高层建筑筏形基础设计
- 格式:ppt
- 大小:11.98 MB
- 文档页数:89
高层建筑箱形与筏形基础的设计计算箱形基础常用于大型高层建筑的承台基础,其结构形式简单,抗震性能好。
下面是箱形基础的设计计算步骤:1.确定基础尺寸:根据建筑物的荷载分布和基础的安全性要求,确定基础的尺寸。
基础尺寸的设计应考虑地基土质、荷载大小以及盖板的尺寸。
2.土质分析:对基础周围的土质进行测试和分析,确定土质承载力以及压缩特性等参数。
3.荷载计算:根据建筑物的荷载和盖板大小,计算基础需要承受的最大荷载。
4.稳定性计算:根据基础尺寸、荷载和土质参数,进行基础的稳定性计算,包括抗倾覆稳定性和抗滑稳定性等。
5.受压区域计算:根据荷载和土质参数,计算基础底面受压区域的分布及大小。
6.深度确定:根据土质参数、荷载和基础尺寸等,确定基础的深度。
一般来说,基础应达到稳定土层或能承受荷载的土层,以确保基础的稳定性和安全性。
7.钢筋配筋计算:根据基础的荷载和尺寸,计算基础需要的钢筋数量和排布方式,并进行钢筋的配筋计算。
8.浇筑施工:根据设计要求进行基础的浇筑施工,包括混凝土浇筑、钢筋布设和养护等。
筏形基础常用于大型高层建筑的承台基础,其结构形式为一层或多层承台(以较大的面积分布在地基上),能够均匀分散荷载并增加地基的承载能力。
1.确定基础尺寸:根据建筑物的荷载分布和基础的安全性要求,确定筏形基础的尺寸。
筏形基础的面积应根据建筑物的荷载进行计算,使得基础能均匀分散荷载并增加地基的承载能力。
2.土质分析:对基础周围的土质进行测试和分析,确定土质承载力以及压缩特性等参数。
3.荷载计算:根据建筑物的荷载,计算筏形基础需要承受的最大荷载。
4.不均匀沉陷计算:根据基础尺寸、荷载和土质参数,计算筏形基础受力时引起的不均匀沉陷,以确保基础的稳定性和安全性。
5.稳定性计算:根据基础尺寸、荷载和土质参数,进行筏形基础的稳定性计算,包括抗倾覆稳定性和抗滑稳定性等。
6.钢筋配筋计算:根据基础的荷载和尺寸,计算基础需要的钢筋数量和排布方式,并进行钢筋的配筋计算。
浅谈高层建筑筏板基础的设计丁少润程少彬【文章以某工程为例,对高层建筑基础的选型和平板式筏板基础的结构设计进行介绍,并着重阐述运用上部结构、基础和地基共同作用的分析原理,对筏板基础内力进行分析的有限元法,以供参考。
】1概述建筑物采用何种基础型式,与地基土类别及土层分布情况密切相关。
工程设计中,常遇到这样的地质情况,地下室底板下的岩土层为风化残积土层、全风化岩层、强风化岩层或中风化软岩层,因此,有可能采用天然基础。
高层建筑地下室通常作为地下停车库,建筑上不允许设置过多的内墙,因而限制了箱型基础的使用;筏板基础既能充分发挥地基承载力,调整不均匀沉降,又能满足停车库的空间使用要求,因而就成为较理想的基础型式。
筏板基础主要构造型式有平板式筏板基础和梁板式筏板基础,平板式筏板基础由于施工简单,在高层建筑中得到广泛的应用。
本文以广州白云区某住宅楼的基础设计为例,拟对高层建筑基础的选型和筏板基础的设计方法进行介绍。
2基础选型2.1工程地质概况本工程设地下室1层,塔楼地上20层,采用剪力墙结构。
根据岩土工程勘察报告,场地土层分布自上而下分别为:①人工填土层,厚度0.5m~3.0m;②冲洪积土层,厚度0.60m;③可塑状残积土层,厚度1.6m~8.30m,标贯击数为8~16击;④硬塑状残积土层,厚度2.2m~12.0m,标贯击数为18~29击;⑤岩石全风化带,厚度2.40m~8.60m,标贯击数为30~46击;⑥岩石强风化带,厚度0.60m~12.0m,标贯击数为50~65击;⑦岩石中风化带,厚度1.10m~2.13m,天然单轴极限抗压强度24.55MPa~49.55MPa;⑧岩石微风化带,厚度1.0m~1.60m,天然单轴极限抗压强度43MPa~120MPa。
2.2基础结构方案选择高层建筑常用的基础结构型式为桩基础,本工程岩土工程勘察报告中建议基础型式采用预应力管桩基础或人工挖孔桩基础。
①采用预应力管桩基础,以强风化花岗岩为桩端持力层,由于场地基岩埋深相对较浅,地下室开挖后,最短有效桩长仅为2m左右,且场地局部地段在残积层中存在中风化岩孤石,对预应力管桩施工带来困难。
浅谈筏板基础设计的方法及注意事项摘要:建筑物地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。
而筏板基础能很好的将地基承载力充分的发挥的同时,又能使沉降不均匀得到良好的调整,因此筏板基础被广泛应用于诸多的结构类型中。
本文就筏板基础设计的方法及筏板基础设计中的相关注意事项进行了一些浅析。
关键字:筏形基础;筏形基础设计;筏板;基础随着我们国家经济水平的不断提高,近些年来,国家的建筑行业也蓬勃发展起来。
建筑设计的推陈出新和建筑使用性能的不断扩大,无论是从建筑的数量上还是质量上都对建筑行业提出了新的要求。
筏板基础也理所当然的成为人们关注的对象,越来越多的被人们所认识和研究。
筏板基础从传统的应用于大型高层的建筑开始,到现今在一些纷繁复杂的小型建筑中也得到重视,其地位和分量也不断增加,所以,我们非常有必要对筏板基础设计的方法进行探讨。
一、筏板基础由于建筑物的地基土的类别和地基土层的分布情况决定了建筑物所采用哪一种类型的基础形式。
而筏板基础不仅充分发挥了地基的承载力,也使沉降不均匀得到良好的校正,这也是筏板基础能够广泛应用于诸多结构类型之中的原因。
筏板基础刚度大,整体性好,根据上部结构形式划分,筏板基础的构造形式主要可分为两种:平板式筏板基础和肋梁式筏板基础。
在柱网相对较大的大型商业建筑施工中,往往建筑的上部所要承受的荷载最大,所以我们通常会选择肋梁式筏板基础。
而平板式筏板基础则被广泛的应用在小型公共建筑或者是低层住宅建筑。
而近些年来,平板式筏板基础因其施工简单的特点,在高层建筑中也得到广泛的应用。
高层建筑的地下室通常被拿来建造地下的车库,因为此,这样的建筑是不被允许过多的设置内墙的,从而对箱型基础,限制了其使用。
而筏板基础因其能满足停车库对空间的使用要求,而成为较理想的基础型式。
二、筏板基础埋深及承载力的确定在城市区域,基础筏板的预埋深度取决于所需建造的建筑物地下室的层数多少和每层的高度。
高层建筑桩筏基础共同作用机理及优化设计问题陈翰发布时间:2021-08-04T06:44:19.503Z 来源:《房地产世界》2020年20期作者:陈翰[导读] 高层建筑在施工建设的过程中为了保障安全需要对建筑基础进行设计与优化,强调合理的基础形式采用,这对于建筑安全有突出现实意义。
结合目前的高层建筑施工实践可知桩筏基础是大面积利用的建筑基础形式,其能够实现高层建筑地基部分、上部结构的相互作用,从而保障高层建筑的运行稳定。
文章结合高层建筑工程实践对高层建筑的桩筏基础共同作用机理和设计优化进行分析明确,旨在为目前的工程实践提供指导与帮助。
陈翰南京市凯盛建筑设计研究院有限责任公司第二分公司江苏南京 210000摘要:高层建筑在施工建设的过程中为了保障安全需要对建筑基础进行设计与优化,强调合理的基础形式采用,这对于建筑安全有突出现实意义。
结合目前的高层建筑施工实践可知桩筏基础是大面积利用的建筑基础形式,其能够实现高层建筑地基部分、上部结构的相互作用,从而保障高层建筑的运行稳定。
文章结合高层建筑工程实践对高层建筑的桩筏基础共同作用机理和设计优化进行分析明确,旨在为目前的工程实践提供指导与帮助。
关键词:高层建筑;桩筏基础;共同作用机理;优化设计高层建筑的安全性影响相比于中低层建筑更大,所以在高层建筑施工建设的过程中需要更加重视安全工作[1]。
结合目前的实践进行分析可知基础对高层建筑的安全影响是巨大的,所以在实践中需要做好基础加强工作。
桩筏基础是高层建筑施工建设中所利用的重要基础形式,其对建筑安全、稳定和后续使用有显著影响。
对桩基础的共同作用机理进行明确,同时对工程实践中的转发基础设计进行优化,这样,桩筏基础在实践中的表现会更加突出。
一、高层建筑桩筏基础共同作用机理对高层建筑桩筏基础共同作用过程进行分析可知其是上部结构荷载、刚度逐步形成的过程,也是桩和地基土承载力逐渐发挥的过程,对其共同作用机理进行分析可知其主要分为3个主要环节,以下是对三个环节的具体介绍。
高层建筑筏板基础结构设计要点分析与探讨发表时间:2018-07-09T14:40:49.737Z 来源:《基层建设》2018年第13期作者:陆咏彬[导读] 摘要:本文通过工程实例对高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
广东建筑艺术设计院有限公司佛山分公司摘要:本文通过工程实例对高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
关键词:高层结构;结构选型;筏板基础;设计要点一、前言近年来,随着我国城镇化建设的快速发展,越来越多的高层建筑拔地而起,高层建筑区别于以往传统的建筑形式,具体表现在建筑材料的选择、建筑的结构设计、建筑施工的方案等,所以,在高层建筑前期工作中,加强基础设计环节,明确基础结构设计的要点,对高层建筑结构的各种体系安全才有保障。
某工程为高层商住楼建筑,设二层地下室作为车库(其中地下二层兼为核六级人防地下室),地上三十二层,总建筑面积约57000m²,建筑总高度99.95米。
本工程建筑结构的安全等级为一级,抗震设防烈度为6度,设计地震分组属第一组。
下面就对该高层建筑筏板基础结构设计要点分析与探析,以供同仁参考。
二、建筑基础结构选型本工程地基基础设计等级为甲级。
本工程地下二层,塔楼部分基础底面埋深约10.5米,满足规范对采用天然地基房屋1/15高度的埋深要求。
塔楼基底在绝对标高68.1米左右,持力层为强风化泥岩、粉砂岩⑦层,该持力层土质工程性质较良好,地基承载力较高,地基承载力特征值为300kPa。
经宽、深修正后的地基承载力特征值fa=530kPa,塔楼地上高32层,2层地下室,三层裙楼,标准层荷载按14.5kPa 考虑,其他按18kPa考虑,则塔楼基底平均压力约为14.5×30+18×5+1.8×25=570kPa,塔楼筏板每边悬挑2米可满足承载力要求。
裙楼基底在绝对标高69.6米左右,持力层为圆砾⑥,该持力层土质工程性质较良好,地基承载力较高,地基承载力特征值为350kPa,经宽、深修正后的地基承载力特征值fa=580kPa。
第1篇1. 工程名称:某住宅楼筏形基础施工2. 工程地点:某市某区某街道3. 工程规模:总建筑面积为30000平方米,筏形基础面积约为8000平方米。
4. 施工单位:某建筑工程有限公司5. 施工周期:60天二、施工准备1. 技术准备(1)熟悉图纸,了解筏形基础的构造、尺寸、材料、施工要求等。
(2)组织施工技术人员学习国家相关规范、标准,提高施工技术水平。
(3)编制施工组织设计,明确施工方案、施工工艺、施工顺序、施工方法等。
2. 材料准备(1)钢筋:根据设计要求,提前采购符合国家标准的钢筋,并进行验收。
(2)混凝土:选择合格的水泥、砂、石子等原材料,按照配合比配制混凝土。
(3)模板:根据设计要求,选用合适的模板材料,确保模板的强度、刚度和稳定性。
(4)其他材料:提前准备施工所需的锚杆、地锚、钢筋钩、垫块等。
3. 人员准备(1)组织施工队伍,明确各岗位人员职责。
(2)对施工人员进行岗前培训,提高施工技能和安全意识。
(3)配备必要的施工机械设备,确保施工顺利进行。
三、施工方案1. 施工顺序(1)基础开挖:按照设计要求,开挖筏形基础基坑。
(2)基础垫层:在基底铺设C15素混凝土垫层,厚度为100mm。
(3)钢筋绑扎:按照设计要求,绑扎筏形基础钢筋。
(4)模板安装:根据设计要求,安装模板,确保模板的强度、刚度和稳定性。
(5)混凝土浇筑:按照配合比,浇筑C30混凝土。
(6)混凝土养护:按照规范要求,进行混凝土养护。
(7)基础验收:对筏形基础进行检查,确保质量符合设计要求。
2. 施工工艺(1)基础开挖1)根据设计图纸,确定基坑开挖范围、深度和尺寸。
2)采用机械开挖,人工清底,确保基坑平整、无杂物。
3)在基坑四周设置排水沟,防止积水。
(2)基础垫层1)清理基底,确保基底平整、无杂物。
2)铺设C15素混凝土垫层,厚度为100mm。
3)采用平板振动器振实垫层,确保垫层密实。
(3)钢筋绑扎1)根据设计要求,绑扎筏形基础钢筋。
筏板基础设计计算及相关问题1、筏板基础埋深及承载力的确定天然筏板基础属于补偿性基础,因此地基的确定有两种方法. 一是地基承载力设计值的直接确定法. 它是根据地基承载力标准值按照有关规范通过深度和宽度的修正得到承载力设计值,并采用原位试验(如标惯试验、压板试验等)与室内土工试验相结合的综合判断法来确定岩土的特性. 二是按照补偿性基础分析地基承载力. 例如:某栋地上28 层、地下2 层(底板埋深10m )的高层建筑,由于将原地面下10m 厚的原土挖去建造地下室,则卸土土压力达180kpa,约相当于11 层楼的荷载重量;如果地下水位为地面下2m ,则水的浮托力为80kpa,约相当于5 层楼的荷载重量,因此实际需要的地基承载力为14 层楼的荷载. 即当地基承载力标准值f ≥ 250kpa 时就能满足设计要求,如果筏基底板适当向外挑出,则有更大的可靠度.2、天然筏板基础的变形计算地基的验算应包括地基承载力和变形两个方面,尤其对于高层或超高层建筑,变形往往起着决定性的控制作用. 目前的理论水平可以说对地基变形的精确计算还比较困难,计算结果误差较大,往往使工程设计人员难以把握,有时由于计算沉降量偏大,导致原来可以采用天然地基的高层建筑,不适当地采用了桩基础,使基础设计过于保守,造价变状态不相一致;(1)公式中S = 7S6 z iAi- z i- 1Ai- 1ES i[ 2 ]采用的计算参数系室内有侧限固结试验测得的压缩模量ESi ,试验条件与基础底面压缩层不同深度处的实际侧限条件不同;提高,造成浪费.采用各向同性均质线性变形体计算模型,用分层总和法计算出的自由沉降量往往同实测的地基变形量不同,这是受多种因素的影响造成的.(2)利用公式计算的建筑物沉降量只与基础尺寸有关,而实测沉降量已受到上部结构与基础刚度的调整.采用箱型基础或筏板基础的高层建筑物,由于其荷载大、基础宽,因而压缩层深度大,与一般多层建筑物不同,地基不是均一持力层. 因此在地基变形计算的公式中引入了一个沉降计算经验系数7S. 通过实际沉降观测与计算沉降量的比较,适应高层建筑物箱型基础与筏板基础的沉降计算经验系数,主要与压力和地层条件相关,尤其与附加压力和主要压缩层中(0. 5 倍基础宽度的深度以内)砂、卵石所占的百分比密切相关. 由于该系数7S 仅用于对附加压力产生的地基固结沉降变形部分进行调整,所以《建筑地基基础设计规范》规定可根据地区沉降观测资料及经验确定.计算高层建筑的地基变形时,由于基坑开挖较深,卸土较厚往往引起地基的回弹变形而使地基微量隆起. 在实际施工中回弹再压缩模量较难测定和计算,从经验上回弹量约为公式计算变形量10%~30% ,因此高层建筑的实际沉降观测结果将是上述计算值的1. 1~1. 3 倍左右. 应该指出高层建筑基础由于埋置太深,地基回弹再压缩变形往往在总沉降中占重要地位,有些高层建筑若设置3~ 4 层(甚至更多层)地下室时,总荷载有可能等于或小于卸土荷载重量,这样的高层建筑地基沉降变形将仅由地基回弹再压缩变形决定. 由此看来,对于高层建筑在计算地基沉降变形中,地基回弹再压缩变形不但不應忽略,而应予以重视和考虑.高层建筑箱型基础与筏板基础的计算与一般中小型建筑的基础有所不同,如前所述,高层建筑除具有基础面积大、埋置深,尚有地基回弹等影响. 有时将基础做成补偿基础,在这种情况下,将附加压力视为很小或等于零,这与实际不符. 由于基坑面积大,基坑开挖造成坑底回弹,建筑物荷重增加到一定程度时,基础仍然有沉降变形,即回弹再压缩变形. 为了使沉降计算与实际变形接近,采用总荷载作为地基沉降计算压力比用附加压力P 0 计算更趋合理,且对大基础是适宜的. 这一方面近似考虑了深埋基础(或补偿基础)计算中的复杂问题,另一方面也解决了大面积开挖基坑坑底的回弹再压缩问题. 因此《高层建筑箱形与筏形基础技术规范》除规定采用室内压缩模量ES 计算沉降量外,又规定了按压缩模量E 0 (采用野外载荷试验资料算得压缩模量E 0,基本上解决了试验土样扰动的问题,土中应力状态在载荷板下与实际情况比较接近)计算沉降量的方法. 设计人员可以根据工程的具体情况选择其中一种方法进行沉降计算.按平面布置规则,立面沿高度大体一致的单幢建筑物,当基底压缩土层范围内沿竖向和水平方向土层较均匀时,基础的纵向挠曲曲线的形状呈盆状形,即“∪”状. 在研究建筑物荷载的水平分布规律时:对于筏板基础,可将筏板划分为许多小单元,如果不考虑各小单元之间的相互影响,单位面积承受的荷载重量(基底应力曲线)与基础的纵向挠曲曲线的形状相吻合,即也呈“∪”状. 这说明建筑物四周各点沉降量受到其它各点荷载的影响较小,中部各点沉降量受到其它各点荷载的影响较大;若将基础设计成整片筏板基础,势必造成在相同的地基承载力下,中部沉降量大,而四周沉降量较小,基底土变形不相协调.试验表明3、筏板基础的结构设计筏板基础的主要结构形式有平板式筏基和肋梁式筏基,包括等厚度或变厚度底板和纵横向肋梁. 一般情况下宜将基础肋梁置于底板上面,如果地基不均匀或有使用要求时,可将肋梁置于板下,框架柱位于肋梁交点处. 在具体筏基设计时应着重考虑如下问题:(1)应尽量使上部结构的荷载合力重心与筏基形心相重合,从而确定底板的形状和尺寸.当需要将底板设计成悬挑板时,要综合考虑上述多方面因素以减小基础端部基底反力过大而对基础弯距的影响;(2)底板厚度由抗冲切和抗剪强度验算确定. 柱网间距较大时可在柱间设置加强板带(暗梁加配箍筋)来提高抗冲切强度以减少板厚,也可采用后张预应力钢筋法来减少混凝土用量和造价. 决定板厚的关键因素是冲切,应对筏基进行详细的冲切验算;4、裙房基础的设计由于裙房的单柱荷载与高层主楼相比要小的多,因此无需采用厚筏基础,采用薄板配柱下独立扩展基础即可. 这里需要强调的是,裙楼独立柱基的沉降与主楼筏板基础的沉降要相协调,即控制沉降差在允许值范围内. 应根据公式计算主楼沉降量S ,再按各柱的荷载N 值和S值反算出各独立柱基础的面积A (尚应验选地基承载力).5、结束语高层建筑基础选型是整个结构设计中的一个重要组成部分,直接关系到工程造价、施工难度和工期,因此应认真研究场地岩土性质和上部结构特点,通过综合技术经济比较确定.高层建筑的基础选型应因地制宜,除基础应满足现行规范允许的沉降量和沉降差的限值外,整体结构应符合规范对强度、刚度和延性的要求,选用桩基或筏基都不是绝对的,而安全可靠、经济合理才是基础选型的标准。