初三数学难点:反比例函数6个基础知识点例题(附解析)
- 格式:docx
- 大小:358.63 KB
- 文档页数:3
初中数学反比例函数知识点及经典例题反比例函数是数学中常见的一类函数,它是由一元二次函数反过来得到的。
反比例函数的特点是,自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
本文将介绍反比例函数的定义、性质、图像、经典例题以及解题思路。
一、反比例函数的定义反比例函数是指当两个变量之间满足一个恒等关系时,这个关系可以用一个反比例关系式表示。
一般地,反比例关系式可以表示为:y=k/x,其中k为常数。
二、反比例函数的性质1.反比例函数的定义域是非零实数集。
2.反比例函数的值域是非零实数集。
3.反比例函数的图像是一个经过原点的开口向右下方的双曲线。
4.当自变量等于1时,反比例函数的值等于常数k。
5.反比例函数的平行于y轴的渐近线是x=0。
三、反比例函数的图像反比例函数的图像是一个经过原点的开口向右下方的双曲线。
当自变量趋于正无穷时,函数值趋近于0;当自变量趋于负无穷时,函数值趋近于无穷大。
反比例函数的图像与x轴和y轴均不相交,且在第一象限和第三象限上。
四、反比例函数的经典例题及解题思路解题思路:根据题意可得到等式3=k/2,解方程可得到k=6、因此,此反比例函数为y=6/x。
例题2:证明反比例函数y=3/x与y=4/x在坐标原点处相交。
解题思路:将两个函数分别带入坐标原点,可得到y1=3/0=0,y2=4/0=0,因此,两个函数在坐标原点处相交。
例题3:如果一个反比例函数的变量x增加了50%,那么函数值y会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将x增加了50%相当于原来的x增加了1.5倍,那么y就变成了原来的1.5倍。
例题4:如果一个反比例函数的函数值y减少了60%,那么自变量x会发生什么变化?解题思路:根据反比例函数的定义可以得到y=k/x,将y减少了60%相当于原来的y减少了0.6倍,那么x就变成了原来的0.6倍。
总结:反比例函数是一类常见的函数,它的特点是自变量的增大导致函数值的减小,自变量的减小导致函数值的增大。
九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。
本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。
一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。
反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
其一般形式为y = k/x,其中k为常数。
反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。
2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。
3. 对称性:反比例函数关于两个坐标轴都具有对称性。
二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。
当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。
对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。
2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。
三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。
例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。
解析:根据反比例函数的定义,有y = k/x。
代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。
因此,当x = 4时,y = 10/4 = 2.5。
例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。
已知当t = 0时,y = 100,即杆子的初始长度是100cm。
九年级数学反比例函数重点、难点、综合运用题型☞考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
反比例函数的解析式也可以写成的形式。
自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数.基本方法归纳:判断一个函数是否是反比例函数关键是看它的横纵坐标的乘积k是否为一个非零常数.注意问题归纳:当k及自变量x的指数含字母参数时,要同时考虑k0及指数为-1.【例1】(株洲)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)【例2】(宁夏)已知两点、在函数的图象上,当时,下列结论正确的是()A. B. C. D.【例3】(呼和浩特)已知函数的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c = 0的两根x1,x2判断正确的是()A.x1 + x2 >1,x1·x2 > 0 B.x1 + x2 < 0,x1·x2 > 0C.0 < x1 + x2 < 1,x1·x2 > 0 D.x1 + x2与x1·x2 的符号都不确定【例4】【山东省聊城市】如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B (﹣2,﹣1)两点,若y1<y2,则x的取值范围是()A. x<1 B. x<﹣2 C.﹣2<x<0或x>1 D. x<﹣2或0<x<1【例5】(遵义)如图,反比例函数(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB 的中点,S△BEF=2,则k的值为.同步练习1.(山东省威海市乳山市中考一模)在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=-x上 B.直线y=x上 C.双曲线y= D.抛物线y=x2上2.(山东省济南市平阴县中考二模)下列函数中,在0≤x≤2上y随x的增大而增大的是()A.y=-x+1 B.y=x2-4x+5 C.y=x2 D.y=3.(四川省成都市外国语学校中考直升模拟)一次函数y=-kx+4与反比例函数的图象有两个不同的交点,点(-,y1)、(-1,y2)、(,y3)是函数图象上的三个点,则y1、y2、y3的大小关系是()A.y2<y3<y1 B.y1<y2<y3 C.y3<y1<y2 D.y3<y2<y14.(山东省威海市乳山市中考一模)如图,等边△ABC的边长是2,内心O是直角坐标系的原点,点B在y轴上.若反比例函数y=(x>0),则k的值是()A. B.C. D.5.(山东省聊城市中考模拟)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数y=的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A.①② B.①②③ C.①②③④ D.②③④6.(山东省青岛市李沧区中考一模)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()7.(山西省晋中市平遥县九年级下学期4月中考模拟)点A为双曲线y=(k≠0)上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.2 B.±2 C. D.±8.(广东省广州市中考模拟)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是()A.(,0)B.(,0)C.(,0)D.(,0)9.(河北省中考模拟二)如图,两双曲线y=与y=-分别位于第一、四象限,A是y轴上任意一点,B是y=-上的点,C是y=上的点,线段BC⊥x轴于点 D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,-);③k=4;④△ABC的面积为定值7,正确的有()A.1个 B.2个 C.3个 D.4个10.(湖北省黄石市6月中考模拟)如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B(x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2 B.k=,b=1 C.k=,b= D.k=,b=11.(山东省潍坊市诸城市实验中学中考三模)设函数y=x+5与y=的图象的两个交点的横坐标为a、b,则的值是.12.(四川省成都市外国语学校中考直升模拟)双曲线y=(x>0)与直线y=x在坐标系中的图象如图所示,点A、B在直线上AC、BD分别平行y轴,交曲线于C、D两点,若BD=2AC 则4OC2-OD2的值为.13.(安徽省安庆市中考二模)如图,直线y1=x+b与双曲线y2=交于点A(1,4)和点B,经过点A的另一条直线与双曲线y2=交于点C.则:①直线AB的解析式为y1=x+3;②B(﹣1,﹣4);③当x>1时,y2<y1;④当AC的解析式为y=4x时,△ABC是直角三角形.其中正确的是.(把所有正确结论的序号都写在横线上)14.(山东省日照市中考一模)如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为.15.(山东省日照市中考模拟)如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是.17.(广东省佛山市初中毕业班综合测试)如图,点P在双曲线(k≠0)上,点P′(1,2)与点P 关于y轴对称,则此双曲线的解析式为.18.(广东省深圳市龙华新区中考二模)如图,已知反比例函数y=(k>0)的图象与正方形OABC的边AB、BC分别交于点D、E.若正方形OABC的边长为1,△ODE是等边三角形,则k的值为.19.(江苏省南京市建邺区中考一模)在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图象与正比例函数y2=ax(a为常数,a≠0)的图象相交于A.B两点.若点A的坐标为(2,3),则点B的坐标为.20.(浙江省宁波市江东区4月中考模拟)如图,点A在双曲线y=第三象限的分支上,连结AO并延长交第一象限的图象于点B,画BC∥x轴交反比例函数y=的图象于点C,若△ABC的面积为6,则k的值是.(20题图)(21题图)21.(湖北省黄石市6月中考模拟)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3),反比例函数y=(x>0)的图象过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数的一个公共点.对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,则点P横坐标a的取值范围__________.22.(山东省聊城市中考模拟)如图,已知A(-4,0.5),B(-1,2)是一次函数y=ax+b与反比例函数y=(m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.(山东省潍坊市昌乐县中考一模)已知正比例函数y=2x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为P点,已知△OAP的面积为1.(1)求反比例函数的解析式;(2)如果点B为反比例函数在第一象限图象上的点(点B与点A不重合),且点B的横坐标为2,在x轴上求一点M,使MA+MB最小.24.(四川省成都市外国语学校中考直升模拟)如图(1),直线y=k1 x+b与反比例函数y=的图象交于点A(1,6),B(a,3)两点.(1)求k1、k2的值;(2)如图(1),等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点F,当梯形OBCD的面积为12时,请判断FC和EF的大小,并说明理由;(3)如图(2),已知点Q是CD的中点,在第(2)问的条件下,点P在x轴上,从原点O出发,沿x轴负方向运动,设四边形PCQE的面积为S1,△DEQ的面积为S2,当∠PCD=90°时,求P点坐标及S1:S2的值.25.(山东省济南市平阴县中考二模)如图,反比例函数y=(x>0)的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=.(1)求k的值;(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=(x>0)的图象恰好经过DC上一点E,且DE:EC=2:1,求直线AE的函数表达式;(3)若直线AE与x轴交于点,N,与y轴交于点M,请你探索线段AM与线段NE的大小关系,写出你的结论并说明理由.26.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.27.(湖北省黄石市6月中考模拟)如图,正方形ABCO的顶点A,C分别在x轴,y轴上,O为坐标原点,点B在第二象限,边长为m,双曲线线y=(x≠0)经过BC的中点H.(1)用m的代数式表示出k;(2)当m=3时,过B作直线BD,分别交x轴,y轴于G、F,分别交双曲线线y=(x≠0)的两个分支于E、D,求证:GE=DF;(3)在(2)的前提下,将直线BD绕点B旋转适当的角度在第二象限与双曲线线y=(x≠0)交于P、Q,分别过P、Q作直线AC的垂线PM、QN,垂足为M、N,试探究PQ与PM+QN的数量关系并证明.九年级数学反比例函数重点、难点、综合运用题型参考答案☞考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
反比例函数知识梳理知识点l. 反比例函数的概念重点:掌握反比例函数的概念 难点:理解反比例函数的概念一般地,如果两个变量x 、y 之间的关系可以表示成xk y =或1(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。
反比例函数的概念需注意以下几点:(1)k 是常数,且k 不为零;(2)xk 中分母x 的指数为1,如22y x =不是反比例函数。
(3)自变量x 的取值范围是0x ≠一切实数.(4)自变量y 的取值范围是0y ≠一切实数。
知识点2. 反比例函数的图象及性质重点:掌握反比例函数的图象及性质 难点:反比例函数的图象及性质的运用反比例函数xk y =的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。
它们关于原点对称、反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。
画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是0x ≠,因此不能把两个分支连接起来。
(3)由于在反比例函数中,x 和y 的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势。
反比例函数的性质xky =)0k (≠的变形形式为k xy =(常数)所以: (1)其图象的位置是:当0k >时,x 、y 同号,图象在第一、三象限; 当0k <时,x 、y 异号,图象在第二、四象限。
(2)若点()在反比例函数xk y =的图象上,则点()也在此图象上,故反比例函数的图象关于原点对称。
(3)当0k >时,在每个象限内,y 随x 的增大而减小; 当0k <时,在每个象限内,y 随x 的增大而增大; 知识点3. 反比例函数解析式的确定。
重点:掌握反比例函数解析式的确定 难点:由条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式xk y =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入xk y =中即可求出k 的值,从而确定反比例函数的关系式。
中考数学反比例函数的综合热点考点难点含答案解析一、反比例函数1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.3.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.4.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.5.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;(2)如图2,若某函数是反比例函数(k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.【答案】(1)解:(I)当点A在x轴正半轴、点B在y轴负半轴上时:正方形ABCD的边长为.(II)当点A在x轴负半轴、点B在y轴正半轴上时:设正方形边长为a,易得3a= ,解得a= ,此时正方形的边长为.∴所求“伴侣正方形”的边长为或(2)解:如图,作DE⊥x轴,CF⊥y轴,垂足分别为点E、F,易证△ADE≌△BAO≌△CBF.∵点D的坐标为(2,m),m<2,∴DE=OA=BF=m,∴OB=AE=CF=2﹣m.∴OF=BF+OB=2,∴点C的坐标为(2﹣m,2).∴2m=2(2﹣m),解得m=1.∴反比例函数的解析式为y=(3)解:实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合a、当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点为(4,1),对应的函数解析式是y=﹣ x2+ ;b、当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在,c、当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在d、当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点C为(﹣1,3),对应的函数的解析式是y= x2+ ;e、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D的坐标是(7,﹣3)时,对应的函数解析式是y=﹣ x2+ ;f、当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ;故二次函数的解析式分别为:y= x2+ 或y=﹣ x2+ 或y=﹣ x2+ 或y= x2+【解析】【分析】(1)先正确地画出图形,再利用正方形的性质确定相关点的坐标从而计算正方形的边长.(2)因为ABCD为正方形,所以可作垂线得到等腰直角三角形,利用点D(2,m)的坐标表示出点C的坐标,可求出m的值,即可得到反比例函数的解析式.(3)由抛物线开口既可能向上,也可能向下.当抛物线开口向上时,正方形的另一个顶点也是在抛物线上,这个点既可能在点(3,4)的左边,也可能在点(3,4)的右边,过点(3,4)向x轴作垂线,利用全等三角形确定线段的长即可确定抛物线上另一个点的坐标;当抛物线开口向下时也是一样地分为两种情况来讨论,即可得到所求的结论.6.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【答案】(1)3;(2)﹣4(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF 垂直),;②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为 = ,即图形W和图形N之间的距离.【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,故答案分别为:3,;(2)直线y=x+1和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF= = ,∴OE=OF+EF=2 ,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,则有OG=EG= OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.7.如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD 的面积为2.(1)求的值及 =4时的值;(2)记表示为不超过的最大整数,例如:,,设 ,若,求值【答案】(1)解:设A(x0, y0),则OD=x0, AD=y0,∴S△AOD= OD•AD= x0y0=2,∴k=x0y0=4;当x0=4时,y0=1,∴A(4,1),代入y=mx+5中得4m+5=1,m=-1(2)解:∵,∴=mx+5,整理得,mx2+5x-4=0,∵A的横坐标为x0,∴mx02+5x0=4,当y=0时,mx+5=0,x=- ,∵OC=- ,OD=x0,∴m2•t=m2•(OD•DC),=m2•x0(- -x0),=m(-5x0-mx02),=-4m,∵- <m<- ,∴5<-4m<6,∴[m2•t]=5【解析】【分析】(1)根据反比例函数比例系数k的几何意义,即可得出k的值;根据反比例函数图像上的点的坐标特点,即可求出A点的坐标,再将A点的坐标代入直线y=mx+5中即可求出m的值;(2)解联立直线与双曲线的解析式所组成的方程组,得出mx2+5x-4=0,将A点的横坐标代入得出mx02+5x0=4,根据直线与x轴交点的坐标特点,表示出OC,OD的长,由m2•t=m2•(OD•DC)=-4m,根据m的取值范围得出5<-4m<6,从而答案。
初中数学反比例函数知识点及经典例题一、反比例函数的定义反比例函数是指形如y=k/x的函数,其中k是一个非零常数,x和y 是实数。
二、反比例函数的图像特征1.当x=0时,反比例函数无定义;2.当x≠0时,随着x的增大,函数值y逐渐减小;3.反比例函数的图像通常是一条平面上的双曲线。
三、反比例函数的性质1. 对于反比例函数 y = k/x,k 是一个非零常数,任意给定的 x 和y,都有 xy = k 成立;2.如果反比例函数过点(x1,y1),则对于任意其它点(x2,y2),都有x1y1=x2y2成立;3.反比例函数的图像关于原点对称;4.反比例函数的导数为负。
四、反比例函数的应用反比例函数在实际生活中有很多应用,例如:1.工程中的消耗问题:项工程需要的材料数量与施工时间成反比;2.速度和时间的关系:当物体行驶的速度越快时,到达目的地所需时间越短;3.汽车的油耗问题:汽车行驶的路程与每升汽油的价格呈反比;4.人口增长与资源消耗:人口越多,资源消耗越快。
五、经典例题1.小明开车从A地到B地,全程360公里。
如果他保持每小时60公里的速度,需要多长时间到达目的地?解答:根据题意可知,小明的速度和到达目的地所需的时间成反比。
设到达目的地所需的时间为t,则有60t=360,解得t=6、所以小明需要6小时到达目的地。
2.水龙头4分钟可以装满一个水箱,水箱在3分钟内漏掉了60%的水,那么继续放水多少分钟可以装满这个水箱?解答:设继续放水的时间为t。
根据题意可知,放水的时间t和装满水箱的时间成反比。
所以有4×(1-60%)=(3+t)×100%,化简得到t=1.2、所以继续放水1.2分钟可以装满水箱。
3.假设一个圆的周长和面积的比值为k,如果圆的半径扩大3倍,求此时新圆的周长和面积的比值。
解答:设新圆的半径为r,则原圆的半径为(1/3)r。
原圆的周长和面积的比值为k,即2π(1/3)r/π((1/3)r)²=k。
人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。
它是函数的一种特殊形式,具有一些独特的性质和应用。
下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。
一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。
二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。
2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。
当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。
3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。
b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。
c) 当x等于1时,y等于k,这是反比例函数的特殊点。
d) 反比例函数可以通过求导得到,导数的值为-ky^2。
三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。
2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。
3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。
四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。
答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。
新人教版初三数学反比率函数知识点和例题〔一〕反比率函数的看法1.〔〕能够写成〔〕的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.〔〕也能够写成xy=k 的形式,用它能够迅速地求出反比率函数解析式中的k ,从而获取反比率函数的解析式;3.反比率函数的自变量,故函数图象与x 轴、 y 轴无交点.〔二〕反比率函数的图象在用描点法画反比率函数的图象时,应注意自变量x 的取值不能够为0,且 x 对付称取点〔关于原点对称〕.〔三〕反比率函数及其图象的性质1.函数解析式:〔〕2.自变量的取值范围:3.图象:〔 1〕图象的形状:双曲线.越大,图象的波折度越小,曲线越平直.越小,图象的波折度越大.(2〕图象的地址和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大.〔 3〕对称性:图象关于原点对称,即假设〔a, b〕在双曲线的一支上,那么〔,〕在双曲线的另一支上.图象关于直线对称,即假设〔 a ,b〕在双曲线的一支上,那么〔,〕和〔,〕在双曲线的另一支上.4.k 的几何意义如图 1,设点 P〔 a ,b〕是双曲线上任意一点,作PA⊥ x 轴于 A 点, PB ⊥y 轴于 B 点,那么矩形PBOA 的面积是〔三角形PAO 和三角形 PBO 的面积都是〕.如图 2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥ PA 的延长线于C,那么有三角形P QC 的面积为.图1图25.说明:〔1 〕双曲线的两个分支是断开的,研究反比率函数的增减性时,要将两个分支分别谈论,不能够混作一谈.〔2 〕直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.〔3 〕反比率函数与一次函数的联系.〔四〕实责问题与反比率函数1.求函数解析式的方法:〔1 〕待定系数法;〔 2 〕依照实质意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.三、例题解析1.反比率函数的看法〔 1〕以下函数中,y 是 x 的反比率函数的是〔〕.A . y=3x B. C .3xy=1D.〔 2〕以下函数中,y 是 x 的反比率函数的是〔〕.A.B.C.D.2.图象和性质〔 1〕函数是反比率函数,①假设它的图象在第二、四象限内,那么k=___________.②假设 y 随 x 的增大而减小,那么k=___________.〔 2〕一次函数y=ax+b 的图象经过第一、二、四象限,那么函数的图象位于第________ 象限.〔 3〕假设反比率函数经过点〔,2〕,那么一次函数的图象必然不经过第_____ 象限.〔 4〕 a ·b<0 ,点 P 〔 a ,b〕在反比率函数的图象上,那么直线不经过的象限是〔〕.A .第一象限B .第二象限C.第三象限D.第四象限〔 5〕假设 P 〔2, 2〕和 Q〔 m,〕是反比率函数图象上的两点,那么一次函数y=kx+m 的图象经过〔〕.A .第一、二、三象限B .第一、二、四象限C.第一、三、四象限 D .第二、三、四象限〔 6〕函数和〔k≠0〕,它们在同一坐标系内的图象大体是〔〕.A.B.C.D.3.函数的增减性〔 1〕在反比率函数的图象上有两点,,且,那么的值为〔〕.A .正数B .负数C.非正数D.非负数〔 2〕在函数〔a为常数〕的图象上有三个点,,,那么函数值、、的大小关系是〔〕.A .<<B.<<C.<<D.<<〔 3〕以下四个函数中:①;②;③;④. y 随x 的增大而减小的函数有〔〕.A.0个B. 1个C. 2个D. 3个〔 4〕反比率函数随 x 的增大而的图象与直线 y=2x 〔填“增大〞或“减小〞〕.和 y=x+1的图象过同一点,那么当x>0时,这个反比率函数的函数值y4.解析式确实定〔 1〕假设与成反比率,A .正比率函数与成正比率,那么B.反比率函数y 是z 的〔〕.C.一次函数D.不能够确定〔 2〕假设正比率函数y=2x 一个交点为 ________ .与反比率函数的图象有一个交点为〔 2, m〕,那么m=_____,k=________,它们的另〔 3〕反比率函数的图象经过点,反比率函数的图象在第二、四象限,求的值.〔 4〕一次函数 y=x+m 与反比率函数〔〕的图象在第一象限内的交点为P 〔x 0 ,3 〕.①求 x 0 的值;②求一次函数和反比率函数的解析式.〔 5〕为了预防“非典〞,某学校订教室采用药薰消毒法进行消毒.药物燃烧时,室内每立方米空气中的含药量y 〔毫克〕与时间x 〔分钟〕成正比率,药物燃烧完后,y 与 x 成反比率〔以以下图〕,现测得药物 8 分钟燃毕,此时室内空气中每立方米的含药量为 6 毫克.请依照题中所供应的信息解答以下问题:①药物燃烧时y 关于 x 的函数关系式为___________,自变量x的取值范围是_______________;药物燃烧后y 关于 x 的函数关系式为_________________.②研究说明,当空气中每立方米的含药量低于 1.6 毫克时学生方可进教室,那么从消毒开始,最少需要经过_______分钟后,学生才能回到教室;③研究说明,当空气中每立方米的含药量不低于 3 毫克且连续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒可否有效?为什么?.5.面积计算〔 1〕如图,在函数的图象上有三个点垂线段与 x 轴、 y 轴围成的矩形的面积分别为A.B.A 、B 、 C,过这三个点分别向、、,那么〔〕.C.x 轴、 y 轴作垂线,过每一点所作的两条D.第〔 1〕题图第〔2〕题图〔 2〕如图, A、B A.S=1是函数的图象上关于原点B.1<S<2O 对称的任意两点,C.S=2AC//y 轴,BC//xD.S>2轴,△ ABC的面积S ,那么〔〕.〔 3〕如图, Rt △ AOB 的极点 A 在双曲线上,且S△ AOB=3,求m的值.第〔 3〕题图第〔4〕题图〔 4〕函数的图象和两条直线y=x , y=2x 在第一象限内分别订交于的垂线 P1Q1 ,P1R1 ,垂足分别为Q1 ,R1 ,过 P2 分别作 x 轴、 y 轴的垂线P1 和P2Q2P2 两点,过P1 分别作,P2 R 2 ,垂足分别为x 轴、 y 轴Q 2,R 2,求矩形OQ1P1R1和OQ2P2R2的周长,并比较它们的大小.〔 5〕如图,正比率函数y=kx 〔 k> 0〕和反比率函数的图象订交于 A 、C 两点,过 A 作 x 轴垂线交x 轴于 B,连接 BC ,假设△ ABC 面积为 S,那么 S=_________.第〔 5 〕题图第〔6〕题图〔 6〕如图在 Rt △ ABO 中,极点 A 是双曲线与直线在第四象限的交点,AB ⊥ x 轴于 B 且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点 A 、 C 的坐标和△ AOC 的面积.〔 7〕如图,正方形OABC 的面积为 9 ,点 O 为坐标原点,点A、 C 分别在 x 轴、 y 轴上,点 B 在函数〔k> 0,x> 0 〕的图象上,点P 〔 m ,n〕是函数〔k>0,x>0〕的图象上任意一点,过P 分别作 x 轴、 y 轴的垂线,垂足为E、 F ,设矩形OEPF 在正方形OABC 以外的局部的面积为S.①求 B 点坐标和k 的值;②当时,求点P 的坐标;③写出 S 关于 m 的函数关系式.6.综合应用〔 1〕假设函数y=k1x 〔 k1 ≠0 〕和函数A .互为倒数B.符号相同〔 k2 ≠0〕在同一坐标系内的图象没有公共点,那么C .绝对值相等D.符号相反k1和k2 〔〕.〔 2〕如图,一次函数的图象与反比率数的图象交于 A 、B 两点: A 〔, 1 〕, B 〔1 , n 〕.① 求反比率函数和一次函数的解析式;② 依照图象写出使一次函数的值大于反比率函数的值的x 的取值范围.〔 3〕以以下图,一次函数的图象在第一象限交于 C 点,CD〔 k≠0〕的图象与垂直于 x 轴,垂足为x 轴、y 轴分别交于D,假设OA=OB=OD=1A 、B 两点,且与反比率函数.〔 m≠0 〕①求点 A、 B、 D 的坐标;② 求一次函数和反比率函数的解析式.〔 4〕如图,一次函数的图象与反比率函数的图象交于第一象限C、D 两点,坐标轴交于A、B 两点,连接 OC , OD 〔 O 是坐标原点〕.①利用图中条件,求反比率函数的解析式和m 的值;②双曲线上可否存在一点P,使得△POC 和△ POD 的面积相等?假设存在,给出证明并求出点P 的坐标;假设不存在,说明原由.〔 5〕不解方程,判断以下方程解的个数.①;②.。
初三数学难点:反比例函数6个基础知识点例题(附解析)
反比例函数这一章是初中数学的一个重点,也是初中数学的一个核心知识点。
对函数的学习,就是把图像问题与系数联系起来,并且通过反复观察,让众多学生明白不同系数,在不同函数中不同的几何意义何在,以便形成系数来研究图像的逻辑思维能力。
而且,最难的地方是反比例函数的几何问题灵活多变,可以和一次函数、全等、相似、特殊三角形、四边形等一系列知识结合出题,所以考察知识面广,综合程度高,也是很多孩子为何不会解决反比例函数题目的原因。
学函数,万变不离其宗,题目再难,也能有解决办法。
今天就为大家整理出了一份反比例函数基础知识点,以及例题和解析。
初三数学反比例函数基础知识点
反比例函数的图像
反比例函数性质
图二
二:例题
例二:
其他解法:
例三:
解析:
例四:
解析:。