毕业生学业考试 数学 一.选择题 1.为了方便市民出行.提倡低碳交通,近几年南京市大力发展公共自行车系统.根据规划,全市公共自行车总量明年将达70 000辆.用科学计数法表示70 000是 A .0.7?105 B. 7?104 C. 7?105 D. 70?103 2.数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 A .-3+5 B. -3-5 C. |-3+5| D. |-3-5| 3.下列计算中,结果是6a 的是 A . B. C. D. 4.下列长度的三条线段能组成钝角三角形的是 A .3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7 5.己知正六边形的边长为2,则它的内切圆的半径为 A . B. C. 2 D. 6.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为 A . B. C. 或6 D. 或 二.填空题 7. 化简:8______;38______. 8. 若式子1x x +-在实数范围内有意义,则x 的取值范围是________. 9. 分解因式 的结果是_______. 10.比较大小:________522-.(填“>””<”或“=”号) 11.方程132x x =-的解是_______. 12.设12,x x 是方程 的两个根,且12x x +-12x x =1, 则12x x +=______,=_______.

13. 如图,扇形OAB的圆心角为122°,C是弧AB上一点,则_____°. 14. 如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论 ①AC⊥BD;②CB=CD;③△AB C≌△ADC;④DA=DC,其中正确结论的序号是_______. 15. 如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD.EF是△ODB的中位线,且EF=2,则AC 的长为________. 16.如图,菱形ABCD的面积为120,正方形AECF的面积为50,则菱形的边长为 _______. 三.解答题 17. 解不等式组并写出它的整数解. 18. 计算

2017年河南中考数学试题及答案解析[版]

2016年河南省普通高中招生考试试卷 数学 注意事项: 1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上. 2 题号 一二三 总 分1 ~8 9 ~15 1 6 1 7 1 8 1 9 2 2 1 2 2 2 3 分数 一、选择题(每小题3分,共24分) 下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1. 3 1 -的相反数是() (A) 3 1 -(B) 3 1 (C)-3 (D)3 2.某种细胞的直径是米,将用科学计数法表示为() B. ×10-8 D. 95×10-8 3. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是() 4.下列计算正确的是() (A)=(B)(-3)2=6 (C)3a4-2a3 = a2(D)(-a3)2=a5 5. 如图,过反比例函数y=(x> 0)的图象上一点A,作AB⊥x轴于点B, S△AOB=2,则k的值为() (A)2 (B)3 (C)4 (D)5 6. 如图,在ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E, 则DE的长为()

(A)6 (B)5 (C)4 (D)3 7、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差: 甲乙丙丁 平均数(cm) 18 5 18 18 5 18 方差 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择() A.甲 B.乙 C.丙 D.丁 8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转, 每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为() (A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2) 二、填空题(每小题3分,共21分) 9.计算:(-2)0-= . 10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2 的度数是 . 11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= . 12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 . 13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 . 14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作交于点 C. 若OA=2,则阴影部分的面积为______.

相关主题
文本预览
相关文档 最新文档