信道编码
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
信道编码实验报告引言:信道编码是一种常用的通信技术,用于增强数据传输的可靠性和效率。
通过在发送端对数据进行编码,并在接收端进行解码,可以有效地纠正或检测在信道传输过程中产生的错误。
本实验旨在研究不同的信道编码方法,并分析它们在不同信道条件下的性能。
一、实验目的:1.了解信道编码的概念和基本原理;2.掌握常用的信道编码方法和相关算法;3.通过实验验证不同信道编码方法的性能;4.分析信道编码在不同信道条件下的适用性。
二、实验原理:1.信道编码概述:信道编码主要分为前向纠错编码(Forward Error Correction, FEC)和自动重传请求(Automatic Repeat reQuest, ARQ)两类。
其中,FEC方法通过在数据流中引入冗余信息,使接收端能够检测和纠正一定数量的错误。
而ARQ方法则是通过接收端向发送端发送请求进行重传,从而实现数据的可靠传输。
2.常用的信道编码方法:在实验中,我们主要研究了以下几种常用的信道编码方法:(1)奇偶校验编码:奇偶校验编码是最简单的一种编码方式,它通过在数据末尾添加一个校验位来实现错误检测。
若校验位与数据位中的奇偶性不一致,则认为出现错误。
(2)海明码编码:海明码是一种通过添加冗余位来实现错误检测和纠正的编码方法。
通过在数据位中插入冗余位,接收端可以检测到并纠正一定数量的错误。
(3)卷积码编码:卷积码是一种递归线性均匀的编码方法,通过引入冗余信息来增强信号的可靠性。
它具有较好的纠错性能,广泛应用于无线通信领域。
三、实验过程:1.实验环境准备:在实验中,我们使用了Matlab软件进行信道编码的仿真实验。
通过编写相应的算法和程序,可以模拟不同的信道编码方法,并分析它们的性能。
2.编写奇偶校验编码程序:首先,我们编写了奇偶校验编码的程序,通过向数据流中添加校验位实现错误检测。
然后,对不同的信道条件进行仿真实验,并记录不同错误率下的传输性能。
3.编写海明码编码程序:接下来,我们编写了海明码编码的程序,通过插入冗余位实现错误检测和纠正。
第二章 信道编码简介2、1信道编码简介一、信道编码理论1948年,信息论的创始人Shannon 从理论上证明了信道编码定理又称为Shannon 第二定理。
它指出每个信道都有一定的信道容量C ,对于任意传输速率R 小于信道容量C ,存在有码率为R 、码长为n 的分组码和),,(00m k n 卷积码,若用最大似然译码,则随码长的增加其译码错误概率e p 可以任意小]1[.)(R E n b e b e A p -≤ (2。
1))()()1(0R E n c R E n m c e c c c e A e A p -+-=≤ (2.2)式中,b A 和c A 为大于0的系数,)(R E b 和)(R E c 为正实函数,称为误差指数,它与R 、C 的关系]2[如图2.1所示。
由图可以看出:)(R E 随信道容量C 的增大而增加,随码率R 的增加而减小。
这个存在性定理告诉我们可以实现以接近信道容量的传输速率进行通信,但并没有给出逼近信道容量的码的具体编译码方法。
Shannon 在信道编码定理的证明中引用了三个基本条件: 1、采用随机编译码方式; 2、编译码的码长n 趋于无穷大; 3、译码采用最佳的最大后验译码。
在高斯白噪声信道时,信道容量:)/](1[log 02s bit WN P W C S+= (2。
3)上式为著名的Shannon 公式,式中W 是信道所能提供的带宽,T E P S S /=是信号概率,S E 是信号能量,T 是分组码信号的持续时间即信号宽度,W P S /是单位频带的信号功率,0N 是单位频带的噪声功率,)/(0WN P S 是信噪比.图2.1 )(R E 与R 的关系由上面几个公式及图2。
1可知,为了满足一定误码率的要求,可用以下两类方法实现。
一是增加信道容量C ,从而使)(R E 增加,由式(1。
3)可知,增加C 的方法可以采用诸如加大系统带宽或增加信噪比的方法达到.当噪声功率0N 趋于0时,信道容量趋于无穷,即无干扰信道容量为无穷大;增加信道带宽W 并不能无限制的使信道容量增加。
信道编码概念信道编码是一种在数字通信中使用的技术,它可以提高数据传输的可靠性和效率。
在数字通信中,数据传输过程中会受到各种干扰和噪声的影响,这些干扰和噪声会导致数据传输错误。
信道编码技术可以通过在数据传输过程中添加冗余信息来提高数据传输的可靠性,从而减少数据传输错误的发生。
信道编码技术的基本原理是在发送端对原始数据进行编码,生成一些冗余信息,并将编码后的数据传输到接收端。
接收端通过解码过程来恢复原始数据。
在解码过程中,接收端可以利用冗余信息来检测和纠正数据传输中的错误。
常见的信道编码技术包括前向纠错编码、卷积码和块码等。
前向纠错编码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
前向纠错编码的基本原理是在发送端对原始数据进行编码,并在编码后的数据中添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
前向纠错编码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
卷积码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
卷积码的基本原理是在发送端对原始数据进行编码,并在编码后的数据中添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
卷积码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
块码是一种常用的信道编码技术,它可以在数据传输过程中检测和纠正错误。
块码的基本原理是将原始数据分成若干个块,并对每个块进行编码。
在编码过程中,会添加一些冗余信息。
接收端在接收到编码后的数据后,可以利用冗余信息来检测和纠正数据传输中的错误。
块码的优点是可以在数据传输过程中实时检测和纠正错误,从而提高数据传输的可靠性。
总之,信道编码技术是一种在数字通信中使用的重要技术,它可以提高数据传输的可靠性和效率。
常见的信道编码技术包括前向纠错编码、卷积码和块码等。
在实际应用中,需要根据具体的应用场景选择合适的信道编码技术,以提高数据传输的可靠性和效率。
面向5G的信道编码技术与挑战一、5G信道编码技术概述5G作为新一代移动通信技术,其高速率、低时延、大连接数的特性对信道编码技术提出了更高的要求。
信道编码技术在5G通信中扮演着至关重要的角色,它不仅关系到数据传输的可靠性,也是实现5G网络高效运行的关键技术之一。
1.1 信道编码技术的重要性信道编码技术通过在发送端添加冗余信息,以提高接收端对传输错误的检测和纠正能力。
在5G网络中,由于其高数据速率和低时延的特性,信道编码技术必须具备更高的纠错能力和更低的编码复杂度。
1.2 5G信道编码技术的关键特性5G信道编码技术的关键特性包括高纠错能力、低时延、高传输效率和良好的兼容性。
这些特性使得5G信道编码技术能够适应5G网络的多样化需求,包括增强型移动宽带(eMBB)、低时延高可靠性(uRLLC)和大规模机器类通信(mMTC)等场景。
二、5G信道编码技术的发展与应用5G信道编码技术的发展是与5G通信技术同步进行的。
随着5G网络的逐步商用,信道编码技术也在不断地演进和优化,以满足5G网络的高标准要求。
2.1 5G信道编码技术的发展5G信道编码技术的发展主要体现在编码方法的创新和编码效率的提升。
例如,极化码(Polar Codes)作为5G信道编码的核心技术之一,因其在控制信道上的优异性能而被3GPP采纳。
此外,LDPC(Low-Density Parity-Check)码和Turbo码等也在5G中得到了应用和发展。
2.2 5G信道编码技术的应用场景5G信道编码技术在不同的应用场景中有着不同的需求和优化方向。
例如,在eMBB场景中,信道编码技术需要支持高数据速率和高带宽的传输;在uRLLC场景中,信道编码技术需要具备极低的时延和高可靠性;而在mMTC场景中,信道编码技术则需要支持大量的设备连接和高效的数据传输。
三、面向5G的信道编码技术挑战与展望面向5G的信道编码技术面临着多方面的挑战,同时也拥有广阔的发展前景。
信道编码综述
信道编码是一种将信息源编码为特定格式以适应信道传输的技术。
在信息传输过程中,信号可能会受到干扰和噪声的影响,导致信息的失真或丢失。
信道编码通过在传输过程中添加冗余信息来增加信号的可靠性和纠错能力,从而减少错误率。
信道编码通常由两个阶段组成:编码和解码。
编码器将输入的信息源转化为编码序列,而解码器则根据接收到的编码序列还原出原始信息。
编码和解码的算法是信道编码的核心部分,常见的编码算法包括奇偶校验码、海明码、重复码、卷积码等。
奇偶校验码是最简单的信道编码方法,通过在每个数据位后添加一个校验位,以检测并纠正单个错误。
海明码则是一种更高级的编码方法,它可以检测并纠正多个错误,适用于高信噪比的信道。
重复码将每个数据位重复发送多次,以增加错误检测和纠正的能力。
卷积码则是一种更复杂的编码方法,它可以在较低的误码率下提供更高的数据传输速率。
除了以上的编码方法,还有其他一些更高级的编码技术,如Turbo码、低密度奇偶校验码(LDPC码)等。
这些编码方法采用了更复杂的算法和结构,可以在更差的信道条件下达到较低的误码率。
综上所述,信道编码是一种重要的信息传输技术,它通过增加冗余信息来提高信号的可靠性和抗干扰能力。
不同的信道编码方法适用于不同的应用场景,选择合适的编码方法可以有效提升通信系统的性能。
信道编码和差错控制之间有何区别?一、信道编码的基本概念信道编码是一种通过在数据传输中添加冗余信息来提高数据可靠性的技术。
其基本原理是将原始数据进行转换或编码,以增加冗余度,从而能够在数据传输过程中检测和纠正错误。
二、差错控制的基本概念差错控制是一种通过检测和纠正传输过程中产生的错误来确保数据的准确性的技术。
其主要目的是通过引入冗余信息,检测并纠正在传输过程中可能引起的错误,从而实现数据的可靠传输。
三、信道编码和差错控制的区别1. 目的不同:信道编码的主要目的是在数据传输过程中增加冗余信息,以提高数据的可靠性。
而差错控制的主要目的是通过使用冗余信息来检测和纠正传输过程中产生的错误。
2. 实现方式不同:信道编码通过对数据进行编码,将冗余信息添加到原始数据中,以增加信息的冗余度。
差错控制则是通过引入差错检测码或纠错码,对数据进行校验和纠正。
3. 错误处理方式不同:信道编码通常采用反馈机制,一旦出现错误,将自动进行纠错,降低了数据传输的错误率。
而差错控制则需要在接收端进行错误检测和纠正的操作,纠正功能是被动的,需要由接收端主动处理错误。
4. 效果不同:信道编码通过增加冗余信息,可以提高数据传输的可靠性,减少传输过程中出错的概率。
而差错控制可以检测和纠正传输过程中产生的错误,确保数据的准确性。
综上所述,信道编码和差错控制虽然都是为了提高数据传输的可靠性,但在目的、实现方式、错误处理方式和效果等方面存在明显的区别。
了解和掌握这些区别,有助于我们在实际应用中选择合适的技术来满足不同的需求。
通过信道编码和差错控制的结合应用,可以进一步提高数据传输的可靠性和稳定性,满足现代通信系统对数据传输质量的要求。
第九章差错控制编码主讲人:***主要内容信道编码的基本概念线性分组码循环码9.1 引言目的:改善数字通信系统的传输质量基本思路:根据一定的规律在待发送的信息码中加入一些人为多余的码元(冗余码,监督码),以保证传输过程可靠性,n=k+r。
任务:构造出以最小多余度代价换取最大抗干扰性能的“号码”又称差错控制编码信道编码的分类(1)按照信道编码的不同功能,可以将它分为检错码和纠错码。
(2)按照信息码元和监督码元之间的检验关系,可以将它分为线性和非线性码。
(3)按照信息码元和监督码元之间的约束方式不同,可以将它分为分组码和卷积码。
差错控制方式发发可以纠正错误的码(a) 前向纠错(FEC)收收发能够发现错误的码应答信号(b) 检错重发(ARQ)收可以发现和纠正错误的码应答信号(c) 混合纠错检错(HEC)1.检错重发方式--自动请求重传方式,ARQ(Automatic Repeat Request) •由发端送出能够发现错误的码,由收端判决传输中无错误产生,如果发现错误,则通过反向信道把这一判决结果反馈给发端,然后,发端把收端认为错误的信息再次重发。
•其特点是需要反馈信道,译码设备简单,对突发错误和信道干扰较严重时有效,但实时性差,主要在计算机数据通信中得到应用。
2. 前向纠错方式 前向纠错方式记作FEC(Forword Error Correction)。
发端发送能够纠正错误的码,收端收到信码后自动地纠正传输中的错误。
其特点是单向传输,实时性好,但译码设备较复杂。
纠错码发收3. 反馈校验方式•接收端将接收到的码元转发回发送端。
•发送端和源发送码逐一比较。
•发现不同——出错,重发•发现相同——正确,不重发•特点:简单,浪费资源4. 检错删除接收端收到的码元检查出错误后立即删除,并不要求重发。
适用存在大冗余量的通信系统。
9.2 差错控制编码的基本概念¾几个概念:¾码长n:码字中码元的数目;•在编码前先把信息序列分为k位一组(称为信息码),然后附加m位监督码,形成n = k + m位的码组。
信道编码分类信道编码是指在无线通信中,为了提高数据传输的可靠性和效率,将原始数据进行转换和编码的技术。
根据不同的编码方式以及应用领域的不同,信道编码可以分为多种分类。
1. 块编码块编码是一种将原始数据分成固定长度的块进行编码的方式。
每个块内的数据通过加入冗余信息来提高传输的可靠性。
当接收端接收到块数据时,可以通过冗余信息进行错误检测和纠正。
常见的块编码算法有汉明码、重复码和奇偶校验码等。
汉明码是一种常用的块编码方式。
它通过在原始数据中加入冗余比特,并计算校验比特来实现错误检测和纠正。
通过添加额外的校验比特,接收端可以根据这些信息检测出错误,并进行纠正。
汉明码主要用于单错误纠正或双错误检测。
重复码则是简单地将原始数据重复发送多次,接收端通过检测接收到的多个重复数据来确定正确的传输结果。
2. 卷积编码卷积编码是一种通过线性移位寄存器来处理连续的数据流的编码方式。
卷积编码具有内部状态,输入数据的每一位都会影响输出数据的多个位。
通过引入冗余信息,卷积编码可以在接收端进行错误检测和纠正。
卷积编码的编码过程包括输入数据与编码器的状态进行异或操作,同时输出编码数据和更新编码器的状态。
在接收端,可以使用Viterbi算法进行解码来恢复原始数据。
卷积编码在无线通信领域中被广泛应用,可以提供一定的抗干扰能力和容忍误码率。
3. 分组编码分组编码是将原始数据分成不同的组,并根据组内数据的特点进行编码。
每个分组可以独立地进行编码和解码,从而提高系统的吞吐量和传输效率。
常见的分组编码方式有低密度奇偶校验(LDPC)码和波束赋形编码等。
LDPC 码是一种典型的分组编码方式,可以通过稀疏图和迭代解码算法来实现高效的编码和解码。
波束赋形编码则通过将信号能量在空间上进行适当的分配,提高系统的接收性能和抗干扰能力。
4. 解扩技术解扩技术是一种信道编码的补充方式,用于在接收端解码已经编码的数据。
它通过对接收到的编码数据进行逆运算,还原出原始数据。
卫星通信中的信道编码技术在现代通信技术中,卫星通信已经得到了广泛的应用。
从卫星广播、卫星电视到卫星电话和上网,人们对卫星通信的依赖越来越高。
然而,卫星通信技术的跨越式发展离不开信道编码技术的支持。
信道编码技术为卫星通信提供了重要的技术支撑,它是卫星通信技术的核心之一。
一、信道编码技术的基本概念信道编码技术是指将数字信号通过编码方式变为特定的模拟信号,以便能够更好地传输和接收。
而信道则是指允许数据传输的通信媒介,例如卫星通信中的空间或者电磁波。
因此,信道编码技术的主要任务是,通过确定一种适当的编码方式,提高信道上的信噪比或减小码元错误率,从而提高数据传输的可靠性和正确性。
通信系统中的信道噪声和干扰是信号传输过程中最主要的问题,这些设备通常会对数据信号造成一定的混乱和干扰。
传统的解决方案是增大应用的信号强度,然而这种方法会造成信号所造成的能耗较大,而且可能会导致传输质量下降。
因此,信道编码技术出现了,信道编码技术不同于传统的通信方式,而是采用一种全新的抗噪声干扰的过滤方式,以提升信道上的信噪比或者减少信道中的随机误差。
二、卫星通信中的信道编码技术由于卫星通信的范围广泛,因此在卫星通信中,信道编码技术的应用也非常广泛。
具体来说,卫星通信中主要应用以下三类信道编码技术:卷积码、Turbo码和LDPC码。
卷积码是一种线性的、滑动的、系统性质的码,是一种广泛应用的编码技术。
它是通过将输入位逐一输入到移位寄存器中,产生一个编码的输出位的方式,来实现数据的编码。
卷积码在通信中被广泛使用,因为它具有非常好的反向误差控制(FEC)性能。
卷积码还可以通过改变移位寄存器的结构和对输入位进行不同的处理,实现不同的编码率,从而适应不同的通信需求。
Turbo码是一种反馈编码技术,它是一种复杂的编码方案。
Turbo码因其出色的性能而被广泛应用于卫星通信和数字移动通信系统中。
Turbo码的基本结构是由两个相同的编码器组成,数据被同时分配到两个编码器中,以实现编码和解码的过程。
信道编码分类信道编码是一种将数据信息转换成特定格式的编码方式,以提高数据的可靠性和传输速率。
根据不同的编码方式,信道编码可分为三大类:前向纠错码、回退纠错码以及分组编码。
下面将对这三类编码进行详细介绍。
一、前向纠错码前向纠错码(Forward Error Correction,FEC)是一种通过向待传输的数据中添加冗余信息来实现纠错的编码方式。
它在发送端将原始数据进行编码,生成纠错码,并将生成的码字一同发送给接收端。
接收端通过对接收到的码字进行解码,可以恢复出原始的数据。
1. 卷积码卷积码是一种经典的前向纠错码,它采用移位寄存器和异或运算来生成纠错码。
卷积码具有连续的编码特性,适用于串行传输和高误码率的信道。
常见的卷积码有卷积码的集结码(Convolutional Code Concatenated,CCC)和卷积码的交织码(Convolutional Code Interleaved,CCI)等。
2. 矩阵码矩阵码是一种通过矩阵运算实现纠错的编码方式。
常见的矩阵码有海明码(Hamming Code)、Reed-Solomon码等。
与卷积码相比,矩阵码具有更高的纠错能力和较低的译码复杂度。
矩阵码广泛应用于存储介质、数字电视等领域。
二、回退纠错码回退纠错码(Automatic Repeat reQuest,ARQ)是一种采用反馈机制来实现纠错的编码方式。
它在发送端将原始数据进行分组,并附加检测码,将分组数据发送给接收端。
接收端在接收到数据后,对数据进行校验,如果发现错误,通过发送请求重传的消息来要求发送端重新发送数据。
1. 奇偶检验码奇偶检验码是一种简单的纠错码,通过统计数据中二进制位的1的个数,来判断数据的奇偶性。
如果数据中1的个数是偶数,则在最后添加一个1,使得数据的奇偶性变为奇数;如果数据中1的个数是奇数,则在最后添加一个0,使得数据的奇偶性变为偶数。
2. CRC码CRC码是一种循环冗余校验码,通过多项式运算来生成校验码。
信道编码是什么?一、信道编码的基本概念信道编码是一种用于提高数据传输可靠性的技术手段。
在信息传输过程中,信号可能会受到噪声、干扰等因素的影响,导致传输错误。
信道编码通过在发送端对数据进行特定的编码处理,使得接收端可以根据编码规则对接收到的数据进行解码,从而提高数据传输的可靠性。
二、信道编码的原理和应用1. 原理:信道编码利用冗余编码原理,在发送端将原始数据编码成比特序列的形式,添加冗余信息,通过冗余信息的校验来检测和纠正传输错误。
常见的信道编码方式有哈密顿码、奇偶校验码、海明码等。
2. 应用:信道编码广泛应用于各种通信系统中,如无线通信、有线通信、卫星通信等。
它可以提高数据传输的可靠性,减少丢包率和信号失真,提高通信系统的性能和可靠性。
三、信道编码的工作原理1. 数据编码:发送端将原始数据按照编码规则进行转换和处理,生成一组比特序列,并添加一定的冗余信息。
编码规则通常是根据预定的算法或码表来进行操作,以保证编码和解码的一致性。
2. 数据传输:经过编码处理的数据通过信道进行传输,信道可以是有线或无线的媒介。
在传输过程中,信号可能会受到干扰、噪声等因素的影响,导致传输错误。
3. 数据解码:接收端接收到经过信道传输的数据后,根据预定的解码规则进行解码处理。
解码规则就是编码规则的逆过程,通过对冗余信息的校验和纠错,还原出原始数据。
四、信道编码的优势和挑战1. 优势:信道编码可以提高数据传输的可靠性和稳定性,有效减少传输错误。
它可以通过冗余信息的检测和纠正,实现数据的完整性和准确性。
2. 挑战:信道编码需要在编码和解码过程中消耗一定的计算和存储资源,增加了系统的复杂度和延迟。
此外,在传输过程中,信号可能会受到多种噪声和干扰的影响,需要选择合适的编码方式和参数来提高传输效果。
五、结语信道编码作为一种提高数据传输可靠性的重要技术,已经得到了广泛的应用。
它不仅可以提升通信系统的性能,也可以在各种数据传输场景中起到重要的作用。
为了提高信息在无线信道传输时的可靠性,提高数据在信道上的抗干扰能
力,TD一SCDMA系统采用了三种信道编码方案:卷积编码、Turb。
编码和不编
码。
不同类型的传输信道所使用的编码方案和编码率见表2.3。
编码后的比特数H和编码前的比特数I的关系可以表示为:
(l)编码率为1/2的卷积码:H=21+l6;
(2)编码率为1/3的卷积码:H=3卜24;
(3)编码率为1/3的Turbo码:H=31+12;
(4)不编码:H=I;
在数字通信中,信道编码是为了降低误码率、提高数字通信的可靠性而采取
的编码。
信道编码对改善传输质量起着至关重要的作用。
为了提高信息、在无线信
道传输的可靠性,TD一SCDMA系统主要采用了不编码、卷积编码和Turbo编码
三种信道编码方案。
卷积码是一种非分组码,通常它更适用于前向纠错法,因为其性能对于许多
实际情况常优于分组码,而且设备简单。
这种卷积码在它的信息码元中也有插入
的监督码元,但并不实行分组监督,每一个监督码元都要对前后的信息单元起监
督作用,整个编解码过程是一环扣一环,连锁地进行下去。
Tubro码可以是串行或并行级联码,一般用的并行式编码器。
串行式编码器
由外码、交织和内码串接而成,并行式编码器则由几个分量编码器、交织、打孔
复接构成,各分量编码器可以不同,也可以相同;可以用分组码,也可以用卷积
码,甚至级联码。
分组码适用于编码率高的情况,卷积码则相反。
译码器包括两
个软输入输出译码器、交织器和去交织器,构成第二级译码器的软输出反馈到第
一级输入,以改善判决,在迭代到一定次数后,经过硬判决获得结果。
在卷积码
的情况,译码器采用软输入软输出Viterhi算法。
最常用的是逐个符号最大后验
概率译码器。
误码率性能与迭代次数有关,迭代过程一般是收敛的。
交织器的设计是Turbo码的关键。
它的任务是把低码重的输入序列中连续的
零比特打散,使分量编码器的校验码有较大的码重,打孔是在两个编码器的输出
删去一部分,其目的是提高编码率。
如果编码时进行了打孔则在译码时要在打孔
位补O。
Tubro码的主要特色或优点主要有四个方面:(1)发端交织器起到随机化码
重分布的作用,使Turbo码最小重量尽可能大,即随机化编码的作用;(2)收端
交织器与相应的多次迭代译码起到随机译码的作用,同时对有突发错误的衰落信
道起到化突发为随机独立差错的作用;(3)级联编译码起到利用短码构造长码的
作用,再加上交织的随机性使得级联也具有随机性,从而克服了固定式级联渐进
性能差的缺点;(4)并行级联结构与最优的多次迭代软输入/软输出的BCJR算
法,大大地改善了译码的性能。
所以,对语音和低速信令采用编码效率高纠错能
力强的卷积编码,对数据采用编码效率高纠错能力强的Tubro码,其性能已逼近
Shannon极限。
Tubr。
码是编码领域里具有里程碑意义的方法。
由于Tubro码的优越性能,人们对它的各种性质进行了充分的研究,目前常
见的了bbro编码有Turbo卷积码(TCC)、Turbo乘积码(TPC)、低密度检验码
(LDPC)等,而且新的Tubro编码还在不断出现。
信道编码的研究及其在TD,SCDMA中的应用与实现肖学云北京邮电大学2006
Thrbo码的优点在于其低信噪比时的纠错性能,缺点在于其译码复杂度
和译码延时。
卷积码在无线通信系统中其性能很好的满足了语音通信的要求,它与Turbo
相比具有许多优点:编译码时延小,实现简单,并且卷积码的编码技术相当成熟,
是第二代移动通信系统中主要编码技术。
其最大的缺点是在数据业务时很难满足
高误码率的性能要求,所以在第三代移动系统中它主要用于语音通信(Turb。
码主
要用于数据业务)。