螺旋桨概述
- 格式:doc
- 大小:345.00 KB
- 文档页数:8
螺旋桨是指靠桨叶在空气中旋转将发动机转动功率转化为推进力的装置或有两个或较多的叶与毂相连,叶的向后一面为螺旋面或近似于螺旋面的一种船用推进器。
螺旋桨分为很多种,应用也十分广泛,如飞机、轮船等。
1、古代的车轮,即欧洲所谓“桨轮”,配合蒸汽机,将原来桨轮的一列直叶板斜装于一个转毂上。
构成了螺旋桨的雏型;2、古代的风车,随风转动可以输出扭矩,反之,在水中,输入扭矩转动风车,水中风车就有可能推动船运动;3、在当时,已经使用了好几个世纪的阿基米德螺旋泵,它能在水平或垂直方向提水,螺旋式结构能打水这一事实,作为推进器是重要的启迪。
伟大的英国科学家虎克在1683年成功地采用了风力测速计的原理来计量水流量,于此同时,他提出了新的推进器——推进船舶,为船舶推进器作出了重大贡献。
船用螺旋桨的发展1752年,瑞士物理学家白努利第一次提出了螺旋桨比在它以前存在的各种推进器优越的报告,他设计了具有双导程螺旋的推进器,安装在船尾舵的前方。
1764年,瑞士数学家欧拉研究了能代替帆的其它推进器,如桨轮(明轮)。
喷水,也包括了螺旋桨。
潜水器和潜艇在水面下活动,传统的桨、帆无法应用,笨重庞大的明轮也难适应。
于是第一个手动螺旋桨,不是用在船上,而是作为潜水器的推进工具。
蒸汽机问世,为船舶推进器提供了新的良好动力,推进器顺应蒸汽机的发展,成为船舶推进的最新课题。
第一个实验动力驱动螺旋桨的是美国人斯蒂芬,他在1804年建造了一艘7.6米长的小船,用蒸汽机直接驱动,在哈得逊河上做第一次实验航行,实验中发现发动机不行,于是换上瓦特蒸汽机,实验航速是4节,最高航速曾达到8节。
斯蒂芬螺旋桨有4个风车式桨叶,它锻制而成,和普通风车比较它增加了叶片的径向宽度,为在实验中能选择螺距与转速的较好配合,桨叶做成螺距可以调节的结构。
在哈得逊河上两个星期的试验航行中,螺旋桨改变了几个螺距值,但是实验的结果都不理想,性能远不及明轮。
这次实验使他明白,在蒸汽机这样低速的条件下,明轮的优越性得到了充分发挥,它的推进效率高于螺旋桨是必然的结论。
螺旋桨飞机旋转方向定义概述说明以及解释引言是文章的开篇部分,主要介绍文章的概述、结构和目的。
在螺旋桨飞机旋转方向这一主题下,引言将引导读者对文章的整体内容有一个初步的了解。
以下是“1. 引言”部分的内容:1. 引言1.1 概述螺旋桨飞机作为一种重要的航空器,其飞行性能与机身结构密切相关。
而螺旋桨飞机旋转方向对于其飞行稳定性、能量转换以及操作技巧起着至关重要的作用。
因此,本文将全面探讨螺旋桨飞机旋转方向的定义、概述以及解释,并介绍如何甄别和控制旋转方向,以提高螺旋桨飞机的运行效率和安全性。
1.2 文章结构本文按照如下结构进行论述:首先,在第2节中我们将介绍螺旋桨基本原理和作用,并阐明螺旋桨飞机对称轴线与旋转方向之间的关系;接着,在第3节中我们将概述常见螺旋桨飞机旋转方向规律,并探讨特殊情况下旋转方向的变化以及如何解释对飞机性能和操控的影响;然后,在第4节中我们将介绍螺旋桨飞机旋转方向甄别方法与控制技巧,包括查看螺距角和叶片设计细节、使用指示器或仪表辅助判别蓝色倒影现象以及飞行员调整控制杆的方法;最后,在结论部分,我们将总结螺旋桨飞机旋转方向的重要性和特点,并提出对于未来研究的建议。
1.3 目的本文旨在全面了解螺旋桨飞机旋转方向的定义,概述其规律,解释其影响以及探讨如何甄别和控制旋转方向。
通过深入研究螺旋桨飞机旋转方向相关知识,可以帮助读者更好地理解螺旋桨飞机原理,优化飞行操作,并为未来相关研究提供参考。
2. 螺旋桨飞机旋转方向定义:2.1 螺旋桨基本原理和作用:螺旋桨是飞机的推进装置,通过将空气流动引导向后方产生推力。
它由多个叶片组成,这些叶片呈螺旋状排列在中心轴上。
当螺旋桨被引擎驱动旋转时,它会像一片扇叶一样将空气往后“抓”,形成向前方的推力。
2.2 螺旋桨飞机对称轴线和旋转方向的关系:在介绍螺旋桨飞机的旋转方向之前,我们需要先了解其对称轴线。
螺旋桨飞机通常具有三个轴线:纵轴、横轴和垂直轴。
其中,纵轴是垂直于地面并与机身平行的轴线,横轴是与风流媒体相垂直的水平轴线,而垂直轴则是与地面相垂直并通过飞机重心的轴线。
螺旋桨概述1.概念1.1结构图1 螺旋桨示意图图2 螺旋桨结构螺旋桨由桨叶、浆毂、、整流帽和尾轴组成,如上图所示。
滑失:如果螺旋桨旋转一周,同时前进的距离等于螺旋桨的螺距P,设螺旋桨转速为n,则理论前进速度为nP。
也就是说将不产生水被螺旋桨前后拨动的现象,然而事实上,螺旋桨总是随船一起以低于nP的进速V s对水作前进运动。
那么螺旋桨旋转一周在轴向上前进的实际距离为h p(=V s/n),称为进距。
于是我们把P与h p之差(P-h p)称为滑失。
滑失与螺距P之比为滑失比:S r=(P-h p)/P=(nP-V s)/nP=1-V s/nP式中V s/nP称为进距比。
从式中可以得出,当V s=nP时,S r=0。
即P=h,也就是螺旋桨将不产生对水前后拨动的现象,螺旋桨给水的推力为零。
因此我们可以得出结论:滑失越大,滑失比越高,则螺旋桨推水的速度也就越高,所得到的推力就越大。
1.2工作原理船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。
在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。
由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。
另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。
螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。
机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。
而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。
若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。
1.3推力和阻力以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。
航海科普——各类螺旋桨有什么特征035G常规潜艇入驻江南造船厂旧址No.3船坞2022年1月19日中午,退役的中国人民解放军海军035G型潜艇作为中国航海博物馆的黄浦分馆展示厅开始入坞坐墩了。
此后,江南造船厂旧址的No.3船坞内,又会响起久违的工业声响,潜艇开始修葺整理内部设施了。
或许数月之后航海博物馆,在中国工业的发源地上就可以向公众开放航海国防教育,让公众通过航海国防了解中国建设海洋强国的伟大目标,把中国几千年形成的优秀农耕文化和世界开放的航海文化结合起来,其意义深远。
前篇议论螺旋桨的来历和发展,衣羊船长在本篇再介绍如何将主机动力传递到舷外尾部的螺旋桨上?水密是如何做到的?潜艇的螺旋桨与普通水面舰船有什么区别?现代船舶以内燃机或者外燃烧蒸汽轮机作为动力。
主机主轴是通过轴毂内的轴承将动力传递到螺旋桨上。
主轴带动螺旋桨旋转将水推向船后,利用水的反作用力推动船前进。
“远望1”号五叶螺旋桨安装在轴毂的轴承是由天然海水或润滑油,作为润滑剂保证主轴最小摩擦力旋转,使轴承降低摩擦升温,不易损害尾轴,且让尾轴达到最大功率输出。
轴毂在船尾的位置轴承的材料为铁梨木,对的,是木头做的。
主要是采用海水直接进行润滑、冷却的水润滑,因水的黏度较低、水膜较薄因而其承载能力低。
铁梨木其密封性能差、泥沙容易随海水的进入加速铁梨木轴承的磨损。
因为铁梨木比较奇缺,价格成本较高。
随着船舶建造越造越大,尾轴负荷不断增加,铁梨木轴承不能承受巨大的尾轴了。
现代船舶都采用白合金轴承替代传统的铁梨木轴承了。
白合金轴承使用润滑油,在主轴旋转中会形成油膜,所以白合金轴承承载能力大,油的润滑性能更好,其密封装置也能有效地舷内外密封,海水和泥沙不易进入尾轴管,因而白合金轴承的磨损很小,寿命长,主机和轴系的工作相对平稳、可靠。
解决了主机轴承对外向螺旋桨输出功率以及内外水密问题后,我们再来议论船舶尾部螺旋桨了。
据说现代超级两万箱集装箱船舶的主机功率达12万匹马力,其主轴终端螺旋桨的直径为9.8米,一般都是4-5片桨叶。
船用螺旋桨标准-概述说明以及解释1.引言1.1 概述概述部分是文章引言的一部分,主要目的是介绍船用螺旋桨标准这个话题,并提供一些背景信息。
在这部分,我们需要说明船用螺旋桨的作用和重要性,以及为什么有必要制定标准来规范其设计和使用。
船用螺旋桨是船舶中的一个重要部件,它通过推动水流来产生推进力,使船舶能够在水中移动。
它的设计和性能直接影响船舶的速度、操纵性和燃油消耗等方面的性能指标。
随着船舶工程技术的发展和船舶使用环境的不断变化,对船用螺旋桨的要求也越来越高。
船用螺旋桨标准的制定就是为了确保船用螺旋桨的设计和使用能够符合一定的技术要求和安全标准。
标准可以提供设计和制造船用螺旋桨的依据,确保螺旋桨的结构和性能能够满足各种船舶的需求,并在使用过程中能够保证船舶的安全和稳定性。
此外,船用螺旋桨标准的制定还可以推动技术的创新和发展。
通过对各种船用螺旋桨的设计和使用经验的总结和归纳,可以不断优化标准,提高螺旋桨的性能和效率。
同时,标准还可以促进船用螺旋桨制造商和船舶运营商之间的合作与交流,推动行业的进步和发展。
综上所述,船用螺旋桨标准的制定对于确保船舶的运行安全和提高船舶性能具有重要作用。
在接下来的文章中,我们将对船用螺旋桨的定义、分类、设计原则和要求进行详细的介绍,同时讨论船用螺旋桨标准的重要性,并提出一些建议和改进来完善这一标准。
文章结构部分的内容如下:1.2 文章结构文章按照以下结构来展开对船用螺旋桨标准的讨论。
第一部分是引言,用来引出文章的主题和目的。
在引言中,我们将概述船用螺旋桨的概念、分类以及与船舶设计和运行的关系。
同时,我们将介绍本文的结构和目的,以帮助读者了解本文的内容和意义。
第二部分是正文,主要包括船用螺旋桨的定义和分类,以及船用螺旋桨的设计原则和要求。
在这一部分中,我们将详细介绍船用螺旋桨的不同类型和应用领域,以及设计时应考虑的相关因素。
我们将探讨螺旋桨的性能参数和性能评价标准,并讨论如何提高螺旋桨的效率和可靠性。
螺旋桨[luó xuán jiǎng]螺旋桨是指靠桨叶在空气或水中旋转,将发动机转动功率转化为推进力的装置,可有两个或较多的叶与毂相连,叶的向后一面为螺旋面或近似于螺旋面的一种推进器。
螺旋桨分为很多种,应用也十分广泛,如飞机、轮船的推进器等。
历史起源1、古代的车轮,即欧洲所谓“桨轮”,配合近代的蒸汽机,将原来桨轮的一列直叶板斜装于一个转毂上。
构成了螺旋桨的雏型。
2.古代的风车,随风转动可以输出扭矩,反之,在水中,输入扭矩转动风车,水中风车就有可能推动船运动。
3.在当时,已经使用了十几个世纪的古希腊的阿基米德螺旋泵,它能在水平或垂直方向提水,螺旋式结构能打水这一事实,作为推进器是重要的启迪。
伟大的英国科学家虎克在1683年成功地采用了风力测速计的原理来计量水流量,于此同时,他提出了新的推进器——推进船舶,为船舶推进器作出了重大贡献。
几何参数直径(D)影响螺旋桨性能重要参数之一。
一般情况下,直径增大拉力随之增大,效率随之提高。
所以在结构允许的情况下尽量选直径较大的螺旋桨。
此外还要考虑螺旋桨桨尖气流速度不应过大(<0.7音速),否则可能出现激波,导致效率降低。
桨叶数目(B)可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。
超轻型飞机一般采用结构简单的双叶桨。
只是在螺旋桨直径受到限制时,采用增加桨叶数目的方法使螺旋桨与发动机获得良好的配合。
实度(σ)桨叶面积与螺旋桨旋转面积(πR2)的比值。
它的影响与桨叶数目的影响相似。
随实度增加拉力系数和功率系数增大。
桨叶角(β)桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。
习惯上,以70%直径处桨叶角值为该桨桨叶角的名称值。
螺距:它是桨叶角的另一种表示方法。
几何螺距(H)桨叶剖面迎角为零时,桨叶旋转一周所前进的距离。
它反映了桨叶角的大小,更直接指出螺旋桨的工作特性。
桨叶各剖面的几何螺矩可能是不相等的。
习惯上以70%直径处的几何螺矩做名称值。
螺旋槳的製造方法概述说明1. 引言1.1 概述螺旋槳作为一种重要的推进装置,广泛应用于航空航天领域、船舶工业领域以及其他领域。
它通过转动螺旋状的叶片产生推力,从而推动飞机或船只前进。
由于其关键作用和特殊要求,螺旋槳的制造方法备受关注。
1.2 文章结构本文将围绕螺旋槳的製造方法展开详细论述,并探讨了相关技术和创新发展对行业的影响。
文章主要分为以下几个部分:- 引言:对文章进行概述,介绍目的和结构。
- 螺旋槳的製造方法:对螺旋槳制造过程中涉及的材料准备、设计和制图、制造工艺步骤进行阐述。
- 重要性和应用领域:探讨螺旋槳在航空航天领域、船舶工业领域以及其他应用领域中的重要性和应用情况。
- 新技术和创新发展:介绍近年来在螺旋槳制造领域涌现的新技术和创新发展,包括三维打印技术的应用、材料研究与改进以及自动化制造流程的引入。
- 结论与展望:总结现有制造方法优缺点,展望未来螺旋槳制造技术的进展方向,并对相关产业和应用领域进行影响分析与评价。
1.3 目的本文旨在全面介绍螺旋槳的製造方法,并讨论其在航空航天、船舶工业以及其他领域中的重要性和应用。
同时,通过探讨新技术和创新发展,期望为螺旋槳制造行业带来更多的可能性和机遇。
最后,通过总结现有制造方法优缺点,并对未来技术进展进行展望,希望为相关产业提供实质性参考和启示。
2. 螺旋槳的製造方法:2.1 材料准备:在螺旋槳的製造中,选择适当的材料非常重要。
通常使用铝合金、复合材料或不锈钢等高强度材料来制造螺旋槳。
这些材料具有良好的耐磨性和耐腐蚀性,能够承受航空领域和船舶工业领域复杂环境的考验。
在选择材料时,需要考虑到重量、成本和性能等方面因素。
2.2 设计和制图:在开始制造螺旋槳之前,需要进行详细的设计和制图工作。
首先,根据飞行器或船舶的特定要求和参数,确定螺旋槳的尺寸、外形和叶片数目等参数。
然后,使用计算机辅助设计软件(CAD)来绘制螺旋槳模型,并对其进行仿真分析以确保其aerodynamic 的稳定性和效率。
当前位置:首页> 网络课堂> 第八章> 螺旋桨的工作原理螺旋桨的几何特征鱼雷螺旋桨位于鱼雷的尾部,由发动机带动以产生推力,利用该推力克服鱼雷运动时的阻力,使鱼雷以既定的速度航行。
不难理解,为了经商鱼雷的速度,不仅要求鱼雷具有阻力最小的雷体外形,还须要配置效率较高的螺旋桨,才能获得较好的推进效果。
螺旋桨通过推进轴直接由发动机驱动,当螺旋桨旋转时,将水流推向鱼雷后方。
根据作用与反作用原理,水便对螺旋桨产生反作用力,该反作用力即称为螺旋桨的推力。
我们研究螺旋桨的几何特征时,首先要对螺旋面有所了解。
设有一水平线AB(图8-1),匀速地绕线EE旋转,同时又以均匀速度向上移动,则线AB上每一个点就形成一条螺旋线,由这些螺旋线所组成的面叫做螺旋面。
线段AB称为螺旋面的母线,它可以是直线或曲线。
展开了的螺旋线与圆柱体底线间的角度称为螺旋角,以表示,其值可按下式求得(8-1)式中H为螺距。
图8-1 螺旋面的形成(螺旋面的形成演示动画)当母线的圆周运动和直线运动均为匀速运动时,所得到的螺旋面称为等螺距螺旋面。
其螺旋线的展开图形如图8-1所示,不同半径处具有相同的螺距。
图8-2a 径向变螺距螺旋面螺旋线的展开图螺旋面也可以由不同螺距的螺旋线组成。
例如母线AB以均匀的速度绕EE轴线旋转。
也以均匀速度直线上升,只是在不同的半径上具有不同的上升速度,则得到径向变螺距螺旋面,不同的半径处螺距是不同的,其螺旋线的展开图如图8-2(a)所示。
假若母线的旋转运动和前进运动不是均匀的.或者其中任一种运动不是均匀的,则得到轴向变螺距螺旋面,其螺旋线的展开图如图8-2(b)所示。
图8-2b 轴向变螺距螺旋面螺旋线的展开图图8-3 螺旋桨的结构参数(螺旋桨的结构参数演示动画)螺旋桨的结构参数如图8-3所示。
螺旋桨与推进轴联接的部分称为桨毂以一定的角度联按于轮毅上。
鱼雷的桨叶一般为2-7片。
叶片数主要决定于螺旋桨推力的大小。
航空职业教育“十三五”规划教材无人机应用技术专业系列空气动力学与飞行原理第5章螺旋桨与旋翼第5章螺旋桨与旋翼5.1螺旋桨的性能5.2直升机空气动力学基础和飞行原理5.3旋翼无人机5.1.1概述1.螺旋桨螺旋桨是指靠桨叶在空气或水中旋转,将发动机转动功率转化为推进力的装置,可有两片或更多的桨叶与桨毂相连,桨叶的内侧为螺旋面或近似螺旋面。
喷气发动机出现以前,所有带动力的航空器无不以螺旋桨作为产生推动力的装置,螺旋桨至今仍用于装活塞式发动机和涡轮螺旋桨发动机的亚声速飞机。
直升机旋翼和尾桨也是一种螺旋桨。
螺旋桨喷气式飞机5.1.2原理螺旋桨旋转时,桨叶不断把大量空气(推进介质)向后推去,在桨叶上产生一向前的力,即推进力。
一般情况下,螺旋桨除旋转外还有前进速度。
如截取一小段桨叶来看,很像一小段机翼,其相对气流速度由前进速度和旋转速度合成。
桨叶上的气动力在前进方向的分力构成拉力。
在旋转面内的分量形成阻止螺旋桨旋转的力矩,由发动机的力矩来平衡。
桨叶剖面弦(相当于翼弦)与旋转平面的夹角称为桨叶安装角。
螺旋桨旋转一圈,以桨叶安装角为导引向前推进的距离称为桨距。
实际上桨叶上每一剖面的前进速度都是相同的,但圆周速度则与该剖面距转轴的距离(半径)成正比,所以各剖面相对气流与旋转平面的夹角随着离转轴的距离增大而逐步减小。
为了使桨叶每个剖面与相对气流都保持在有利的迎角范围内,各剖面的安装角也随着与转轴的距离增大而减小。
这就是每片桨叶都有扭转的原因。
5.1.2原理螺旋桨效率以螺旋桨的输出功率与输入功率之比表示。
输出功率为螺旋桨的拉力与飞行速度的乘积。
输入功率为发动机带动螺旋桨旋转的功率。
在飞机起飞滑跑前,由于前进速度为零,所以螺旋桨效率也是零,发动机的功率全部用于增加空气的动能。
随着前进速度的增加,螺旋桨效率不断增大,速度在200~700km/h 范围内效率较高,飞行速度再增大,由于压缩效应桨尖出现波阻,效率急剧下降。
螺旋桨在飞行中的最高效率可达85%~90%。
螺旋桨概述
1.概念
1.1结构
图1 螺旋桨示意图
图2 螺旋桨结构
螺旋桨由桨叶、浆毂、、整流帽和尾轴组成,如上图所示。
滑失:如果螺旋桨旋转一周,同时前进的距离等于螺旋桨的螺距P,设螺旋桨转速为n,则理论前进速度为nP。
也就是说将不产生水被螺旋桨前后拨动的现象,然而事实上,螺旋桨总是随船一起以低于nP的进速V s对水作前进运动。
那么螺旋桨旋转一周在轴向上前进的实际距离为h p(=V s/n),称为进距。
于是我们把P与h p之差(P-h p)称为滑失。
滑失与螺距P之比为滑失比:
S r=(P-h p)/P=(nP-V s)/nP=1-V s/nP
式中V s/nP称为进距比。
从式中可以得出,当V s=nP时,S r=0。
即P=h,也就是螺旋桨将不产生对水前后拨动的现象,螺旋桨给水的推力为零。
因此我们可以得出结论:滑失越大,滑失比越高,则螺旋桨推水的速度也就越高,所得到的推力就越大。
1.2工作原理
船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。
在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。
由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。
另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。
螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。
机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。
而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。
若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。
1.3推力和阻力
以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。
根据水翼原理,桨叶要受升力和阻力的作用,推动螺旋桨前进,即推动船艇前进。
船艇运动会产生顶流和伴流。
继续把船艇看成不动,则顶流以与艇速大小相等,方向相反的流速向螺旋桨流来,而伴流则以与艇速方向相同,流速为u r向螺旋桨流来。
通过速度合成,我们可以得到与螺旋桨成攻角α,向桨叶流来的合水流。
则桨叶受到合水流升力dL和阻力dD的作用,将升力和阻力分解,则得到平行和垂直艇首尾线的分力:
图3 螺旋桨受力分析
dT=dL·cosβ-dD·sinβ
dQ=dL·sinβ+dD·cosβ
dT使船艇前进称为推力;dQ称为横向力,即桨叶的旋转阻力。
显然,攻角α和流入桨叶的水流合速度V合决定了T和Q的大小。
通常螺旋桨转速越高,而航速越低,即攻角α较大时,T和Q也越大。
设艇速V不变,如伴流流速增加(合速度减小),则攻角增大,推力和阻力也大;如果螺旋桨转速增加(合速度增加),则攻角增大,推力和阻力也大。
当船艇静止不动时,螺旋桨转动时,水流攻角很大,则推力和阻力可能达到很大的值。
阻力过大,对主机工作不利。
所以船艇在从静止开始用车时,不宜用高速;同理,船艇在前进中换倒车时或从后退中换正车时,都应经过停车阶段,让艇速下降后再行转换,而不宜直接转换。
主要是防止出现大攻角,产生巨大的旋转阻力,造成主机超负荷。
1.4 螺旋桨类型
1 可调螺距螺旋桨与定螺距螺旋桨(略)
简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。
螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。
调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。
在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。
2 导管螺旋桨(矢量推进器)
在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。
可分为固定导管和可转导管。
导管可提高螺旋桨的推进效率,这是因为导管内部流速高、压力低,导管内外的压力差在管壁上形成了附加推力;导管和螺旋桨叶间的间隙很小,限制了桨叶尖的绕流损失;导管可以减少螺旋桨后的尾流收缩,使能量损失减少。
但导管螺旋桨的倒车性能较差。
固定导管螺旋桨使船舶回转直径增大,可转导管能改善船的回转性能。
多用于推船。
3 串列螺旋桨
将两个或三个普通螺旋桨装于同一轴上,以相同速度同向转动。
当螺旋桨直径受限制时,它可加大桨叶面积,吸收较大功率,对减振或避免空泡有利。
串列螺旋桨重量较大,桨轴伸出较长,增加了布置及安装上的困难,多用于拖船、渔船、浅水急流的内河船及沿海客货船。
4 对转螺旋桨
又称双反转螺旋桨,将两个普通螺旋桨一前一后分别装于同心的内外两轴上,以等速反方向旋转。
因可减小尾流旋转损失,效率比单桨略高,但其轴系构造复杂,大船上还未应用,多用于鱼雷和潜艇[2]。
2.5 大侧斜螺旋桨
螺旋桨的侧斜程度与螺旋桨叶数有关,一般采用百分比来衡量侧斜程度,即侧斜角与360/n(n为桨叶数)的百分比,此百分比超过50%可以称为大侧斜螺旋桨。
因此,4、5、7叶桨的倾侧角分别大于45°、36°、26°时才可以称为大侧斜。
大侧斜螺旋桨较普通螺旋桨有如下优点:①减小螺旋桨不定常轴承力和力矩;②减小螺旋桨不定常表面力;③减小螺旋桨运转于不均匀伴流场中时空泡的敏感性。
2.设计
2.1 设计方法
螺旋桨设计方法主要分为两类:
1.图谱设计方法
所谓图谱设计是根据螺旋桨敞水模型试验的结果绘制成的几何参数与性能相关的各类专用图谱进行设计的方法。
2.理论设计方法
(1)升力线理论
(2)升力面理论
(3)面元法
2.2 设计过程
1.螺旋桨初步设计;选取螺旋桨主要的参数,直径、叶数、盘面比、螺距比。
盘面比:
0/E A A λ=
E A 是单个桨叶的伸张面积乘以总桨叶伸张面积;
0A 是螺旋桨盘面积;
叶片数:
/E A A Z ττ= (值取0.1~0.15)
螺旋桨最常用的叶切面形状有弓形和机翼形两种。
弓形切面的压力分布较均匀,不易产生空泡,但在低载荷系数时,其效率较机翼形者约低3~4%。
最佳螺距比:
2.螺旋桨详细设计;采用升力线、升力面模型,进行设计,决定叶剖面的具体形状。
如弦长、拱度、厚度分布和螺距分布。
图4 螺旋桨设计参数
点对螺距比:
180H
SPR
RF
H点对高度差,R叶片半径,F点对相对浆轴中心的张角。
3.螺旋桨的分析计算;采用升力面模型或边界元法或CFD评价空泡性能、螺旋桨强度、轴承力和脉动压力。
4.螺旋桨最终设计;通过模型试验,对螺旋桨的设计进行改进。
图5 常用设计软件
船用螺旋桨制造企业:
德国的MMG,英国的Stone,荷兰的Lips,日本的KAMOME。
3.分析
3.1 分析参数
螺旋桨性能参数系数主要分为以下四个:
/A A J V nD =进速系数:
24/T K T n D ρ=推力系数:
25/Q K Q n D ρ=扭矩系数:
0//2T Q K K J ηπ=⨯效率系数:
3.2 评价效率
一般认为,叶数少者效率高,叶数多者效率低,因为叶栅干扰作用加大。
螺旋桨外形或叶切面形状的影响,一般认为桨叶外形轮廓对螺旋桨的性能影响很小。
其展开轮廓近似为椭圆形最好;对于具有倾斜的桨叶,各半径处切面弦长与展开轮廓为椭圆形的各叶切面弦长大致相同者为佳。
图6 螺旋桨参数曲线
3.3 螺旋桨空化
由流体动力学可知,当水流绕经桨叶时,在吸力面上它的局部速度将大于未扰动的水流速度;在桨叶推力面上其绕流速度将小于未扰动的速度。
根据伯努利方程式可以导出桨叶吸力面上的压力将小于末干扰时的水流压力,当螺旋桨的转速增加到某一定值时,桨叶的吸力面上的最大流速处的压力降到该处温度下的饱和蒸汽压力时,在吸力面上便会出现空泡。
随着螺旋桨转速伪继续提高,空泡区域会逐渐扩大到整个叶元吸力面,这就是螺旋桨的空化现象。
空化现象分为两个阶段:如果空泡已经出现,但还没有扩展到叶元的整个吸力面,则属于空化的第一阶段;当空泡已扩展列叶元的整个吸力面,并且越出其边界时,则属于空化的第二阶段。