大型火电机组热工自动控制系统
- 格式:doc
- 大小:35.00 KB
- 文档页数:8
超临界大型机组热控自动化系统研究摘要:超临界机组是电力系统的重要组成部分,对电力系统运行能力有着直接影响。
本文结合某火电厂实际情况,针对660MW超临界燃煤机组进行热控自动化系统设计,探讨了超临界大型机组热控系统的运行特点,对系统结构、控制方式、分散控制系统设计、辅助系统设计等加以分析,并提出相应的热工自动化新技术,保证超临界机组热控系统运行的高效性与稳定性。
关键词:火电厂;超临界;大型机组;热控自动化系统引言:为相应国内经济发展及电力市场发展需求,火电厂机组呈现出高参数、大容量的发展趋势。
超临界火电机组指的是容量600MW、主蒸汽压力在24~25MPa范围内的机组锅炉,目前我国对超临界机组的研究已经取得了显著成果。
超临界大型机组运行有利于提高热效率,而其运行效果很大程度上受到热控技术的影响,为适应超临界机组运行过程的复杂环境,有必要加强热控自动化技术研究,降低超临界机组热控难度。
一、工程概况某火电厂现已建成2*660MW超临界燃煤机组,为满足其运行要求,现对其进行扩建,预计在现有基础上再完成3*660MW超临界机组的建设。
为提高设备工作效率,推动整体电力生产过程的智能化、合理化,火电厂决定根据实际运营状态对热控自动化系统进行优化升级,并对系统单元、硬件、逻辑等方面展开深入分析,促进整体系统使用性能的提升二、超临界大型机组锅炉热控特点超临界机组与亚临界机组在工艺设计和锅炉结构上有着明显差别,因此在进行热控系统设计过程中,应更多考虑其热力运行特点,以满足其大容量、高参数的运行要求。
具体来看,超临界机组热力控制的特点主要包括以下几方面。
首先,超临界机组运行过程中不涉及汽包环节,给水加热、水蒸发、蒸汽过热的过程均是一次性实现的。
基于不同工况,机组运行可在亚临界和超临界状态下转化,因此水蒸发点也会游走于不同加热段。
因此,为将水、汽温度和湿度控制在合理范围内,应对燃水比、燃风比等参数进行合理调节。
其次,由于超临界机组为汽水一次循环模式,省略了汽包储能环节,因此一定程度上缩减了其锅炉蓄能量,同时也达到加快循环速度、缩短工艺周期的作用。
电厂热工自动控制系统电厂热工自动控制系统单元机组的自动调节系统¾ ¾ ¾ ¾ ¾机组功率-转速调节系统汽温控制系统(过热、再热)水位控制系统(凝汽器、除氧器、汽包)燃烧控制系统(燃料、风量、炉膛压力及一、二次风配比控制)其它单回路控制系统第一部分汽温控制系统一、过热汽温控制系统1. 任务温度过高,可能造成过热器、蒸气管道和汽轮机的高压部分金属损坏;温度过低,会引起电厂热耗上升,并使汽轮机轴向推力增大造成推力轴承过载,还会引起汽轮机末级叶片蒸汽湿度增加,降低汽轮机内效率,加剧对叶片的腐蚀控制要求:最大控制偏差不超过±10℃,长期偏差不超过±5℃规定要求:2. 静态特性过热器的传热形式、结构、布置将直接影响其静态特性。
大容量锅炉一般采用对流过热器、辐射过热器和屏式过热器交替串连布置。
过热器出口温度对流式3. 动态特性蒸汽流量变化、热烟气的热量变化、减温水流量变化相同点:均为有迟延的惯性环节辐射式不同点:特性参数有较大区别蒸汽流量变化扰动下,汽温的迟延和惯性较小烟气扰动与蒸汽流量扰动相似,汽温反映较快减温水流量扰动由于管道较长,汽温反应较慢4. 控制方案串级控制导前微分控制过热器减温器出口温度TE4001TE4025末级过热器出口温度TE4024LDC指令过热器减温水阀控制逻辑静态特性:纯对流特性动态特性:更容易受负荷、燃烧工况等干扰的影响,温度变化幅度较大调节手段:烟气再循环、尾部烟道挡板、喷燃器摆角、喷水减温烟气再循环:尾部烟道烟气抽至炉膛底部,降低炉膛温度,减少炉膛的辐射传热,从而提高炉膛出口烟气的温度和流速。
使再热器的对流传热加强,达到调温的目的。
优点:反应灵敏,调温幅度大。
缺点:系统结构复杂尾部烟道挡板:尾部烟道被分割为两部分,主烟道中布置低温再热器,旁路烟道中布置低温过热器,烟气挡板布置在温度较低的省煤器下面。
优点:结构简单,操作方便缺点:调温灵敏度差,幅度小,挡板开度与汽温不成线性关系。
火电厂热工自动化DCS控制系统的应用及发展分析摘要:热工自动化控制是火电厂基本的发展趋势。
随着现代信息技术不断进步,热工自动化控制与我国电力发展之间的联系日益紧密,并已成为我国火电厂生产能力的主要推动力量。
并且火电厂热工仪表的自动化控制是火力发电厂系统中的重要组成部分,它在应用中极大的提高和促进了设备的利用性和可靠性。
本文概述了火电厂热工自动化,简述了火电厂热工自动化的应用现状,对DCS应用发展进行了探讨分析。
关键词:火电厂;热工自动化;DCS系统;应用发展引言随着我国电厂机组容量的提升以及发电技术的进步,火电厂发电逐渐在我国供电系统中占据重要位置。
目前,电厂热工自动化技术已经利用新型自动化技术取得了巨大发展。
主要表现在两个部分,一部分,在机组中占据主要地位的DCS 系统使得原有控制结构出现巨大改变,另一部分,随着火电厂运营系统及总线技术的发展,热工自动化控制系统的完善也充满生命力。
1电厂热工自动化的概述电厂热工自动化指的是在不需要人工控制或者无人直接参与的情况下通过自动化仪表和自动化控制装置完成电厂热力参数的控制与测量,对各种信息的处理都能够实现自动化控制、自动化报警和自动保护要求。
热工自动化控制在电厂的应用使得热工设备安全得到了充分保障,大大降低了电厂工作人员的劳动强度,还提高了机组的工作效率和经济性,从而改善了工作条件和工作环境。
它的有效使用可以大大提高现代化企业发展水平。
2火电厂热工自动化的意义火电厂热工自动化技术顾名思义,它就是一种在火电厂热量发电过程中,人们采用相应的科学技术,使得发电设备的控制系统,在没有技术人员参与的情况下,可以自行控制的技术,从而对火电厂发电设备起到测量、控制、检测等作用。
目前在我国火电厂发展的国中,热工自动化技术应用得比较广泛,其意义主要体现在以下几个方面2.1保证设备和人身安全发电机组在运行的过程中,如果出现异常的情况,人们就可以通过自动化技术来对发电机组进行及时、全面的控制,这样就大幅度的降低了机组异常造成的损失,保障人们操作人民院的人数安全。
关于火电厂热工控制系统自动化的探究作者:杨磊来源:《华中电力》2014年第04期【摘要】火电厂热工自动控制系统是火电厂运营的核心系统,提高这一系统的可靠性,对火电厂起着十分重要的作用。
火电厂管理人员要不断地优化热工控制系统,提高电厂运营效率,保障火电厂的安全运营。
【关键词】火电厂;控制系统;自动化;热工一、火电厂热工自动控制系统简述控制系统涉及机械设备安全运行问题,是火电厂开展管理核心问题。
自动控制系统主要包含机炉协调控制、锅炉燃料量控制、再热蒸汽温度控制等。
系统运行同送风机协调系统息息相关。
这是个复杂系统,当系统运行时,需要保障硬件设备属于正常运行模式下。
检查人员要做好设备检修工作,及时查看设备故障,提升设备运行安全性。
二、火电厂热工自动控制系统结构组成1、辅助系统辅助系统在该自动控制系统中,发挥出重要作用,火电厂热工自动控制系统融入辅助系统,主要为了实现无人监控而布控。
该系统主要由交换机、控制器以及人机交互通口组成,当设备运行时,贯穿于整个控制系统中,最终实现全自动化控制目的,提升设备运行效率。
2、分散控制系统分散控制系统在整个自动控制系统中属于核心部分,主要由两台分散机连接组成,其中由网络控制连接起来。
在每个设备节点上,安置上实时监控系统,保障操作人员数据传输安全。
另外,每个机组操作台一般都会设置上独立的操作站,并且由专人实时监控,预防设备一旦出现故障,能够保障 DCS 及时停机,确保安全生产。
三、火电厂热工自动控制系统可靠性的探究1、优化软件随着社会不断发展,我国火电行业快速发展,社会发展对电力需求量逐渐提高,火电市场竞争力强。
火电企业想要在竞争激烈的市场中占领一席之位,需要具备科学技术,运用高效率的自动控制系统。
自动控制系统能够保障企业生产安全性,能够提升企业社会经济效益,推动企业逐渐稳健发展。
众所周知,控制系统保障火电厂高效生产和经营,然而,这些控制系统涉及到诸多软件。
这些软件数量大、管理难度大,这些问题存在使得火电厂生产效率下降,影响控制系统发挥实际效应。
浅谈火电厂自动控制系统的重要性摘要:随着社会的进步,火电厂自动控制系统取得了显著的成效,但是仍然存在一些挑战,这些挑战严重制约了火电厂自动控制系统的发展,并且影响了火电厂的经济效益。
因此,为了使火电厂自动控制系统能够更好地应用,我们必须坚持实施具体的实践方针,对自动控制系统进行全面的评估和测评,以确保火电厂自动控制系统的可靠性和可操作性。
为了充分利用自动控制系统的潜力,我们需要及时制定有效的应对措施,并在实际操作中不断改进和完善。
关键词:火电厂;热工自动化控制;应用随着技术的进步,火电厂的自动控制系统已经成为火电厂发展的关键因素。
它可以有效地避免浪费,同时也能够提升火电厂的经济效益。
通过采用先进的自动控制技术,火电厂可以实现更加高效、节能的运行,从而实现更加可持续的发展。
通过使用先进的自动控制技术,我们可以精确地调节送风量,从而有效地减少污染并提高发电效率。
1火电厂热控自动化保护装置检修与维护的意义火电厂的热控系统必须具备高效的自动化技术,这种技术在处理各种设备的故障时发挥着重要的作用。
通过使用这种技术,我们能够快速识别和处理各种设备的异常情况,可以大大提高系统的效率,减少设备的破坏,减少对操作人员的影响。
当主要设施和附属设施没有受到影响时,热控自动化保护设施会处于预先准备的状态;但是,一旦该设施启用,就表示其可能受到了损害,因此,该设施会被激活,从而使其正常启动。
当热控自动化保护设备受到外界因素的干扰,它们就可能无法有效检测并解决主要设备及其他附加设备的异常情况,这可能对整个系统造成严重的破坏。
此外,由于各个设备的协调配合,任何一个设备的缺陷都可能引起全局性的后果,甚至可能造成巨大的财务损失。
为了保证火电厂的运行安全和高效,我们应该积极采取措施来预防和减少热控自动化保护设备的损坏。
因此,我们应该对其进行经常性的检查和维护,以保证它们的安全。
此外,我们还应该努力改善它们的功能,并严格执行故障排除和恢复措施,以保证它们的可靠和稳定。
火电厂热工自动化DCS控制系统的应用浅析摘要:目前,国内新建大型火力发电厂均采用“主辅一体化”的设计理念,越来越多的辅助车间采用DCS控制系统进行控制。
火力发电厂的辅助车间应用DCS取代可编程逻辑控制器(PLC),简化了备品备件库,为日常维护带来了极大的便利。
本文章从火电厂热工自动化内涵入手,分析了火电厂热工自动化DCS控制系统的应用,以期为业内相关工作人员提供一定的参考。
关键词:火电厂;热工自动化;DCS控制系统;应用浅析引言当前火电厂的热控系统主要是利用DCS系统对汽轮机、各类仪表、锅炉装置,以及相关的介质管道等进行自动控制。
DCS系统根据机组实际运行要求,采用分级子系统的形式对火电厂的设备进行自动化控制,确保火电机组安全运行,其主要分为现场控制单元和操作站单元。
在现场控制单元中,各个支路和总线的物理连接是通过插板箱来实现的,这样也就实现了子系统和控制中心的信息通信。
现场控制单元中的微机保护系统根据火电厂设备运行的实际需求,配置相应的CPU插件、二次回路电源、I/0输入输出接口插件、通信插件等。
操作站单元主要用来提供人机交互操作接口和显示子系统单元设备的运行状况,并显示其运行数据。
设备运行参数的调整、设备工况报表的打印,以及异常工况的预警等都需要利用操作站来完成。
1火电厂热工自动化内涵火力发电厂分散控制系统(DistributedControlSystem,简称DCS)是一种基于计算机网络技术的工业自动化控制系统。
它将整个火力发电厂的各个子系统(如锅炉、汽轮机、发电机等)进行集中管理和控制,实现对生产过程的全面监控和调度。
DCS系统具有系统可靠性高、功能强大、灵活性好等特点,被广泛应用于火力发电厂的自动化控制领域。
火力发电厂分散控制系统是指由多个控制单元组成的分布式控制系统,用于协调和管理火力发电厂各个子系统的运行。
火力发电厂分散控制系统是一个大型的自动化控制系统,其主要特征包括:1)分布式结构:火力发电厂分散控制系统是由多个控制单元组成的,这些控制单元通过网络连接起来,形成了一个分布式的控制系统。
火电厂热工自动化DCS控制系统的应用及发展分析发布时间:2021-11-25T02:12:48.094Z 来源:《工程管理前沿》2021年20期作者:廖玉龙[导读] 对于电厂而言,作为电厂的核心设施,热控自动化系统可以直接决定电厂是否能安全稳定运行。
保障电厂自动化系统能正常运行对于电厂的日常运行非常重要,也是电厂工作中的一项重要工作。
廖玉龙新疆华泰重化工有限责任公司新疆维吾尔自治区830000摘要:对于电厂而言,作为电厂的核心设施,热控自动化系统可以直接决定电厂是否能安全稳定运行。
保障电厂自动化系统能正常运行对于电厂的日常运行非常重要,也是电厂工作中的一项重要工作。
现如今DCS锅炉系统的自动控制在自动控制系统运行当中占有着非常重要的一个地位。
在工业自动化控制领域当中,DCS系统得到了普遍的应用,并且其应用范围正在逐步地扩大。
DCS系统实际上就是对局域网络进行更好的利用,使网络充分发挥其实时性以及可靠性。
基于此本文针对火电厂热工自动化DCS控制系统的应用进行分析,仅供参考。
关键词:热控自动化系统;电厂;稳定性研究中图分类号:TM76 文献标识码:A引言自动化仪表(DCS)是一种应用十分广泛的工具,但是,受到作业环境比较复杂、运行时间较长、自然老化等因素的影响,DCS不可避免地会出现一些故障,影响DCS的正常运行,且会给安全生产带来一定的威胁。
基于此,DCS运行过程中,应进行预防性维护,做到防患于未然。
1 热控自动化控制设备技术升级与创新相较于火电厂使用的控制和报警体系来说,热控自动化装置有着明显差异,此系统主要目的在于保证后台可以为火电厂各个环节建立保护机制,同时提高火电厂供电的稳定性,并降低操作人员的风险系数。
因此,整套系统应当将控制模块和保护体系作为基础。
当前热控自动化设备不断融合各项先进智能技术,为火电厂运行创造良好环境。
不仅如此,该设备也能够自主诊断异常,将事故影响范围控制在最小区间,避免安全问题给核心机组造成难以修复的损害。
热工自动控制系统一、教材热工控制系统华北电力大学边立秀等编中国电力出版社http:〃61.155.6.178/zyf密码:200803Y二、主要参考书0:超超临界机组控制设备及系统肖大雏主编化学工业出版社2007年1.陈来九:热工过程自动调节原理与应用第三章第七章2 .电子书:热工过程自动控制杨献勇主编清华大学出版社3.《热工自动控制系统》华北电力大学李遵基4.《热工自动控制系统》东北电院张玉铎、王满稼三、课程主要内容1 •简单介绍单回路反馈系统(复习)(1)基本调节作用(2)工业调节器(3)调节器参数的整定2.重点介绍电厂热工过程自动控制系统,包括汽温、给水、燃烧自动控制3•介绍单元机组负荷(协调)控制系统(直流锅炉自动控制系统以及单元机组给水全程控制系统) 三、考核方法1.期末考试+平时成绩。
2.平时成绩包括:作业,回答问题,出勤,平时答疑,约占10%第一章概述§ 1-1火电厂自动控制的发展控制方式大致经历了三个发展阶段:1、独立控制:机、炉、电各自独立地进行控制,机、炉、电及重要的辅机各自设置一套控制表盘,它们之间无联系。
调节仪表均为大尺寸的较笨重的基地式仪表,由运行人员进行监视与控制。
国外在20-40年代,我国50年代建造的火电厂属该类型。
2、集中控制:40年代以后,由于中间再热式汽轮机的出现,使锅炉和汽轮机之间的关系更加密切,为了便于机炉的协调运行和事故处理,将它们的控制盘集中安装在一起,对机炉实行集中控制。
集中控制的初级阶段,调节仪表采用电动或汽动单元组合仪表。
50年代后,采用组件组装仪表或以微处理机为核心的数字调节器,对机炉进行集中控制。
3、集散控制系统:这里指火电厂生产过程实现最优控制与速度自动化相结合的多级计算机控制, 60年代至今,国际上火电厂都朝着这一方向发展,近几年从国外引进的火电厂机组已达到这一水平。
N-90 天生港,利港,石洞口Infi — 90Proco ntrolP 合肥二电厂 Mod-300 北仑港 WDPF 望亭利港 MAX1000 外高桥电厂TDC3000 是霍尼维尔(Honey wel)公司的产品。
热工自动控制理论与技术牛玉广北方联合电力公司华北电力大学2006年7月目录第一章热工自动控制基础1.1 自动控制的基本概念1.1.1过程控制、程序控制与运动控制●过程控制:对流程工业生产过程的控制,广泛应用于电力、冶金、石化、轻工等行业。
●程序控制(顺序控制或开关控制):根据预先规定的顺序和条件,使生产工艺过程中的设备自动地依次进行操作。
非流程工业控制(制造业等)。
●运动控制:机器人控制等。
1.1.2 过程控制系统的组成在无人直接参与下可使生产过程或其它过程按期望规律或预定程序进行的控制系统。
给定值图1-1典型的输出反馈控制系统典型的控制系统结构如图1-1所示。
它是由控制对象、测量环节、调节器和执行器构成输出反馈控制系统。
当图中控制器由模拟仪表实现时,称为模拟(连续)控制系统;当控制器由计算机实现时,则称为计算机控制系统。
由于计算机内部使用数字量进行数据的存储、运算与处理,而生产过程输入输出多为连续模拟信号,因此,计算机控制系统中首先要解决计算机与生产过程间的信号转换问题。
实现这一功能的器件是多路开关、采样保持器、模数转换器、数模转换器和保持器,控制器则由计算机实现。
典型的输出反馈计算机控制系统结构如图1-2所示。
图1-2输出反馈计算机控制系统目前普遍采用DCS实现过程控制,其本质也是一个计算机控制系统。
生产过程执行器传感/变送器输出反馈控制是状态反馈控制的特例。
计算机的使用使实现状态反馈控制成为可能,从而为现代控制理论应用于生产过程控制创造了条件。
状态反馈计算机控制系统的典型结构如图1-3所示。
图1-3状态反馈计算机控制系统控制系统的主要组成部分说明如下:一、控制对象控制对象是指所要控制的装置或设备,如风机、水泵、阀门及锅炉、汽轮机、发电机等。
在控制系统分析与设计中,控制对象以数学模型形式来描述,其一般形式为微分方程。
当然,对于复杂控制对象,其完整准确的数学模型是难以获得的,工程上往往使用经过简化的、能满足控制要求的近似模型。
论提高火电厂热工自动控制系统可靠性的有效措施摘要:本文从分析了我国目前火电厂热工自动控制系统的特性及组成部分,针对其组成部分的特点,结合自身的工作经验研究探讨提高火电厂热工自动控制系统可靠性的策略。
不断的提升火电厂在国民经济中的地位,为我国的供电关键词:火电厂;热工自动控制;系统;可靠性1引言随着现代建设步伐的加快,火电厂供电已经成为了我国的主要的供电方式之一。
火电厂成为现在主要供电企业的一份子有着其自身的优势,即火电厂的热工自动控制系统有着高强度的可靠性,实时确保了火电厂中各类机械设备高效、安全、稳定的运行,而且电力行业的发展在很大的程度上带动了国民经济的发展。
2火电厂热工自动控制系统火电厂热工自动控制系统从它的字面上来看不是特别的难以理解,即指在火电厂的运营过程中运用计算机软件对其进行自动化控制。
这个所谓的自动化软件控制着整个火电厂的各大设备故在火电厂运营的整个过程中占据了十分重要的地位。
3火电厂控制系统的组成火电厂自动化控制系统根据整个系统运行的功能不同,可以分为以下几个部分:分散控制系统,辅助控制系统,监控系统。
每个系统各司其职,它们的正常工作与否都将极大的影响着火电厂的热工自动化控制系统的可靠性。
一,分散控制系统。
只要在火电厂有丁点工作经验的工作人员都应该知道,在火电厂的每个组件中都自带了一个分散控制系统,它的功效就是便于火电厂的管理人员对火电厂的机组进行控制,解决火电厂在正常的运营过程中产生的不被巡视人员发现的微小故障问题,降低因机组故障给火电厂带来的经济损失;二,辅助控制系统。
这个系统可以在无人的监视的情况下自动运行,设置该系统的初衷就是为了防止当主系统出现故障的时候,造成其它系统受其影响;三,监控系统。
一般火电厂热工自动控制监控系统包括两个部分即实时监控系统和视频网络监控系统,实时监控系统就是火电厂整体设备在正常运行的情况下对其进行实时的监控,火电厂运行时产生的任何问题都可以得到及时的反馈,当出现故障时会及时的发出警报通知。
大型火电机组热工自动控制系统
一、自动化
支撑:理论与技术
从技术装置来看发展:
1.三、四十年代基地式仪表
2.五、六十年代单元组合仪表
3 .七十年代计算机控制
国外,五十年代开始试验计算机控制
(1)DDC控制
(Direct Digital Control直接数字控制)
(2)SCC控制
(Supervisory Computer Control监督计算机控制)
(3)DCS控制
(Distributed Control Systems分散控制系统)
(4)FCS控制
(Fieldbus Control System现场总线控制系统)
理论上看控制发展:
五十年代以前,
理论基础是传递函数(经典控制),以简单控制系统为主。
六十年代,以状态空间分析方法为基础,现代控制理论应用。
由于以线性系统为前提,但实际应用效果不好。
第三代控制理论出现
针对机理复杂,精确数学模型难以建立。
理论上看控制发展:
以专家控制系统、神经网络控制和模糊控制为主。
典型应用:
MAX Power 1000+ 以专家系统,神经网络进行生产过程设备故障分析和性能分析。
XDPS分散控制系统(新华控制工程公司)加入了模糊控制模块。
OVATION分散控制系统(西屋)提供模糊控制、神经网络算法模块。
二热工自动化
自动检测
顺序控制
自动保护
自动调节
我国机组近年发展:
300MW→600MW亚临界→ 600MW超临界
→1000MW( 660MW)超超临界
一般 600 MW机组单元机组和公用系统I/O 测点数量一般约8000~9000点;控制设备数量约为 750~ 900 个。
( DCS 系统) 1000MW超超临界机组单元机组和公用系统 I/ 0 测点数量达到 12000 点左右,控制设备数量约为 1100~1400 个,模拟量控制回路数量和600MW机组无明显差别。
三、控制系统构成
控制系统四个部分:被控对象、检测变送、控制器、调节机构
控制系统分类
结构分:单变量控制系统、多变量控制系统
工艺参数分:过热汽温控制系统、主蒸汽压力控制系统
任务分:比值控制系统、前馈控制系统
装置分:常规过程控制系统、计算机控制系统(DCS、FCS)
闭环分:开环控制系统、闭环控制系统
控制系统的分类
按给定值的不同来分类:
1.定值控制系统
2.随动控制系统
3.程序控制系统
四、控制性能指标
四个常用指标
(1)衰减比和衰减率
(2) 最大偏差和超调量
(3)调节时间(控制时间)
(4)余差(静态偏差)
五、被控对象动态特性
1、多输入单输出的被控对象
2 多输入多输出系统
热工对象一般特性
对象动态特性具有以下一些特点。
(1)被调量的变化是不振荡的
(2)被调量有迟延和滞后特性
(3)自平衡能力和无自平衡能力
(4)描述对象的动态方程的参数有:放大倍数K、时间常数T、迟延时间τ。
六、控制策略
1、PID控制
proportional—integral—derivative control
PID控制规律:
(1)原理简单,使用方便。
(2)适应性强。
(3)鲁棒性强。
比例控制(P控制)
(一)控制规律:
积分控制(I控制)
(一)控制规律:
消除余差,但稳定性变差(相对纯P控制)
(三)积分时间对过渡过程的影响(纯I控制)
(四) PI控制
I控制响应慢,工程上很少有单独使用,一般都是PI控制。
微分控制(D控制)
(一)控制规律
实际PD:
(三) PID.
2、其它控制策略
(1)自适应控制
(2)预测控制
七、控制系统结构
1、单回路反馈控制系统
时间常数和迟延时间对控制质量的影响
1、干扰通道时间常数Td和迟延τd的影响。
控制通道T和τ对控制质量的影响
T对控制质量的影响
控制通道时间常数太大,系统反映速度慢,工作频率下降,过程的持续时间较长。
T太小,反应过于灵敏,容易引起系统振荡。
τ迟延对控制质量的影响
测量元件和变送器特性对控制质量的影响
执行机构特性对控制质量影响
1 调节阀在联管路中
单回路控制系统的参数整定
整定基础
根与响应关系
2、串级控制系统
(3)提高了系统的工作频率
3、前馈控制系统
反馈控制:总是落后于干扰作用,是不及时控制。
前馈-反馈的优点:
(1)减化前馈控制系统,
(2)降低了对前馈调节器精度的要求,
(3)控制精度高,控制及时,显著提高控制质量。
前馈——串级控制
另一种形式的前馈:针对(1)随动系统,R变化;(2)对象时间常数大
典型应用:燃料控制系统,协调控制系统,前馈形式是动态的微分形式。
4、比值控制系统
单闭环比值控制系统
双闭环比值控制系统
5、解耦控制系统
解耦形式
1、串联补偿法
2、前馈补偿法
具体应用
单元机组协调控制、磨煤机、燃水比控制。