第二章Verilog基本知识
- 格式:docx
- 大小:30.54 KB
- 文档页数:24
verilog 数字系统设计教程习题答案第二章HDL 既是一种行为描述语言,也是一种结构描述语言。
如果按照一定的规则和风格编写代码,就可以将功能行为模块通过工具自动转化为门级互联的结构模块。
这意味着利用Verilog 语言所提供的功能,就可以构造一个模块间的清晰结构来描述复杂的大型设计,并对所需的逻辑电路进行严格的设计。
2.模块的基本结构由关键词module和endmodule构成。
3.一个复杂电路系统的完整Verilog HDL 模型是由若干个VerilogHDL模块构成的,每一个模块又可以由若干个子模块构成。
其中有些模块需要综合成具体电路,而有些模块只是与用户所设计的模块交互的现存电路或激励信号源。
利用Verilog HDL语言结构所提供的这种功能就可以构造一个模块间的清晰层次结构来描述极其复杂的大型设计,并对所作设计的逻辑电路进行严格的验证。
HDL和VHDL乍为描述硬件电路设计的语言,其共同的特点在于:能形式化地抽象表示电路的结构和行为、支持逻辑设计中层次与领域的描述、可借用高级语言的精巧结构来简化电路的描述、具有电路仿真与验证机制以保证设计的正确性、支持电路描述由高层到低层的综合转换、硬件描述与实现工艺无关(有关工艺参数可通过语言提供的属性包括进去)、便于文档管理、易于理解和设计重用。
5.不是6.将用行为和功能层次表达的电子系统转换为低层次的便于具体实现的模块组合装配的过程。
7.综合工具可以把HDL变成门级网表。
这方面Synopsys工具占有较大的优势,它的Design Compile 是作为一个综合的工业标准,它还有另外一个产品叫Behavior Compiler ,可以提供更高级的综合。
另外最近美国又出了一个软件叫Ambit ,据说比Synopsys 的软件更有效,可以综合50万门的电路,速度更快。
今年初Ambit 被Cadence 公司收购,为此Cade nee放弃了它原来的综合软件Syn ergy。
verilog 基本语法Verilog基本语法Verilog是一种硬件描述语言,用于描述数字电路的行为和结构。
它具有强大的建模能力,能够描述复杂的数字系统,并用于逻辑设计和硬件验证。
本文将介绍Verilog的基本语法,以帮助读者对这种语言有一个基本的了解。
1. 模块声明在Verilog中,所有的设计都是通过模块来实现的。
模块是Verilog 的基本组织单位,类似于其他编程语言中的函数或类。
模块声明由关键字module开头,后面跟着模块的名称和输入输出端口的定义。
例如:module my_module(input a, b, output c);// 模块的主体endmodule2. 端口声明在模块声明中,使用关键字input和output来声明输入和输出端口。
输入端口用于接收信号,输出端口用于输出信号。
端口可以是单个的信号,也可以是信号的数组。
例如:input a, b; // 单个输入端口output c; // 单个输出端口input [7:0] d; // 输入信号的数组3. 信号声明在Verilog中,使用关键字wire、reg、integer等来声明信号。
wire用于声明连续的信号,reg用于声明时序的信号,integer用于声明整数变量。
例如:wire a, b; // 连续信号reg [7:0] c; // 时序信号,有8位integer d; // 整数变量4. 时钟和复位在数字电路中,时钟和复位信号是非常重要的。
在Verilog中,可以使用关键字input来声明时钟和复位信号,并在模块的输入端口中定义。
例如:input clk; // 时钟信号input rst; // 复位信号5. 运算符Verilog支持各种运算符,包括算术运算符、逻辑运算符、位运算符等。
算术运算符用于执行加减乘除等操作,逻辑运算符用于执行与或非等逻辑操作,位运算符用于执行位操作。
例如:a =b + c; // 加法运算d = ~(a & b); // 与运算和非运算6. 控制结构在Verilog中,可以使用if语句、case语句等控制结构来实现条件判断和多路选择。
verilog教程Verilog是一种硬件描述语言(HDL),用于描述数字系统的行为和结构。
它是一种流行的HDL,广泛用于硬件设计和验证领域。
本教程将介绍Verilog的基本概念和语法,以帮助初学者入门。
一、Verilog的基本概念1.1 什么是VerilogVerilog是一种描述数字系统的语言,它可以用来描述硬件电路、验证设计的正确性以及进行电路仿真。
1.2 Verilog的应用领域Verilog广泛应用于硬件设计和验证领域,包括用于开发ASIC(应用特定集成电路)、FPGA(现场可编程门阵列)以及其他数字系统的设计。
1.3 Verilog的版本Verilog有多个版本,包括Verilog-1995、Verilog-2001以及最新的Verilog-2005、这些版本之间有一些语法和功能上的差异。
二、Verilog的语法结构2.1模块和端口在Verilog中,所有的电路描述都是由模块(module)组成的。
模块是电路的基本组成单元,可以看作是一个黑盒子,它接受一些输入,产生一些输出。
2.2信号声明在Verilog中,我们需要声明所有的输入和输出信号。
可以使用`input`和`output`关键字来声明这些信号。
2.3电路实现Verilog允许使用多种语句和结构来描述电路的行为和结构。
这些语句包括顺序语句、条件语句、循环语句以及层次结构。
2.4实例化模块在一个模块中,我们可以实例化其他的模块。
这样可以将一个大的电路拆分成多个小的模块,方便编写和测试。
三、Verilog的仿真和验证3.1静态验证Verilog语言本身提供了很多语法和语义层面的验证功能,对于语法和类型错误会有相应的提示。
3.2激励设计在进行电路验证时,我们需要为输入信号提供激励。
Verilog提供了一种称为`testbench`的特殊模块,用于生成输入信号并将其应用到待验证的电路中。
3.3波形仿真在Verilog中,我们可以使用仿真器来模拟电路的行为,并生成波形图来验证电路是否按预期工作。
Verilog基础:1.间隔符:空格〔\b〕,Tab〔\t〕,换行符〔\n〕,换页符。
2.注释:/**/ //3.标识符,关键词:标识符由英文字母、数字、$符、下划线组成,以英文字母或下划线开头。
4.逻辑值:0:逻辑假1:逻辑真x或X:不确定状态z或Z:高阻态5.常量:<1>格式:<+/-><位宽>’<基数符号><数值>b/o/d/h:二、八、十、十六进制<2>数字可加下划线:8’b1001_1001表示8位二进制数10011001<3>科学计数:5E-4: 5*10^4<4>利用参数定义语句来定义一个标识符表示常量:parameter 参数名1=常量1,参数名2=常量2;例:parameter BIT=1,BYTE=8;6.字符串:双撇号内的字符序列,不能分多行书写,表达式或赋值语句中字符串要换成无符号整数,用8位ASCII码表示,一个8位ASCII码表示一个字符变量的数据类型:1.线网〔net type〕类型:线网类被定义后假设没有被元件驱动,则默认值为高阻态关键词:wire:wire[n-1:0]变量名1,变量名2,…,变量名n;除wire外还有wand、wor、tri、triand、trior、trireg2.寄存器类型:寄存器型变量只能在initial或always内被赋值,没被赋值默认为x状态。
4种类型的寄存器变量:<1>reg:行为描述中对寄存器型变量说明<2>integer:32位有符号整数型<3>real:64位有符号实型变量〔默认值是0〕<4>time:64位无符号时间型①reg:格式:reg[n-1:0]变量名1,…,变量名n;例:integer counter;initial //initial是过程语句结构,赋值给寄存器类型变量counter=-1;③real:通常用于对实数型常量进行储存运算例:real delta;initialbegindelta=4e10;delta=2.13endinteger i;initial i=delta; //i得到的值为2④time:主要用于储存仿真时间,只储存无符号整数,常调用系统函数$time例:time current_time;initialcurrent_time=$time;Verilog 基本结构module 模块名〔端口名1,端口名2,…〕端口类型说明〔input,output,inout〕//inout是双向端口参数定义;//将常量用符号常量代替,非必须结构数据类型定义〔wire,reg等〕实例化底层模块和基本门级元件;连续赋值语句〔assign〕;过程块结构〔initial和always〕;行为描述语句;endmodule描述方式:①结构描述方式:调用其他已定义好的底层模块对整个电路进行描述,或直接调用基本门级元件描述。
第1章:EDA(Electronic Design Automation)即电子设计自动化,是指利用计算机完成电子系统的设计。
(以填空题的形式出题)狭义的EDA技术是指以大规模可编程逻辑器件为载体,以硬件描述语言HDL为系统逻辑的主要表达方式,借助功能强大的计算机,在EDA工具软件平台上,对用HDL描述完成的设计文件,自动完成用软件方式设计的电子系统到硬件系统的设计工作,最终形成集成电子系统或专用集成芯片ASIC的一门新技术。
(以简答题的形式出题)EDA的实现目标:完成专用集成电路(ASIC)或印制电路板(PCB)的设计和实现。
作为EDA技术最终实现目标的ASCI可以通过以下3种途径完成:(要知道它们三种途径之间的区别)1)可编程逻辑器件FPGA/CPLD(直接面向用户、具用极大的灵活性和通用性)2)半定制或全定制ASCI(用户提要求,厂家设计生产,出厂后用户不可更改)3)混合ASCI(既具有面向用户的FPGA可编程功能和逻辑资源,同时也含有可方便调用和配置的硬件标准单元模块)EDA主要内容1)可编程逻辑器件可编程逻辑器件是一种由用户编程以实现某种逻辑功能的新型件。
可编程逻辑器件也称为可编程ASIC,它是EDA技术的物质基础。
2)硬件描述语言HDLHDL语言是EDA技术的重要组成部分,它是一种用于描述硬件电子系统的计算机语言,它用软件编程的方式来描述电子系统的逻辑功能、电路结构和连接形式。
软件开发工具3)软件开发工具EDA软件开发工具是EDA技术的强有力支持。
EDA软件开发工具是指以工作站或者高档计算机为基本工作平台,利用计算机图形学、拓扑逻辑学、计算数学和人工智能等多种应用学科的最新成果而开发出来的一套软件工具,它是一种帮助设计工程师进行电子系统设计的辅助工具。
在EDA中首选的设计方法是:自顶向下第2章:实践中发现:任何组合逻辑都可化成“与-或”表达式;任何时序电路都可由组合电路加上存储元件组成。
Verilog-HDL基础知识第⼆章 Verilog-HDL基础知识1.Verilog-HDL概述1.1 什么是硬件描述语⾔(HDL)HDL:Hardware Description Language硬件描述语⾔HDL是⼀种⽤形式化⽅法描述数字电路和系统的语⾔,可以描述硬件电路的功能、信号连接关系和定时关系。
1.2 使⽤HDL的优点电路的逻辑功能容易理解;便于计算机对逻辑进⾏分析处理;把逻辑设计与具体电路的实现分成两个独⽴的阶段来操作;逻辑设计与实现的⼯艺⽆关;逻辑设计的资源积累可以重复利⽤;可以由多⼈共同更好更快地设计⾮常复杂的逻辑电路(⼏⼗万门以上的逻辑系统)。
1.3 Top_Down设计思想1.4 Verilog-HDL简介1.4.1 Verilog HDL的发展1.4.2 Verilog-HDL与VHDL的⽐较☆ VHDL-VHSIC Hardware Description Language。
VHDL于 1987年成为IEEE标准。
☆ Verilog-HDL简单易学,语法⽐较灵活。
VHDL语法严谨,需要较长的时间学会。
☆ Verilog-HDL在系统抽象⽅⾯⽐VHDL略差,但在门级开关电路描述⽅⾯⽐VHDL强。
1.4.3 Verilog-HDL 的应⽤ASIC和FPGA设计师可⽤它来编写可综合的代码。
描述系统的结构,做⾼层次的仿真。
验证⼯程师编写各种层次的测试模块对具体电路设计⼯程师所设计的模块进⾏全⾯细致的验证。
库模型的设计:可以⽤于描述ASIC 和FPGA的基本单元(Cell)部件,也可以描述复杂的宏单元(Macro Cell)。
1.4.4 Verilog-HDL的抽象级别⽤Verilog-HDL描述的电路设计就是该电路的Verilog HDL模型,这些模型可以是实际电路的不同级别的抽象,这些抽象的级别和它们对应的模型类型共有以下五种:?系统级(system): ⽤⾼级语⾔结构实现设计模块的外部性能的模型。
verilog知识点总结Verilog是一种硬件描述语言(HDL),用于描述数字电路和系统,它广泛应用于数字系统设计和仿真领域。
本文将总结一些Verilog 的重要知识点,以帮助读者更好地理解和应用Verilog。
一、Verilog的基本语法Verilog的基本语法包括模块声明、端口声明、信号声明、数据类型、运算符等。
Verilog中的模块是设计的基本单元,模块声明包括模块名和端口声明。
端口可以是输入、输出或双向的。
信号声明用于定义内部信号,可以是寄存器或线网类型。
Verilog支持多种数据类型,包括整数、浮点数、向量、数组等。
Verilog还提供了丰富的运算符,包括算术运算符、逻辑运算符、位运算符等。
二、组合逻辑电路描述Verilog可以用来描述各种组合逻辑电路,如与门、或门、非门等。
通过使用逻辑运算符和条件语句,可以很方便地描述组合逻辑电路的功能。
Verilog还提供了多种语法结构,如if语句、case语句等,用于描述复杂的逻辑功能。
三、时序逻辑电路描述时序逻辑电路是一种带有状态的电路,Verilog可以用来描述各种时序逻辑电路,如触发器、计数器、状态机等。
通过使用时钟信号和触发器,可以实现电路的时序行为。
Verilog提供了多种触发器类型,如D触发器、JK触发器、T触发器等,可以根据实际需求选择合适的触发器类型。
四、模块实例化和层次化设计Verilog支持模块的实例化和层次化设计,可以将一个模块实例化为另一个模块的一部分。
通过模块实例化,可以方便地实现模块的复用和层次化设计。
层次化设计可以使整个系统更加清晰和模块化,方便调试和维护。
五、仿真和验证Verilog可以用于对设计进行仿真和验证,以确保设计的正确性。
Verilog提供了仿真器,可以对设计进行时序仿真和波形查看。
通过仿真,可以验证设计的功能和时序行为是否符合要求。
Verilog 还支持测试向量的生成和自动验证,可以自动生成测试向量并进行自动验证。
Verilog语言是一种硬件描述语言(HDL),用于描述和设计数字电路。
它广泛应用于数字系统的建模、验证和综合,是数字电路设计领域中的重要工具之一。
在Verilog中,模块是最基本的组织单位,模块中包含了电路的功能和行为描述。
本文将介绍Verilog语言的基本语法和模块写法,以帮助读者更好地理解和应用Verilog语言。
一、Verilog基本语法1. 注释在Verilog中,使用双斜杠(//)进行单行注释,使用/* */进行多行注释。
注释可以提高代码的可读性,便于他人理解和维护。
2. 变量声明Verilog中的变量可以分为寄存器变量(reg)和线网(wire)两种类型。
寄存器变量用于存储状态信息,线网用于连接各个逻辑门的输入和输出。
3. 逻辑运算符和位运算符Verilog中包括逻辑运算符(与、或、非等)和位运算符(与、或、异或等),用于对信号进行逻辑和位级操作。
4. 控制语句Verilog支持if-else语句、case语句等控制语句,用于根据不同条件执行不同的操作。
5. 模拟时钟在Verilog中,时钟是电路中的重要部分,通常使用时钟信号来同步各个元件的动作。
时钟可以通过周期性方波信号来模拟,使用$period 函数可以定义时钟的周期。
6. 仿真指令Verilog提供了多种仿真指令,用于初始化信号、设置仿真时间、输出波形图等操作,有助于仿真和调试电路。
二、模块写法1. 模块定义在Verilog中,一个模块包含了一组功能相关的硬件描述,可以看作是一个小型电路的抽象。
模块通过module关键字进行定义,其中包括模块名、输入输出端口声明等信息。
```verilogmodule adder(input wire [3:0] a,input wire [3:0] b,output reg [4:0] c);// 模块内部逻辑描述endmodule```2. 端口声明模块的端口包括输入端口(input)和输出端口(output),可以通过wire和reg进行声明。
verilog语法基础Verilog语法基础Verilog是一种硬件描述语言(HDL),用于描述数字电路和系统。
它是一种基于事件的语言,能够描述电路的结构和行为。
本文将介绍Verilog语法的基础知识,包括模块、端口、信号、赋值和运算等。
一、模块(Module)在Verilog中,模块是描述电路的基本单元。
一个模块可以包含多个端口和信号,并定义了电路的功能和结构。
模块的定义使用关键字module,后跟模块的名称和端口列表。
二、端口(Port)Verilog中的端口是模块与外部环境进行通信的接口。
端口可以是输入端口、输出端口或双向端口。
输入端口用于接收外部信号,输出端口用于输出信号至外部,而双向端口则可同时进行输入和输出。
端口的定义使用关键字input、output或inout,后跟端口的类型和名称。
三、信号(Signal)Verilog中的信号用于在模块内部传递和存储数据。
信号可以是寄存器类型或线网类型。
寄存器类型信号用于存储数据,线网类型信号用于传递数据。
信号的定义使用关键字reg或wire,后跟信号的宽度和名称。
四、赋值(Assignment)在Verilog中,使用赋值语句将值分配给信号或变量。
赋值语句可以是阻塞式赋值或非阻塞式赋值。
阻塞式赋值使用等号(=)将右侧的值赋给左侧的信号,而非阻塞式赋值使用双等号(<=)进行赋值。
赋值语句的左侧可以是信号或变量,右侧可以是常数、信号、变量或表达式。
五、运算(Operator)Verilog中支持多种运算,包括算术运算、逻辑运算、位运算和比较运算等。
算术运算包括加法、减法、乘法和除法等;逻辑运算包括与、或、非和异或等;位运算包括位与、位或、位非和位异或等;比较运算包括等于、不等于、大于、小于等。
运算符可以用于常数、信号、变量或表达式之间的运算。
六、条件语句(Conditional Statement)Verilog中的条件语句用于根据条件选择执行不同的操作。
verilogHDL培训教程华为(多场景)VerilogHDL培训教程——华为第一章:引言随着电子设计自动化(EDA)技术的不断发展,硬件描述语言(HDL)在数字电路设计领域扮演着越来越重要的角色。
VerilogHDL 作为一种主流的硬件描述语言,因其强大的功能、灵活的语法和广泛的应用范围,已成为数字集成电路设计工程师必备的技能之一。
本教程旨在帮助读者掌握VerilogHDL的基本概念、语法和设计方法,为华为等企业培养合格的数字电路设计人才。
第二章:VerilogHDL基础2.1VerilogHDL简介VerilogHDL是一种用于数字电路设计的硬件描述语言,它可以在多个层次上对数字系统进行描述,包括算法级、寄存器传输级(RTL)、门级和开关级。
VerilogHDL的设计初衷是为了提高数字电路设计的可重用性、可移植性和可维护性。
2.2VerilogHDL编程环境(1)文本编辑器:Notepad++、SublimeText等;(2)仿真工具:ModelSim、IcarusVerilog等;(3)综合工具:XilinxISE、AlteraQuartus等。
2.3VerilogHDL语法基础(1)关键字:VerilogHDL中的关键字具有特定含义,如module、endmodule、input、output等;(2)数据类型:包括线网类型(wire)、寄存器类型(reg)、整数类型(integer)等;(3)运算符:包括算术运算符、关系运算符、逻辑运算符等;(4)模块与端口:模块是VerilogHDL设计的基本单元,端口用于模块之间的信号传递;(5)行为描述与结构描述:行为描述用于描述电路的功能,结构描述用于描述电路的结构。
第三章:VerilogHDL设计流程3.1设计流程概述(1)需求分析:明确设计任务和功能要求;(2)模块划分:根据需求分析,将设计任务划分为若干个模块;(3)编写代码:使用VerilogHDL编写各个模块的代码;(4)仿真验证:对设计进行功能仿真和时序仿真,确保设计正确;(5)综合与布局布线:将VerilogHDL代码转换为实际电路,并进行布局布线;(6)硬件测试:在FPGA或ASIC上进行实际硬件测试。
2.1 Verilog HDL的语言要素Verilog HDL语法来源于C语言基本的语法,其基本此法约定与C语言类似。
程序的语言要素称为语法,是由符号、数据类型、运算符和表达式构成的,其中符号包括空白符、注释符、和转义标示符、关键字、数值等。
2.1.1 空白符空白符包括空格符(\b),制表符(\t)、换行符和换页符。
空白符使代码看起来结构清晰,阅读起来更方便。
在编译过程中,空白符被忽略。
2.1.2 注释符Verilog HDL语言允许插入注释,标明程序代码功能、修改、版本等信息,以增强程序的可阅读性和帮助管理文档。
Verilog HDL有两种注释方式1) 单行注释:单行注释以“ // ”开始,Verilog HDL 忽略从此处到行尾的内容2) 多行注释:多行注释以“ /* ”开始,到“ */ ”结束,Verilog 忽略其中的注释内容在Verilog HDL 中,标识符( Identifier )被用来命令信号名、模块名、参数名等。
它可以使任意一组字母、数字、$符号和_符号的组合。
应该注意的是,标识符的字符区分大小写,并且第一个字符必须是字母或者下划线Verilog HDL规定了转义标识符(Escaped Identifie) 采用转义字符可以在一条标识符中包含任何可打印的字符。
转义标识符以“ ”(反斜线)符号开头,以空白符结尾(空白可以是一个空格、一个制表符或者换行符)2.1.4 关键字Verilog HDL语言内部已经使用的词称为关键字或保留字,它是Verilog HDL语言的内部专用词,是事先定义好的确认符,用来组织语言结构的。
需要注意的是,在Verilog HDL中,保留字都是小写的。
Verilog HDL有四种基本的逻辑数值状态,用数字或字符表达数字电路中传送的逻辑状态和存储信息。
Verilog HDL逻辑数值中,x和z都不区分大小写。
也就是说,0x1z和值)0X1Z是等同的。
中有四值电平逻辑如表1. 数值及其表示中的整数可以是二进制、八进制、十进制、十六进制需要注意的是1)在较长的数之间可以用下划线来分开,目的是提高可读性,下划线本身没有意义, 1) 在数值中,下划线符号“ _”除了不能放于数值的首位外,可以随意用在整型数与实型数中,他们对数值大小没有任何改变,只是为了提高可读性。
例如16'b 1011000110001100 和16' b 1011_0001_1000_1100的数值大小是相同的,只是后一种的表达方式可读性更强。
如16' b 1011_0001_1000_1100,但下划线不能用作首字符。
2) 当数字没有说明位宽时,默认为32 位3) z或x在二进制中代表1位z或x,在八进制中代表3位z或x, 在十六进制中代表4位z或x,其代表的宽度取决于所用的进制。
8'b1011xxxx // 等价于8'hBx8'b1001zzzz // 等价于8'h9z4. 若没有定义一个整数的位宽,其宽度为相应值中定义的为数。
例如‘o642 //9 位八进制数‘hBD //8 位16进制数5. 若定义的位宽比实际数的为数大,则在左边用0 补齐。
但如果输最左边一位为x或者z,就相应的用x或z左边补齐。
如10'b101 // 左边补0,得00000001018b'x01 //左边补z,得zzzzzOxI如果定义的位宽比实际数的位数大,那么最左边的位被截断。
6. “?”是高阻态z 的另一种表示符号。
在数字的表示中,字符“?”和Z或z是等价的,可以互相替换。
7. 整数可以带正、负号,并且正、负号应写在最左边。
负数表示为二进制的补码形式。
8. 如果位宽和进制都缺省,则代表十进制数9. 数字中不能有空格,但在表示进制的字母两则可以有空格。
例:5'hx 〃5位十六进制数x (扩展的x),即xxxxx8 ‘h 2A // 在位宽和字符之间以及进制和数值之间可以// 有空格,但数字之间不能有空格2. 实数极其表示1)十进制表示法。
采用十进制格式,小数点两边必须都有数字,否则为非法的表示形式2)科学计数法。
女口564.2e2的值为54620.03)Verilog HDL还定义了实数转换为整数的方法,实数通过四舍五入转换为最相近的整数。
3. 字符串及其表示字符串是指用双引号括起来的字符序列,它必须包含在同一行中, 不能分行书写。
若字符串用作Verilog HDL表达式或赋值语句中的操作数,则字符串被看作8位的ASCI值序列,即一个字符对应8 位的ASCI码。
如“hello world ”和“ An example for Verilog HDL2.2 数据类型在Verilog HDL 中,数据类型共有19 种。
分为两类:物理数据类型(主要包括连线型及寄存器型)和抽象数据类型(主要包括、整型、时间型、实型及参数型)物理数据类型的抽象数据程度比较低,与实际硬件电路的映射关系比较明显;而抽象数据类型则是进行辅助设计和验证的数据类型。
221物理数据类型Verilog HDL最主要的物理数据类型是连线型、寄存器型和存储器型,并使用四种逻辑电平和八种信号强度对实际的电路建模。
四值逻辑电平是对信号的抽象方式。
信号强度表示数字电路中不同强度的驱动源,用来解决不同驱动强度下的赋值冲突,逻辑0和1可以用下表列出的强度值表示,驱动强度从supply到highz 依次递减。
连线型连线表示逻辑单元的物理连接,可以对应为电路中的物理信号连线,这种变量类型不能保持电荷(除trieg之外)。
连线型变量必须要有驱动源,一种是连接到一个们或者模块的输出端,另一种是用assign连续赋值语句对它进行赋值。
若没有驱动源,将保持高阻态乙1) wire 和tri最常见的是wire (连线)和tri (三态线)两种,它们的语法和语义一致。
不同之处在于:wire型变量通常用来表示单个门驱动或连续赋值语句驱动的连线型数据tri型数据变量则用来表示多驱动器驱动的连线型数据,主要用于定义三态的线网。
上述真值表明:同时有两个驱动强度相同的驱动源来驱动wire或tri变量时的输出结果。
2)wor 和tiror3) wand 禾口triand4)trio 和tril()的特征是,若无驱动源驱动,其值为(的值为)5)supply。
禾口 supplylsupply。
用于对“地”建模,即低电平0; supplyl用于对电源建模,即高电平1.如supplyO表示Gnd. Supplyl表示Vcc6)trireg 线网trireg线网能存储数值(类似于寄存器型数据类型),并且用于电容节点的建模。
当三态寄存器(trireg)的所有驱动源都处于高阻态(z)时,三态寄存器线网将保持作用在线网上的最后一个逻辑值。
三态寄存器线网的缺省初始值为x一个trireg 网络型数据用于模拟电荷存储。
电荷量强度可以下面的关键字来控制:samll、medium、、large。
默认的电荷强度为medium < 一个trireg 网络型数据能够模拟一个电荷存储节点,该节点的电荷量将随时间而逐渐衰减。
对于一个trireg 网络型数据,仿真时其电荷衰减时间应当制定为延迟时间。
2.寄存器型Reg 型变量时最常见也是最重要的寄存器型数据类型,它是数据存储单元的抽象类型,其对应的硬件电路元件具有状态保持作用,能够存储数据,如触发器、锁存器等。
reg 型变量常用于行为级描述中,由过程赋值语句对其进行赋值。
reg 型数据域wire 型数据的区别在于,reg 型数据类型保持最后一次的赋值,而wire 型数据需要有持续的驱动。
一般情况下,reg 型数据的默认初始值为不定值x,缺省时的位宽为1位。
reg 型数据变量举例:reg a; // 定义一个1 位的名为a 的reg 型变量reg[3:0] b ; // 定义一个4 位的名为b 的reg 型变量reg[8:1] c,d,e ; // 定义三个名称分别为c、d、e 的8 位reg 型的变量。
reg 型变量一般是无符号数,若将一个负数赋给一个reg 型变量,则自动转换成其二进制补码形式。
在过程块内被赋值的每一个信号都必须定义为reg 型,并且只能在always或initial过程块中赋值,大多数reg型信号常常是寄存器或触发器的输出。
2.2.2 连线型和寄存器数据类型的声明1. 连线型数据类型的声明缺省的连线型数据的默认类型为1位(标量)wire类型。
Verilog 禁止对已经声明过的网络、变量或参数再次声明。
连线型数据类型声明的一般语法如下:<net_declaration> <drive_strength> <range><delay><list_of_variables>其中,drive_strength、range、delay 为可选项。
而list_of_variables 为必选项1) net_declaration:表示网络型数据的类型,可以是wire,tri、tri0、tril > wand、triand 、trior 、wor、trireg 中的任意一种。
对于trireg 类型,其声明还有一个charge_strength (电荷强度)的可选项2) drive_strength :表示连线变量的驱动强度3) range:用来指定数据位标量或矢量。
若该项默认,表示数据类型为1位的标量,超过 1 位就为矢量形式。
4) delay:指定仿真延迟时间5) list_of_variables:变量名称,一次可定义多个名称,之间用逗号分开。
2. 寄存器型数据类型的声明reg 型数据类型声明的一般语法格式:reg<range><list_of_register_variables>其中,range 为可选项,它制定了reg 型变量的位宽,缺省时为1 位。
说明:list_of_register_variables:变量名称列表,一次可以定义多个名称,之间用逗号分开。
物理数据类型声明举例:reg [7:0] regb; // 定义一个8 位的寄存器变量tri [7:0] tribus; // 定义了一个8位的三态总线tri0 [15:0] busa; // 定义了一个16 位的连线型,处于三态时为上拉电阻tri1 [31:0] busb; // 定义了一个32 位的连线型,处于三态时为下拉电阻reg scalared[1:4]b;// 定义了一个4 位的标量型寄存器矢量wire(pull,strong ())c =a+b; // 定义了一个1 和0 的驱动强度不同的1 位连线型变量c trireg (large)storeline;// 定义了一个具有强度的电荷存储功能的存储线2.2.3 存储器型存储器型(memory)本质上还是寄存器型变量阵列,只是Verilog HDL 语言中没有多维数组,所有就用reg 型变量建立寄存器组来实现存储器的功能,也就是扩展的reg 型数据地址范围。