2019-2020学年度武昌区七年级数学期末试卷
- 格式:pdf
- 大小:298.95 KB
- 文档页数:2
武汉市2019-2020学年初一下期末统考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.下列命题中正确的有( ).①相等的角是对顶角;②若a//b,b//c,则a∥c;③同位角相等;④邻补角的平分线互相垂直.A.0个B.1个C.2个D.3个【答案】C【解析】考点:平行公理及推论;对顶角、邻补角;同位角、内错角、同旁内角.分析:根据对顶角的定义以及平行公理及推论和邻补角的性质分别进行判断即可得出答案.解答:解:①相等的角是对顶角;根据对顶角相等,但相等的角不一定是对顶角,故此选项错误;②若a∥b,b∥c,则a∥c;根据平行于同一直线的两条直线平行,故此选项正确;③同位角相等;根据两直线平行,同位角相等,故此选项错误,④邻补角的平分线互相垂直,根据角平分线的性质得出,邻补角的平分线互相垂直.已知:AB,CD相交于O,OE,OF分别平分∠AOC,∠AOD,证明:∵OE平分∠AOC,∠AOC,∴∠AOE=12∵OF平分∠AOD,∴∠AOF=1∠AOD,2∵∠AOC+∠AOD=180°,∴∠AOE+∠AOF=1(∠AOC+∠AOD)=90°,2∴OE⊥OF.故此选项正确.∴正确的有2个.故选C .点评:此题主要考查了平行公理及推论以及对顶角的定义和平行线的性质以及邻补角的定义等,熟练掌握其定义是解题关键.2.已知三角形的两边3a =,5b =,第三边是c ,则c 的取值范围是( )A .35c <<B .28c <<C .25c <<D .38c <<【答案】B【解析】【分析】根据三角形的三边关系进行求解即可.【详解】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,可知5353c -<<+,即28c <<, 故选:B.【点睛】本题主要考查了三角形的三边关系,熟练掌握三边关系的相关计算方法是解决本题的关键.3.直角三角板与两边平行的纸条如图所示放置,下列结论不一定正确的是( )A .12∠=∠B .34∠=∠C .2490∠+∠=D .14∠=∠【答案】D【解析】【分析】 直接利用平行线性质解题即可【详解】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴A ,B ,C 正确.故选:D .【点睛】本题考查平行线的基本性质,基础知识扎实是解题关键4.下列个数:13,5,3.14159,π-,38,其中无理数有( ) A .4个B .3个C .2个D .1个【答案】C【解析】【分析】 观察上面的数字,可以判断出无理数是无限不循环小数,即可判断出答案.【详解】13, 3.14159, 38都是有理数;5,π-都是无理数,所以无理数个数为2个,故答案是 C. 【点睛】本题主要考查了无理数和有理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数是无理数. 5.如图所示,下列结论中不正确的是( )A .1∠和2∠是同位角B .2∠和3∠是同旁内角C .1∠和4∠是同位角D .2∠和4∠是内错角【答案】A【解析】【分析】 根据同位角,内错角,同旁内角以及对顶角的定义进行解答.【详解】A 、∠1和∠2是同旁内角,故本选项错误,符合题意;B 、∠2和∠3是同旁内角,故本选项正确,不符合题意;C 、∠1和∠4是同位角,故本选项正确,不符合题意;D 、∠2和∠4是内错角,故本选项正确,不符合题意;故选A .【点睛】考查了同位角,内错角,同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.6.如图,香港特别行政区标志紫荆花图案绕中心旋转n °后能与原来的图案互相重合,则n 的最小值为( )A .45B .60C .72D .144【答案】C【解析】【分析】 该图形被平分成五部分,因而每部分被分成的圆心角是72︒,并且圆具有旋转不变性,因而旋转72︒的整数倍,就可以与自身重合.【详解】该图形被平分成五部分,旋转72︒的整数倍,就可以与自身重合,故n 的最小值为72.故选:C .【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.7.有理数a 、b 在数轴上对应的位置如图所示,则下列关系正确的是( )A .-a <-bB .a <-bC .b <-aD .-b <a【答案】D【解析】【分析】观察数轴,可知:-1<a <0,b >1,进而可得出-b <-1<a ,此题得解.【详解】观察数轴,可知:-1<a <0,b >1,∴-b <-1<a <0<-a <1<b .故选D .【点睛】本题考查了数轴,观察数轴,找出a 、b 、-a 、-b 之间的关系是解题的关键.8.对于命题“若22a b >,则a b >”,下列四组关于a 、b 的值中,能说明这个命题是假命题的是( ) A .3a =,1b =B .3a =-,2b =C .3a =,1b =-D .1a =-,3b = 【答案】B【解析】【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【详解】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且-3<2,此时虽然满足a2>b2,但a>b不成立,故B选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>-1,满足“若a2>b2,则a>b”,故C选项中a、b的值不能说明命题为假命题;在D中,a2=1,b2=9,且-1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选:B.【点睛】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.9.二元一次方程组2x y53x4y2-=⎧⎨+=⎩的解是( )A.x1y2=-⎧⎨=⎩B.x1y2=⎧⎨=⎩C.x2y1=⎧⎨=⎩D.x2y1=⎧⎨=-⎩【答案】D【解析】【分析】二元一次方程组将第一个方程×4加第二个方程,利用加减消元法求出解即可.【详解】解:25342x yx y-=⎧⎨+=⎩①②,①×4+②得:11x=22,即x=2,把x=2代入①得:y=-1,则方程组的解为21x y =⎧⎨=-⎩, 故选:D .【点睛】 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 10.如图,已知AB ∥CD ,∠DFE=135°,则∠ABE 的度数为( )A .30B .45C .60D .90【答案】B【解析】 ∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB ∥CD ,∴∠ABE=∠CFE=45°.故选B .二、填空题11.如图,//AB CD ,256∠=,364∠=,则1∠=__________度.【答案】120【解析】【分析】先根据三角形内角和求出∠4的度数,再根据两直线平行,同旁内角互补即可求出∠1的值.【详解】如图,∵256∠=,364∠=,∴∠4=180°-56°-64°=60°.∵AB//CD ,∴∠1=180°-60°=120°.故答案为:120.【点睛】本题考查了三角形内角和等于180°,平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角. 12.在不透明的盒子中装有5个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出1个棋子,摸到黑色棋子的概率是14,则白色棋子的个数是___________.【答案】1.【解析】【分析】黑色棋子除以相应概率算出棋子的总数,减去黑色棋子的个数即为白色棋子的个数. 【详解】5÷14﹣5=1.∴白色棋子有1个;故答案为1.【点睛】本题主要考查了概率的求法,概率=所求情况数与总情况数之比.13.如图,已知直线,,,则的度数是_________.【答案】【解析】【分析】利用平行的性质及平角公式求解即可.【详解】,∴∴=180°--=50°故答案为:50°【点睛】本题考查平行的性质及平角公式,掌握两直线平行内错角相等及平角等于180°是解题的关键. 14.如图,BE 是ABD ∠的平分线,CF 是ACD ∠的平分线,BE 与CF 交于G ,若140BDC ∠=︒,110BGC ∠=︒,则A ∠=________.【答案】80︒【解析】【分析】首先连接BC ,根据三角形的内角和定理,求出1240∠+∠=︒,∠1+∠2+∠3+∠4=70°;然后判断出3430∠+∠=︒,再根据BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,判断出5630∠+∠=︒;最后根据三角形的内角和定理,用180(123456)︒-∠+∠+∠+∠+∠+∠即可求出∠A 的度数.【详解】如下图所示,连接BC ,∵140BDC ∠=︒,∴1218014040∠+∠=︒-︒=︒,∵110BGC ∠=︒,∴123418011070∠+∠+∠+∠=︒-︒=︒,∴34704030∠+∠=︒-︒=︒,∵BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,∴∠3=∠5,∠4=∠6,又∵3430∠+∠=︒,∴5630∠+∠=︒,∴123456123()4567030100()∠+∠+∠+∠+∠+∠=∠+∠+∠+∠+∠+∠=︒+︒=︒,∴18010080A ∠=︒-︒=︒.故答案为:80︒.【点睛】本题主要考查了三角形内角和的应用,熟练掌握相关角度的和差计算是解决本题的关键.15.如图,某住宅小区内有一长方形地,若在长方形地内修筑同样宽的小路(图中阴影都分),余下部分绿化,小路的宽均为2m ,则绿化的面积为____2m .【答案】1【解析】【分析】利用平移把不规则的图形变为规则图形,如此一来,所有绿化面积之和就变为了(32-2)(20-2)m 2,进而即可求出答案.【详解】利用平移可得,两条小路的总面积是:(32-2)(20-2)=1(m 2).故答案为:1.【点睛】此题主要考查了生活中的平移现象,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.163a -+(b+4)2=0,那么点(a ,b )关于原点对称点的坐标是_____.【答案】(﹣3,4);【解析】分析:首先根据非负数的性质可得a-3=0,b+4=0,再解出a 、b 的值.进而得到点的坐标,然后再根据关于原点对称点的坐标特点可得答案. 3a -+(b+4)2=0,∴a-3=0,b+4=0,解得:a=3,b=-4,∴点(a ,b )的坐标为(3,-4),∴关于原点对称点的坐标是(-3,4),故答案为(-3,4);点睛:此题主要考查了非负数的性质、关于原点对称的点的坐标,关键是掌握两个点关于原点对称时,它们的坐标符号相反.17.孔明同学在解方程组2y kx b y x =+=-⎧⎨⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为12x y =-⎧⎨=⎩,又已知直线y =kx+b 过点(3,﹣1),则b 的正确值是______. 【答案】﹣13【解析】【分析】解本题时可将12x y =-⎧⎨=⎩和b=6代入方程组,解出k 的值.然后再把(3,-1)代入y=kx+b 中解出b 的值. 【详解】依题意得:2=−k+6,k=4;又∵-1=3×4+b ,∴b=−13故答案为:-13【点睛】此题考查解二元一次方程组,一次函数图象上点的坐标特征,解题关键在于求出k 的值三、解答题18.已知A=a+1,B=a 1﹣3a+7,C=a 1+1a ﹣18,其中a >1.(1)求证:B ﹣A >0,并指出A 与B 的大小关系;(1)指出A 与C 哪个大?说明理由.【答案】(1)证明见解析,B >A ;(1)当1<a <4时,A >C ;当a =4时,A =C ;当a >4时,A <C ,理由见解析.【解析】【分析】(1)根据题意列出式子,利用完全平方公式把式子变形,根据非负数的性质解答;(1)把C−A 的结果进行因式分解,根据有理数的乘法法则解答.【详解】解:(1)B ﹣A=(a 1﹣3a+7)﹣(a+1),=a 1﹣3a+7﹣a ﹣1,=a 1﹣4a+5,=(a 1﹣4a+4)+1,=(a ﹣1)1+1,∵(a ﹣1)1≥0,∴(a ﹣1)1+1≥1,∴B ﹣A >0,∴B >A ;(1)C ﹣A=(a 1+1a ﹣18)﹣(a+1),=a 1+1a ﹣18﹣a ﹣1,=a 1+a ﹣10,=(a+5)(a ﹣4),∵a >1,∴a+5>0,当1<a <4时,a ﹣4<0,则C ﹣A <0,即A >C ,当a =4时,a -4=0,则C ﹣A =0,即A =C ,当a >4时,a ﹣4>0,则C ﹣A >0,即A <C .【点睛】本题考查的是配方法的应用、因式分解的应用,掌握完全平方公式、偶次方的非负性是解题的关键. 19.阅读下列材料:我们知道||x 的几何意义是在数轴上数x 对应的点与原点的距离,即0x x =-,也就是说,12||x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例 1.解方程||2x =,因为在数轴上到原点的距离为2的点对应的数为2±,所以方程||2x =的解为2x =±.例 2.解不等式|1|2x ->,在数轴上找出|1|2x -=的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为1-或3,所以方程|1|2x -=的解为1x =-或3x =,因此不等式|1|2x ->的解集为1x <-或3x >.参考阅读材料,解答下列问题:(1)方程35x +=的解为 ;(2)解不等式:|2|3x -≤;(3)解不等式:428x x -++>.【答案】(1)x=2或x=-8;(2)-1≤x≤5;(3)x >5或x <-3.【解析】【分析】(1)利用在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8求解即可;(2)先求出|2|3-=x 的解,再求出|2|3x -≤的解集即可;(3)先在数轴上找出428-++=x x 的解,即可得出428x x -++>的解集.【详解】解:(1)∵在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8 ∴方程35x +=的解为x=2或x=-8(2)∵在数轴上到2对应的点的距离等于3的点的对应的数为-1或5∴方程|2|3-=x 的解为x=-1或x=5∴|2|3x -≤的解集为-1≤x≤5.(3)由绝对值的几何意义可知,方程428-++=x x 就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x 的值.∵在数轴上4和-2对应的点的距离是6∴满足方程的x 的点在4的右边或-2的左边若x 对应的点在4的右边,可得x=5;若x 对应的点在-2的左边,可得x=-3 ∴方程428-++=x x 的解为x=5或x=-3 ∴428x x -++>的解集为x >5或x <-3.故答案为(1)x=2或x=-8;(2)-1≤x≤5;(3)x >5或x <-3.【点睛】本题考查了绝对值及不等式的知识. 解题的关键是理解12||x x -表示在数轴上数1x 与数2x 对应的点之间的距离.20.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售2辆A 型车和1辆B 型车,销售额为62万元.(1)求每辆A 型车和B 型车的售价各多少万元.(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?【答案】(1)18,26;(2)两种方案:方案1:购买A 型车2辆,购买B 型车4辆;方案2:购买A 型车1辆,购买B 型车1辆.【解析】试题分析:(1)方程组的应用解题关键是设出未知数,找出等量关系,列出方程组求解.本题设每辆A 型车的售价为x万元,每辆B型车的售价为y万元,等量关系为:售1辆A型车和1辆B型车,销售额为96万元;售2辆A型车和1辆B型车,销售额为62万元.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解.本题不等量关系为:购车费不少于110万元,且不超过140万元.试题解析:(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意,得396{262x yx y+=+=,解得18{26xy==.答;每辆A型车的售价为18万元,每辆B型车的售价为16万元.(2)设购买A型车a辆,则购买B型车(6-a)辆,根据题意,得1826(6)130{1826(6)140a aa a+-≥+-≤,解得1234a≤≤.∵a是正整数,∴a=2或a=1.∴共有两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车1辆,购买B型车1辆考点:二元一次方程组的应用;一元一次不等式的应用.21.课外阅读是提高学生综合素养的重要途径,某校为了解学生课外阅读情况,随机抽取若干名学生,调查他们平均每天课外阅读的时间(t小时),并将收集的数据绘制成如图所示的两幅不完整的统计图表,请根据图表信息,解答下列问题:某校学生平均每天课外阅读时间频数表某校学生平均每天课外阅读时间条形统计图(1)填空:a=________,b=________,c=________;并在图中补全条形统计图;(2)该校现有学生1211人,请你根据上述调查结果,估计该校学生平均每天课外阅读时间不少于1小时的共有多少人?【答案】(1)5;1.2;1.1(2)481人【解析】【分析】(1)根据B类人数及占比求出调查的总人数,再分别减去A,B,C类的人数即可得到D组人数,再根据各组的人数除以调查总人数求出频率,再补全补全条形统计图;(2)根据样本中的频率即可估计全校人数.【详解】(1)21÷1.4=51(人),a=51−11−21−15=5(人),b=11÷51=1.2,c=5÷51=1.1,故答案为5,1.2,1.1;补全条形统计图(2)该校学生平均每天课外阅读时间不少于1小时的共有1211×(1.3+1.1)=481(人),答:该校学生平均每天课外阅读时间不少于1小时的共有481人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.我们发现:111122=-⨯,1112323=-⨯,1113434=-⨯,……,(1)利用上述发现计算:112+⨯123⨯+134⨯+…+199100⨯.(2)现有咸度较低的盐水a 克,其中含盐b 克,若再往该盐水中加m 克盐(加入的盐均能溶解),生活经验告诉我们盐水会更咸.①请你用两个代数式的大小关系来表达这一现象,并通过分式运算说明结论的正确性;②应用上述原理说明对于任意正整数n ,算式1241⨯-+1461⨯-+1681⨯-+…+122(1)1n n ⨯+-的值都小于12. 【答案】(1)99100;(2)①见解析,②见解析. 【解析】【分析】(1)根据所举例子,裂项相消即可;(2)①根据题意列出不等式即可,并利用作差法即可求出答案;②先根据①的结论变形,然后裂项相消即可.【详解】(1)原式=111111112233499100-+-+-+⋯+- =1-1100=99100 (2)①由题意可知:b m b a m a+>+ ()()()()()b m b a b m b a m m a b a m a a a m a a m ++-+--==+++, ∵0<b <a 且m >0, ∴()()m a b a a m -+>0, 即b m b a m a +>+; ②由①可知:1222(1)122(1)n n n n <⨯+-⨯+, ∴111124146168122(1)1n n ++++⨯-⨯-⨯-⨯+-<222244622(1)n n ++⋅⨯⨯⋅+ =111111244622(1)n n -+-+⋯+-+ =12(1)2n n <+.【点睛】本题考查学生的阅读能力,分式的加减运算,解题的关键是正确理解题意给出的规律,本题属于基础题型. 23.解不等式组{321351x x x +≥--≥【答案】24x ≤≤【解析】分析:首先求出每个不等式的解集,再求出这些解集的公共部分即可.详解:解不等式x+3≥2x -1,可得:x≤1;解不等式3x-5≥1,可得:x≥2;∴不等式组的解集是2≤x≤1.点睛:此题主要考查了解一元一次不等式组的方法,要熟练掌握,注意解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 24.(1)解方程组31232(1)133x y y x -+⎧=⎪⎪⎨⎪-+=⎪⎩①② ;(2)求不等式组43(2)1213x x x x ①②-≤-⎧⎪⎨++>⎪⎩ 的整数解. 【答案】(1)31x y =⎧⎨=-⎩;(2)x =1或2或2. 【解析】【分析】(1)先化简,再用加减消元法,最后用代入法即可求解;(2)分别求出各不等式的解集,再求其公共解集,根据其解集的范围找出其整数解.【详解】(1)31232(1)133x y y x -+⎧=⎪⎪⎨⎪-+=⎪⎩①② 由①得2x ﹣2y =11③,由②得2x+y =5④,④×2+③得7x =21,解得x =2,代入④得6+y =5,解得y =﹣1.故原方程组的解为31x y =⎧⎨=-⎩.(2)43(2)1213x xxx①②--⎧⎪⎨++>⎪⎩,由①得x≥1,由②得x<4,故不等式组的解集为1≤x<4,故原不等式的整数解为x=1或2或2.【点睛】考查的是解二元一次方程组的方法及求一元一次不等式组解集的方法.要熟练掌握加减消元法解方程组和不等式的基本性质以及不等式组的解集的求法.25.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.【答案】-4≤a<-3.【解析】试题分析:首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.试题解析:解:由5x+2>3(x﹣2)得:x>﹣2,由12x≤8﹣32x+2a得:x≤4+a.则不等式组的解集是:﹣2<x≤4+a.不等式组只有两个整数解,是﹣2和2.根据题意得:2≤4+a<2.解得:﹣4≤a<﹣3.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
2019-2020学年武汉市武昌区七年级下学期期末数学试卷一、选择题(本大题共10小题,共30.0分) 1.已知点P(3−m,m −1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A.B.C.D.2.下列说法中,正确的个数是( )①−64的立方根是−4; ②49的算术平方根是7; ③127的立方根是13; ④116的平方根是14.A. 1个B. 2个C. 3个D. 4个3.不等式组{x +4>3x ≤1的解集为( )A. −1<x ≤1B. −1≤x <1C. −1<x <1D. x <−1或x ≥14.√4=( )A. 1B. 2C. 3D. 45.如图,AB//CD ,AD 和BC 相交于点O ,∠A =30°,∠COD =80°,则∠C =( )A. 50°B. 60°C. 70°D. 80°6.二元一次方程x +y =5有( )个解A. 1B. 2C. 3D. 无数7.下列说法中错误的是( )。
A. 掷一枚均匀的骰子,骰子停止转动后6点朝上是必然事件B. 了解一批电视机的使用寿命,适合用抽样调查的方式C. 若a为实数,则|a|<0是不可能事件D. 甲、乙两人各进行10次射击,两人射击成绩的方差分别为=2,=4,则甲的射击成绩更稳定8.若m=√32×√12+√20,则估计m的取值范围是()A. 5<m<6B. 6<m<7C. 7<m<8D. 8<m<99.如图,AB//CD,E是BC延长线上一点,若∠B=50°,∠D=20°,则∠E的度数为()A. 20°B. 30°C. 40°D. 50°10.若a<b,则下列各式中一定成立的是()A. a+2>b+2B. a−2>b−2C. −2a>−2bD. a2>b2二、填空题(本大题共6小题,共18.0分)11.已知(2x+2)的立方根是2,则(3x+7)的平方根是______.12.一个样本有20个数据:3531333537393538403936343537363234353634.在列频数分布表时,如果组距为2,那么应分成______组,36应在第______组中.13.一个三角形三个外角度数比为8:7:3,这个三角形是______ 三角形(填“锐角”、“直角”或“钝角”).14.如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心,此时,点M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0),点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,…,且这些对称中心依次循环,已知P1的坐标是(1,1),点P2019的坐标为______.15. 某商品进价是180元,标价是270元,要使该商品利润率为20%,则该商品应按______折销售. 16. 如图,在四边形OABC 中,BC//AO ,∠BAO =90°,顶点A 在x 轴的负半轴上,反比例函数y =kx (x <0)的图象经过顶点C ,交AB 于点D.若AD =BD ,四边形OABC 的面积为12,则k 的值为______.三、计算题(本大题共1小题,共10.0分)17. 某超市销售甲、乙两种商品,该超市若同时购进甲、乙两种商品各10件共花费400元;若购进甲种商品30件,购进乙种商品15件,将用去750元; (1)求甲、乙两种商品每件的进价;(2)由于甲、乙两种商品受到市民欢迎,十一月份超市决定购进甲、乙两种商品共80件,且保持(1)的进价不变,已知甲种商品每件的售价为15元,乙种商品每件的售价40元,要使十一月份购进的甲、乙两种商品共80件全部销售完的总利润不少于600元,那么该超市最多购进甲种商品多少件?四、解答题(本大题共7小题,共62.0分) 18. 解方程组:{4x +y =−12x −3y =10.19. 解不等式组{2x −7<5−2xx +1>3+x 2并求出其整数解.20. 已知;如图,AB//CD ,BC//DE.求证:∠B +∠CDE =180°.21. 在一次救灾中,大约有2.5×105个人需要安置.假如一顶帐篷占地100m 2,可以放置40个床位,若将上述受灾的人都进行安置,需要多少顶帐篷?这些帐篷大约要占多大地方?估计你们学校的操场中可以安置多少人?22.某中学为了解某年级1200名学生每学期参加社会实践活动的时间,随机对该年级50名学生进行了调查,结果如下表:时间(天)45678910111213人数12457118642(1)在这个统计中,众数是______ ,中位数是______ ;(2)补全下面的频率分布表和频率分布直方图:分组频数频率3.5~5.530.065.5~7.590.187.5~9.50.369.5~11.51411.5~13.560.12合计50 1.00(3)请你估算这所学校该年级的学生中,每学期参加社会实践活动时间不少于9天的大约有多少人?23.如图1,△ABC中,BE平分∠ABC交AC边于点E,过点E作DE//BC交AB于点D,(1)求证:△BDE为等腰三角形;(2)若点D为AB中点,AB=6,求线段BC的长;(3)在(2)条件下,如图2,若∠BAC=60°,动点P从点B出发,以每秒1个单位的速度沿射线BC运动,当△PBE为等腰三角形时t的值(请直接写出).24.如图,一艘轮船在A处测得小岛C在船的北偏东53°方向,该船继续向东航行10海里到达B处,此时又测得小岛C在船的北偏西37°方向,已知AC=8海里,BC=6海里,且CD⊥AB,求点C 到AB的距离.【答案与解析】1.答案:A解析:解:已知点P(3−m,m −1)在第二象限, 3−m <0且m −1>0, 解得m >3,m >1, 故选:A .根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.2.答案:C解析:解:①−64的立方根是−4,正确; ②49的算术平方根是7,正确; ③127的立方根是13,正确;④116的平方根是±14,故本选项错误; 正确的个数有3个; 故选:C .根据立方根、平方根和算术平方根的定义分别对每一项进行分析,即可得出答案.此题考查了立方根、平方根和算术平方根,熟练掌握立方根、平方根和算术平方根的定义是解题的关键.3.答案:A解析:试题分析:先求出不等式(1)的解集,再求出两不等式的公共解集即可. 由(1)得,x >−1,故原不等式组的解集为:−1<x ≤1.4.答案:B解析:解:√4=2, 故选:B .根据22=4求出即可.本题考查了算术平方根的应用,主要考查学生的计算能力.5.答案:C解析:解:∵AB//CD ,∴∠D=∠A=30°,∵∠COD=80°,∴∠C=180°−∠D−∠COD=180°−30°−80°=70°.故选:C.先根据平行线的性质求出∠D的度数,再由三角形内角和定理即可得出结论.本题考查的是平行线的性质,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件.6.答案:D解析:解:方程x+y=5有无数个解.故选:D.根据二元一次方程有无数个解即可得到结果.此题考查了二元一次方程的解.7.答案:A解析:试题分析:本题主要统计与概率。
每日一学:湖北省武汉市武昌区2019-2020学年七年级上学期数学期末考试试卷_压轴题解答
答案湖北省武汉市武昌区2019-2020学年七年级上学期数学期末考试试卷_压轴题
~~ 第1题 ~~
(2020武昌.七上期末) 已知∠AOB=120°,∠
COD=40°,OM 平分∠AOC ,ON 平分∠BOD(图中的角均大于0°且小于180°)
(1) 如图1,求∠MON 的度数;
(2) 若OD 与OB 重合,OC 从图2中的位置出发绕点O 逆时针以每秒
10°的速度旋转,同时OD 从OB 的位置出发绕点O 顺时针以每秒5°的速度旋转,旋转时间为t
秒
①当
时,试确定∠BOM 与∠AON
的数量关系;②当 且 时,若 ,则t=.
考点: 一元一次方程的实际应用-几何问题;角的运算;角的平分线;
~~
第2题 ~~
(2020
武昌.七上期末) 如图,将一个正方形分割成
11个大小不同的正方形,记图中最大正方形的周长是 ,最小正方形的周长是 ,则 ________.
~~ 第3题 ~~
(2020武昌.七上期末) 如图,D 、E 顺次为线段AB 上的两点,
AB=19,BE -DE=7,C 为AD 的中点,则AE -AC 的值为( )
A . 5
B . 6
C . 7
D . 8
湖北省武汉市武昌区2019-2020学年七年级上学期数学期末考试试卷_压轴题解答
~~ 第1题 ~~
答案:
解析:
答案:
解析:
~~ 第3题 ~~
答案:B
解析:。
湖北省武汉市武昌区2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列四个有理数中最小的是()A. 2B. 0C. −5D. 42.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120113.预计到2025年,中国5G用户将超过460000000,将460000000用科学记数法表示为()A. 4.6×109 B. 46×107 C. 4.6×108 D. 0.46×1094.从上面看如图中的几何体,得到的平面图形正确的是()A. B. C. D.5.下列说法中:①−2xy3的系数是−2;②32mn2的次数是3次;③3xy2−4x3y+1是七次三项式;④x+y6是多项式,其中正确的是()A. ①③B. ②④C. ②③D. ①②③④6.已知方程2x+a=ax+2的解为x=3,则a的值为()A. 3B. 2C. −2D. ±27.下列运算正确的是()A. a+b=abB. 6a3−2a3=4C. 2b2+3b3=5b5D. 4a2b−3ba2=a2b8.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是()A. x60=x−100100B. x100=x−10060C. x60=x+100100D. x100=x+100609.a、b在数轴上的位置如图所示,则|a−b|等于()A. −b−aB. a−bC. a+bD. −a+b10.C,D是线段AB上顺次两点,M,N分别是AC,BD中点,若CD=a.MN=b.则AB的长为()A. 2b−aB. b−aC. b+aD. 2a+2b二、填空题(本大题共6小题,共18.0分)11.室内温度是15℃,室外温度是−3℃,则室外温度比室内温度低________℃.12.25.14°=______ °______ ′______ ″;38°15′=______ °.13.若−3xy3与xy n+1是同类项,则n=______.14.一个角的补角是118°,则它的余角是.15.如图,M是线段AB的中点,N是线段AB的三等分点,且NM=3cm,则AB的长为______cm.16.在一次剪纸活动中,小聪依次剪出6张正方形纸片拼成如图所示的图形,若小聪所拼得的图形中正方形⑤的面积为8,且正方形⑥与正方形③面积相等,那么正方形①的面积为____.三、计算题(本大题共2小题,共16.0分)17.解方程:(1)2x+3=5x−18;(2)x+12−1=2−3x3.18.三个队植树,第一个队植树a棵,第二队植的树比第一队的2倍还多8棵,第三队植的树比第二队的一半少6棵,问三队共植树多少棵?并求当a=100棵时,三队共植树的棵数.四、解答题(本大题共6小题,共56.0分)19.计算:(1)(−36)×(−5+4−1)(2)−32+(1−47)÷2×[(−4)2−2]20.先化简,再求值:4x3−[3x3+(7x2−6x)]−(x3−3x2+4x),其中x=−12.21.如图所示,点0在直线AB上,并且∠AOC=∠BOC=90°,∠EOF=90°,试判断∠AOE和∠COF,∠COE和∠BOF的大小关系.22.某公园门票价格规定如下:购票张数1—50张51—100张100张以上每张票的价格13元11元9元某年级两个班一班和二班共104人去公园玩儿,其中一班人数不足50人,经计算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来作为一个团体购票,可省多少钱?(3)如果一班单独组织去公园玩儿,如果你是组织者,将如何购票更省钱?AC,23.已知线段AB=12,在线段AB上有C、D、M、N四个点,且AC︰CD︰DB=1︰2︰3,AM=12 BD,求线段MN的长.DN=1424.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“定分线”.(1)一个角的平分线______这个角的“定分线”;(填“是”或“不是”)(2)如图2,若∠MPN=a,且射线PQ是∠MPN的“定分线”,则∠MPQ=______(用含a的代数式表示出所有可能的结果);(3)如图2,若∠MPN=45°,且射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当PQ与PN成90°时停止旋转,旋转的时间为t秒.同时射线PM绕点P以每秒5°的速度逆时针旋转,并与PQ同时停止.当PQ是∠MPN的“定分线”时,求t的值.-------- 答案与解析 --------1.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.据此判断即可.解:根据有理数比较大小的方法,可得4>2>0>−5,∴四个有理数中最小的是−5.故选C.2.答案:C解析:解:−2011的相反数是2011.故选:C.根据相反数的定义即可求解.本题主要考查了相反数的定义,a的相反数是−a.3.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将460000000用科学记数法表示为4.6×108.故选:C.4.答案:B解析:解:从上边看是,故选:B.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.答案:B解析:[分析]根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;多项式中次数最高的项的次数叫做多项式的次数进行分析即可.此题主要考查了整式,关键是掌握多项式和单项式相关定义.[详解]解:①−2xy3的系数是−2,说法错误,应为−23;②32mn2的次数是3次,说法正确;③3xy2−4x3y+1是七次三项式,说法错误,应为四次三项式;④x+y6是多项式,说法正确;故正确的说法为②④,故选B.6.答案:B解析:本题主要考查的是一元一次方程的解法和方程的解的有关知识,先将x=3代入2x+a=ax+2中得到关于a的方程,求解即可.解:由题意将x=3代入2x+a=ax+2,得:2×3+a=3a+2,解得:a=2.故选B.7.答案:D解析:解:A.a与b不是同类项,不能合并,A错误;B.6a3−2a3=4a3,B错误;C.2b2与3b3不是同类项,不能合并,C错误;D.4a2b−3ba2=a2b,D正确;故选:D.根据同类项的定义,合并同类项法则判断即可.本题考查的是合并同类项,正确判断同类项,掌握合并同类项法则是解题的关键.8.答案:B解析:设走路快的人要走x步才能追上走路慢的人,根据走路快的人走100步的时候,走路慢的才走了60步可得走路快的人与走路慢的人速度比为100:60,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程,然后根据等式的性质变形即可求解.本题考查了由实际问题抽象出一元一次方程.解题关键是理解题意找到等量关系.解:设走路快的人要走x步才能追上走路慢的人,而此时走路慢的人走了60x100步,根据题意,得x=60x100+100,整理,得x100=x−10060.故选:B.9.答案:D解析:此题考查了数轴,以及绝对值,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.解:根据题意得:a<0<b,且|a|>|b|,∴a−b<0,则原式=b−a.故选D.10.答案:A解析:考查了两点间的距离,首先根据线段的中点概念,写出需要的关系式.再根据题意,结合图形进行线段的和与差的计算.由M是AC的中点,N是BD的中点,则AC=2MC,BD=2DN,故AB=AC+CD+BD可求.解:∵M是AC的中点,N是BD的中点∴AC=2MC,BD=2DN∵MN=b,CD=a∴AB=AC+CD+BD=2MC+CD+2DN=2(MC+CD+DN)−CD=2MN−CD=2b−a.故选A.11.答案:18解析:本题主要考查有理数的减法,正确列出算式是解决此类问题的关键.求解时要用有理数的减法法则.用室内温度减去室外温度,列式计算.解:依题意得15−(−3)=15+3=18.故答案为18.12.答案:25;8;24;38.25解析:本题考查了度分秒的换算,大单位化小单位乘以进率,小单位化大单位除以进率.根据度分秒的换算,大单位化小单位乘以进率,可得答案,小单位化大单位除以进率,可得答案.解:25.14°=25°8′24″,38°15′=38.25°,故答案为:25,8,24;38.25.13.答案:2解析:解:∵−3xy3与xy n+1是同类项,∴n+1=3,解得:n=2.故答案为:2.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.14.答案:28°解析:本题考查补角、余角的定义:如果两个角的和为180°,则这两个角互为补角,如果两个角的和为90°,则这两个角互为余角.首先根据这个角的补角求出这个角的大小,再求它的余角即可.解:若一个角的补角是118°,则这个角为180°−118°=62°,则它的余角为90°−62°=28°.故答案为28°.15.答案:18解析:本题考查了两点间的距离,主要利用了线段中点的定义和三等分点的定义,熟记概念是解题的关键.根据线段中点的定义得到AM=12AB,由于N是线段AB的三等分点,得到AN=13AB,列方程即可得到结论.解:∵M是线段AB的中点,∴AM=12AB,∵N是线段AB的三等分点,∴AN=13AB,∵MN=AM−AN=12AB−13AB=3,∴AB=18cm,故答案为:18.16.答案:29解析:本题考查了正方形的性质及一元一次方程的应用.令①的边长为x ,我们由图可发现其它正方形的边长⑤比④多x ,④比③多x ,③比②多x ,根据题目中的等量关系列出方程解出答案即可. 解:因为正方形⑤的面积为8,所以正方形⑤的边长为2√2令①的边长为x ,则④的边长为2√2−x ,③的边长为2√2−2x ,②的边长为2√2−3x , 由图形可知,2√2+(2√2−x)=(2√2−2x)+(2√2−2x)+(2√2−3x),解得:x =√23, 所以正方形①的面积=(√23)2=29. 故答案为29. 17.答案:解:(1)移项得:2x −5x =−18−3,合并同类项得:−3x =−21,系数化为1得:x =7;(2)去分母得:3(x +1)−6=2(2−3x),去括号得:3x +3−6=4−6x ,移项合并得:9x =7,系数化为1得:x =79.解析:此题考查了解一元一次方程,属于基础题.(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.18.答案:解:∵第一个队植树a 棵,第二队植的树比第一队的2倍还多8棵,∴第二队植的树的棵数为2a +8,第三队植的树的棵数为(2a +8)÷2−6=a −2.∴三队共植树的棵数=a +(2a +8)+(a −2)=4a +6,当a =100时,4a +6=406(棵),答:三队共植树(4a +6)棵,当a =100时,三队共植树的棵数为406棵.解析:考查列代数式及代数式求值问题;分步得到其余2个队植树棵数的代数式是解决本题的关键. 第二队植的树的棵数=2×第一个队植树的棵数+8;第三队植的树的棵数=第二队植的树的棵数÷2−6;三队共植树的棵数让表示3个队植树棵数的代数式相加;进而把a =100代入得到的代数式,计算即可.19.答案:解:(1)原式=45−48+3=0;(2)原式=−9+37×12×14=−9+3=−6.解析:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.20.答案:解:原式=4x 3−[3x 3+7x 2−6x]−x 3+3x 2−4x=4x 3−3x 3−7x 2+6x −x 3+3x 2−4x=−4x 2+2x ,当x =−12时,原式=−4×(−12)2+2×(−12)=−4×14−1 =−1−1=−2.解析:原式去括号合并得到最简结果,把x 的值代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.21.答案:解:因为∠EOF =∠COF +∠COE =90°,∠AOC =∠AOE +∠COE =90°,即∠AOE 和∠COF 都与∠COE 互余,根据同角的余角相等得:∠AOE =∠COF ,同理可得出:∠COE =∠BOF .解析:根据已知得出∠AOE和∠COF都与∠COE互余,进而得出∠AOE=∠COF,即可得出:∠COE=∠BOF.此题主要考查了角的比较大小,根据已知得出∠AOE=∠COF是解题关键.22.答案:解:(1)设一班有x人,则二班为(104−x)人,∴13x+11(104−x)=1240或13x+9(104−x)=1240,解得:x=48或x=76(不合题意,舍去).即一班48人,二班56人;(2)1240−104×9=304元,∴可省304元钱;(3)要想享受优惠,由(1)可知一班48人,只需多买3张,51×11=561元,48×13=624元>561元∴48人买51人的票可以更省钱.解析:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,设计方案的运用,解答时找到等量关系建立方程求出各班人数是关键.(1)设初一班有x人,则二班为(104−x)人,其相等关系为两个班购票款数为1240元,列方程求解;(2)先求出购团体票的费用,再用1240元−团体票的费用就是节约的钱;(3)根据公园门票价格规定,通过计算得出应尽量设计的能够享受优惠的购票方案.23.答案:解:(1)当点N在点D右侧时,如图所示:由题意设AC=x,则CD=2x,DB=3x,∵AB=12,AC+CD+DB=AB,∴x+2x+3x=12,解得:x=2,∴AC=2,CD=4,DB=6,∵AM=12AC,DN=14BD,∴AM=CM=1,DN=14×6=32,∴MN=MC+CD+DN=1+4+32=132.则线段MN 的长为132.(2)当点N 在点D 左侧时,如图所示:由题意设AC =x ,则CD =2x ,DB =3x ,∵AB =12,AC +CD +DB =AB ,∴x +2x +3x =12,解得:x =2,∴AC =2,CD =4,DB =6,∵AM =12AC ,DN =14BD ,∴AM =CM =1,DN =14×6=32,∴MN =AC +CD −AM −DN =2+4−1−32=72. 则线段MN 的长为72.综上所述,线段MN 的长为132或72.解析:本题主要考查的是两点间的距离的有关知识.由题意分情况讨论:(1)当点N 在点D 右侧时,设AC =x ,则CD =2x ,DB =3x ,再根据AB =12分别求出AC ,CD ,DB 的长,然后利用AM =12AC ,DN =14BD 可以得到CM ,DN 的长,最后利用MN =MC +CD +DN 进行求解即可.(2)当点N 在点D 左侧时,利用MN =AC +CD −AM −DN 代入求解即可.24.答案:解:(1)是;(2)12a 或23a 或13a ;(3)由题意可知,∠NPQ =(10t)°,∠MPN =45°+(5t)°,∠MPQ =45°+(5t)°−(10t)°=45°−(5t)°,①当∠MPN =2∠NPQ 时,有45°+(5t)°=2×(10t)°,解得,t =3;②当∠MPQ =2∠NPQ 时,有45°−(5t)°=2×(10t)°,解得,t =95;③当∠NPQ =2∠MPQ 时,有(10t)°=2[45°−(5t)°],解得,t =92.则t =3或95或92,经检验均符合题意.综上,t =3或95或92.解析:本题是一个新定义题,解答这类题关键是要仔细读题,读懂题意根据定义解题便可.涉及角平分线,一元一次方程的应用,角的和差计算,属于较难题.(1)根据新定义与角平分线的定义进行解答便可;(2)根据新定义考虑三个角两两之间的倍数关系便可;(3)根据新定义,结合旋转过程中角的倍数关系列出方程解答便可.解:(1)因角平分线分成两个角与被分原角满足原角是所分出的小角的两倍,根据新定义知,角平分线是这个角的“定分线”,故答案为:是;(2)当∠MPN =2∠MPQ 时,∠MPQ =12a ,当∠MPQ =2∠NPQ 时,∠MPQ =23a ,当∠NPQ =2∠MPQ 时,∠MPQ =13a.故答案为12a 或23a 或13a ;(3)见答案.。
2019-2020武昌区七年级上期末考试试题—学年度第一学期期末学业水平测试·七年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1、四个有理数2、1、0、﹣1,其中最小的是 A 、1B 、0C 、﹣1D 、22、相反数等于它本身的数是 A 、﹣1B 、0C 、1D 、0和13、据统计部门预测,到2020年常住人口将达到月14500000人,数14500000用科学记数法表示为 A 、0.145×810B 、1.45×710C 、14.5×610D 、145×5104、如图,一个长方形绕轴l 旋转一周得到的立体图形是 A 、棱锥 B 、圆锥 C 、圆柱D 、球5、多项式21y y ++是 A 、二次二项式 B 、二次三项式C 、三次二项式D 、三次三项式6、已知x =2是关于x 的一元一次方程mx +2=0的解,则m 的值为 A 、﹣1B 、0C 、1D 、27、下面计算正确的 A 、223x x -=3 B 、a +b =ab C 、3+x =3xD 、﹣ab +ba =08、甲厂有某种原料180吨,运出2x 吨,乙厂有同样的原料120吨,运进x 吨,现在甲厂原料比乙厂原料多30吨,根据题意列方程,则下列所列方程正确的是 A 、(180-2x )-(120+x )=30 B 、(180+2x )-(120-x )=30 C 、(180-2x )-(120-x )=30D 、(180+2x )-(120+x )=309、如图,数轴上每相邻两点相距一个单位长度,点A 、B 、C 、D 对应的位置如图所示,它们对应的数分别是a 、b 、c 、d ,且d -b +c =10,那么点A 对应的数是A 、﹣6B 、﹣3C 、0D 、正数10、如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是A 、3b -2aB 、2a b- C 、3a b-D 、34a b -二、填空题(本大题共6小题,每小题3分,共18分)11、若水库水位高于标准水位3米时,记作﹢3米,那么低于标准水位2米时,应记作 米。
武汉市2019-2020学年七年级第二学期期末统考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题只有一个答案正确)1.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF =180°,∠F=∠G,则图中与∠ECB相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断. 【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.2.要调查实验中学生了解禁毒知识的情况,下列抽样调查最适合的是()A.在某中学抽取200名女生B.在实验中学生中抽取200名学生C.在某中学抽取200名学生D.在实验中学生中抽取200名男生【答案】B【解析】直接利用抽样调查中抽取的样本是否具有代表性,进而分析得出答案.【详解】解:A、在某中学抽取200名女生,抽样具有局限性,不合题意;B、在实验中学生中抽取200名学生,具有代表性,符合题意;C、在某中学抽取200名学生,抽样具有局限性,不合题意;D、在实验中学生中抽取200名男生,抽样具有局限性,不合题意;故选:B.【点睛】此题主要考查了抽样调查的意义,正确理解抽样调查是解题关键.3.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.4.如图,已知AB∥CD,BC平分∠ABE,∠C=33︒,则∠BED 的度数是()A.16︒B.33︒C.49︒D.66︒试题分析:因为AB ∥CD ,所以∠ABC=∠BCE ,因为BC 平分∠ABE ,所以∠ABC=∠EBC ,所以∠BCE=∠EBC=33°,所以∠BED=∠BCE+∠EBC=66°.故选D .考点:平行线的性质;三角形的外角的性质.5.如图,//EF AD ,//AD BC ,CE 平分BCF ∠,120DAC ∠=,20ACF ∠=.则FEC ∠的度数为( )A .10B .20C .30D .60【答案】B【解析】【分析】 根据AD ∥BC ,得到∠DAC+∠ACB=180°,从而得到∠ACB=60°,由∠ACF=20°,得∠BCF 的度数,根据角平分线的性质和平行线的性质得到∠FEC=∠BCE ,即可得出∠FEC=∠FCE .【详解】∵AD ∥BC ,∴∠DAC+∠ACB=180°.∵∠DAC=120°,∴∠ACB=60°.∵∠ACF=20°,∴∠BCF=40°.∵CE 平分∠BCF ,∴∠BCE=∠ECF=20°.∵EF ∥AD ,∴EF ∥BC ,∴∠FEC=∠BCE ,∴∠FEC=∠FCE=20°.故选B .【点睛】本题考查了平行线的性质以及角平分线的定义.掌握平行线的性质以及角平分线的定义是解答本题的关键.6.已知单项式 23x m y -- 与 2323n m n x y - 是同类项,那么m ,n 的值分别是 A .31m n =⎧⎨=-⎩ B .31m n =⎧⎨=⎩ C .31m n =-⎧⎨=⎩ D .31m n =-⎧⎨=-⎩ 【答案】B根据同类项的定义进行选择即可.【详解】∵单项式-x m-2y3与x n y2m-3n是同类项,∴m-2=n,2m-3n=3,∴m=3,n=1,故选:B.【点睛】考查了同类项,掌握同类项的定义(相同字母,相同字母的指数也相同)是解题的关键.7.下列语句中,不正确的个数是()①直径是弦;②弧是半圆;③长度相等的弧是等弧;④经过圆内一定点可以作无数条直径.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据弦、弧、等弧的定义即可求解.【详解】①根据直径的概念,知直径是特殊的弦,故正确;②根据弧的概念,知半圆是弧,但弧不一定是半圆,故错误;③根据等弧的概念:在同圆或等圆中,能够互相重合的弧是等弧.长度相等的两条弧不一定能够重合,故错误;④如果该定点和圆心不重合,根据两点确定一条直线,则只能作一条直径,故错误.故选C.【点睛】本题考差了圆的基本概念.理解圆中的一些概念(弦、直径、弧、半圆、等弧)是解题的关键.8.观察下表中的数据信息:根据表中的信息判断,下列语句中正确的是()A23.409 1.53B.241的算术平方根比15.5小C.根据表中数据的变化趋势,可以推断出16.12将比256增大3.17D.只有3个正整数n满足15.7<<15.8【答案】D【解析】【分析】根据表格中的信息可知x2和其对应的算术平方根的值,然后依次判断各选项即可.【详解】A=15.3,=1.53,故选项不正确;B=15.5∴241的算术平方根比15.5大,故选项不正确;C.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.17,故选项不正确;D.根据表格中的信息知:15.72=246.49<n<15.82=249.64,∴正整数n=247或248或249,∴只有3个正整数n满足15.715.8,故选项正确.故选:D.【点睛】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.9.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是A.2 B.3 C.4 D.5【答案】C【解析】试题分析:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.10.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A.11B.12C.13D.14【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=1.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.二、填空题11.方程3x-5y=15,用含x 的代数式表示y,则y=.【答案】0.6x-3【解析】【分析】本题是将二元一次方程变形,用一个未知数表示另一个未知数,可先移项,再系数化为1,得到y的表达式,最后把x的值代入方程求出y值.【详解】由已知方程3x−5y=15,移项得−5y=15−3x系数化为1得y=0.6x-3故答案为0.6x-3【点睛】此题考查解二元一次方程,解题关键在于掌握运算法则12.不等式组 的解集在数轴上表示正确的是( )A .B .C .D .【答案】D【解析】【分析】 先解出不等式组的解集,把解集在数轴上表示即可判断.【详解】 解不等式组, 解不等式得, 解不等式得,根据在数轴上表示可选D.【点睛】此题主要考查不等式组的解集表示方法,正确求出不等式的解是解题的关键.13.分解因式:m 2(x -2)+(2-x) = _______________________.【答案】(2)(1)(1)x m m -+-【解析】【分析】原式变形后,提取公因式,再利用平方差公式分解即可.【详解】解:原式22(2)(2)(2)(1)(2)(1)(1)m x x x m x m m =---=--=-+-,故答案为:(2)(1)(1)x m m -+-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.若整数a 满足31020α<<,则a 的值为_____.【答案】3或1【解析】【分析】 先估算出310和20的范围,再得出答案即可.【详解】解:∵2<310<3,1<20<5,∴整数a=3或1,故答案为:3或1.【点睛】本题考查了估算无理数的大小和实数的大小比较,能估算出310和20的范围是解此题的关键. 15.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿AD 方向平移8个单位长度到△A'B'C'的位置,则图中阴影部分面积为______.【答案】32【解析】【分析】由正方形性质可得AD=CD=12,∠DAC=45°,由平移的性质可得AA'=8,A'B'⊥AD ,即可求A'E=8,A'D=4,即可求阴影部分面积.【详解】解:∵四边形ABCD 是正方形,∴AD=CD=12,∠DAC=45°,∵把△ABC 沿AD 方向平移8个单位长度到△A'B'C'的位置,∴AA'=8,A'B'⊥AD ,且∠DAC=45°,∴A'E=AA'=8,∵A'D=AD-AA'=4,∴阴影部分面积=A'E×A'D=8×4=32,故答案为:32.【点睛】本题考查了正方形的性质,平移的性质,等腰直角三角形的判定与性质,熟记平移的性质并用平移距离表示出重叠部分的底与高是解题的关键.16.某班级一次数学模拟考试成绩的最高分为96,最低分为30,如果把考试成绩绘制成直方图,组距为10,则应分的组数是______.【答案】1【解析】【分析】首先计算出最大值和最小值的差,再利用极差除以组距即可.(利用进一法,整除时组数=商+1)【详解】∵最高分为96,最低分为30,如果把考试成绩绘制成直方图,组距为10,∴963010-=6.1,∴应分的组数为1.故答案为:1.【点睛】本题考查了频数分布直方图,首先计算极差,即计算最大值与最小值的差.再决定组距与组数.17.我们见过的足球大多是由许多小黑白块的牛皮缝合而成的.初一年级的李强和王开两位同学,在踢足球的休息之余研究足球的黑白块的块数.结果发现黑块均呈五边形,白块呈六边形.由于球体上黑白相间,李强好不容易数清了黑块共12块,王开数白块时不是重复,就是遗漏,无法数清白块的块数,请你利用数学知识帮助他们求出白块的块数为_____块.【答案】1【解析】【分析】由每个五边形都连接5个六边形,每个六边形都连接3个五边形,根据五边形的边数相等可列方程,求解即可.【详解】设白块有x块,则:3x=5×12,解得:x =1.故答案为1【点睛】本题考查一元一次方程的应用,关键是分清楚黑块与白块的关系.三、解答题18.计算或化简:(1)2012(1)3(6)π---+⨯- (2)(x+2 y)(x-y)-y(x-2 y)【答案】(1)1;(2)2x【解析】【分析】(1)根据有理数的乘方,零指数幂的意义,负整数指数幂的意义进行化简,然后再进行加减运算即可; (2)根据整数的运算法则进行计算即可得解.【详解】(1)原式=4-1-2=1(2)原式=222222x xy xy y xy y -+--+=2x . 【点睛】本题考查常德的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19.如图所示,分别以已知ABC 的两边AB ,AC 为边向外作等边三角形ABD 和等边三角形ACE ,线段DC 与线段BE 相交于点O .(1)请说明DC BE =;(2)求BOC ∠的度数.【答案】(1)证明见解析;(2)120︒【解析】【分析】(1)根据等边三角形的性质证明BAE DAC ≌△△即可;(2)根据等边三角形的性质结合(1)求出120OEC OCE ︒∠+∠=,根据三角形内角和定理求出EOC ∠,由平角的定义可求出BOC ∠.【详解】解:(1)由题意知,AD AB =,AE AC =,EAC BA BAC E ∠+∠∠=,DAC DAB BAC ∠=∠+∠, 又因为60EAC ∠=︒,60DAB ∠=︒,所以BAE DAC ∠=∠,所以BAE DAC ≌△△,所以DC BE =;(2)在EOC △中,OEC OCE OEC DCA ACE ∠+∠=∠+∠+∠,又因为BAE DAC ≌△△,所以DCA BEA ∠=∠,60BEA OEC ∠+∠=︒,所以60DCA OEC ∠+∠=︒,所以OEC OCE OEC ∠+∠=∠+6060120DCA ACE ︒∠+︒+∠==︒,所以180()60EOC OEC OCE ∠=︒-∠+∠=︒,所以180120BOC EOC ∠=-∠=︒︒.【点睛】本题考查等边三角形的性质,全等三角形的判定与性质,三角形内角和定理,证明BAE DAC ≌△△是解题的关键.20.解方程(组)或不等式(组)并把第(4)的解集表示在数轴上.(1)23328x y x y ①②-=⎧⎨+=⎩; (2)3+4165633x y x y =⎧⎨-=⎩①②; (3)125164x x +--≥; (4)22531323213x x x x --⎧-≤⎪⎨⎪->-⎩①②. 【答案】(1)21x y =⎧⎨=⎩;(2)60.5x y =⎧⎨=-⎩;(3)x ≤54;(4)﹣2<x ≤1,在数轴表示如图所示,见解析. 【解析】【分析】(1)根据解二元一次方程组的方法可以解答本题;(2)根据加减消元法可以解答此方程组;(3)根据解一元一次不等式的方法可以解答本题;(4)根据解一元一次不等式组的方法可以解答此不等式组,并在数轴上表示出相应的解集.【详解】(1)23 328 x yx y-=⎧⎨+=⎩①②①×2+②,得7x=14,解得,x=2,将x=2代入①,得y=1,故原方程组的解是21 xy=⎧⎨=⎩;(2)3+416 5633 x yx y=⎧⎨-=⎩①②①×3+②×2,得19x=114,解得,x=6,将x=6代入①,得y=﹣0.5,故原方程组的解是60.5 xy=⎧⎨=-⎩;(3)125164 x x+--≥方程两边同乘以12,得2(x+1)﹣12≥3(2x﹣5)去括号,得2x+2﹣12≥6x﹣15移项及合并同类项,得﹣4x≥﹣5,系数化为1,得x≤54;(4)2253132 3213x xx x①②--⎧-≤⎪⎨⎪->-⎩由不等式①,得x≤1,由不等式②,得x>﹣2,故原不等式组的解集是﹣2<x≤1,在数轴表示如下图所示,.【点睛】本题考查解一元一次不等式(组)、解二元一次方程组、在数轴上表示不等式的解集,解答本题的关键是明确它们各自的解答方法.21.先阅读下列一段文字,再解答问题:已知在平面内有两点()111,P x y ,()222,P x y ,其两点间的距离公式为12PP =同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -.(1)已知点A (2,4),B (-2,1),则AB=__________;(2)已知点C ,D 在平行于y 轴的直线上,点C 的纵坐标为4,点D 的纵坐标为-2,则CD=__________; (3)已知点P (3,1)和(1)中的点A ,B ,判断线段PA ,PB ,AB 中哪两条线段的长是相等的?并说明理由.【答案】(1)1;(2)6;(3)AB=PB .【解析】【分析】(1)依据两点间的距离公式为P 1P 2(2)依据当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2-x 1|或|y 2-y 1|,据此进行计算即可;(3)先运用两点间的距离公式求得线段AB ,BC ,AC ,进而得出结论.【详解】(1)依据两点间的距离公式,可得5==;(2)当点C ,D 在平行于y 轴的直线上时,CD=|-2-4|=6;(3)AB 与PB 相等.理由:∵5==;==PB=|3-(-2)|=1.∴AB=PB .【点睛】本题主要考查了两点间的距离公式,平面内有两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离公式为P 1P 222.(1)分解因式23218ax a -.(2)先化简再求值:2(4)(2)(2)(2)x x y x y x y x y -++---,其中2x =-,1y =-.【答案】(1)2(3)(3)a x a x a +-;(2)222x y -,2.【解析】【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用单项式乘以多项式,平方差公式,以及完全平方公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】(1)解:原式()2229a x a=- 2(3)(3)a x a x a =+-(2)解:原式222222244442x xy x y x xy y x y =-+--+-=-当2x =-,1y =-时,原式422=-=.【点睛】此题考查了因式分解和整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.如图,已知ABC △和△FED 的边BC 和ED 在同一直线上,BD CE =,点,A F 在直线BE 的两侧,//,AB EF A F ∠=∠,判断AC 与FD 的数量关系和位置关系,并说明理由.【答案】AC =DF ;AC ∥DF.【解析】【分析】只要证明△ACB≌△FDE(AAS),推出AC =FD ,∠ACB =∠FDE ,推出AC ∥DF .【详解】数量关系:AC =DF.位置关系:AC ∥DF∵BD =CE∴BD+CD =CE+CD即BC =DE又∵AB ∥EF ,∴∠B =∠E在△ACB 和△FDE中A FB E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB≌△FDE(AAS)∴AC=FD,∠ACB=∠FDE∴AC∥DF【点睛】本题主要考查了两直线平行的判定方法及全等三角形的判定和性质的知识点,内错角相等,,两直线平行,要熟练掌握两三角形全等的知识点.24.解不等式或不等式组,并把解集在数轴上表示出来:(1)1-123x-≤233x++ x(2)533(1)132722x xx x+〉-⎧⎪⎨-≤-⎪⎩【答案】(1)x≥2(2)-3<x≤92【解析】分析:详解:(1)1-123x-≤233x++ x,3-(12x-)≤(23x+)+3x,3-12x+≤23x++3x,-23x x x--≤3-3-12,6x-≤-12,x≥2;在数轴上表示为:(2)()5331132722x xx x①②⎧+>-⎪⎨-≤-⎪⎩解①得,x>-3;解②得,x≤92;∴原不等式组的解集是-3<x≤92,在数轴上表示为:点睛:本题考查的是在数轴上表示一元一此不等式(组)的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆表示.25.规定:{x}表示不小于x的最小整数,如{4}=4,{-2.6}=-2,{-5}=-5。
湖北省武汉市武昌区2019-2020学年七年级下学期期末数学试题一、选择题1. 在平面直角坐标系中,点P(1,-2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2. 4的值是( )A. 2-B. 2C. 2±D. 16±3. 不等式组10215x x ->⎧⎨+≤⎩的解集在数轴上表示正确的是( ) A. B.C.D.4. 下列各数中,无理数( )9 B. 0.141414 3 D. 175. 如图,直线12l l //,点C 在1l 上,点B 在2l 上,90,ACB ∠=︒125,∠=︒则2∠的度数是( )A. 35︒B. 45C. 55︒D. 65︒6. 12x y =⎧⎨=-⎩是关于,x y 的二元一次方程5x ay -=的一组解,则a 的值是( ) A. 1 B. 2 C. 1- D. 2-7. 下列调查中,适宜采用全面调查方式的是( )A. 了解703班学生的视力情况B. 调查春节联欢晚会的收视率C. 检测武汉市的空气质量D. 鞋厂检测生产的鞋底能承受的弯折次数8. 下列实数中,在3与4之间的数是( ) A. 3 B. 32C. 372D. 25 9. 如图,将一张长方形纸条折叠,如果2∠比1∠大6则2∠的度数为( )A. 108B. 114C. 118D. 12210. 若关于x 的不等式mx m nx n +<-+的解集为23x >-,则关于x 的不等式2mx m nx n ->-的解集是( )A. 43x >B. 43x <C. 43x >-D. 43x <- 二、填空题11. 若31,x =-则x =______________.12. 在某次数据分析中,该组数据最小值是149,最大值是172,若以4为组距,则可分____________组.13. 如图,直线,EF CD 相交于点,,O OA OB OD ⊥平分,AOF ∠若4FOD COB ∠=∠,则AOE ∠=________________.14. 已知点(25,35P m m +在第二象限,且25,m =则点P 的坐标为_______________. 15. 从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3,km 平路每小时走4,km 下坡每小时走5,km 那么从甲地到乙地需48,min 从乙地到甲地需要36,min 则甲地到乙地的全程是__________________.km16. 在平面直角坐标系中,点A (0,4),B (-2,0),C (a ,-a ),△ABC 的面积小于10,则a 的取值范围是__________________.三、解答题17. 解方程组:23328x y x y -=⎧⎨+=⎩18. 解不等式组212324x x x -≤+⎧⎨-<⎩19. 填空完成推理过程,如图,点,,D E F 分别是ABC 的边,,AC BC AB 上的点,//,//DF BC DE AB .求证: FDA B =∠∠.求证:,FDE B ∠=∠证明//,DF BCFDB ∴∠= ( )//,DE ABB ∴∠= ( )FDE B ∴∠=∠.20. 一种商品有大小盒两种包装,3大盒、4小盒共装102瓶,2大盒、3小盒共装72瓶.大盒与小盒每盒各装多少瓶?21. 为了解学生每天的睡眠情况,某初中学校从全校960名学生中随机抽取了40名学生,调查(他们平均每天的睡眠时间(单位:h ),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组 人数(频数) 178t ≤< 8 2 89t ≤< m3 910t ≤<18 4 1011t ≤< n请根据以上信息,解答下列问题:(1)m = ,n = ,a = ,b = ;(2)扇形统计图中,4组对应的圆心角度数为 ;(3)如果按照学校要求,学生平均每天的睡眠时间应不小于9h ,请估计该校学生中睡眠时间符合要求的人数.22. 某教育行政部门计划今年暑假组织部分教师到外地学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,两家宾馆房源都很充足,其收费标准均为每人每天160元,并且各自推出不同的优惠方案.甲宾馆是20人(含20人)以内的按标准收费,超过20人的,超出部分按九折收费,乙宾馆是25人(含25人)以内的标准收费,超过25人的,超出部分按八折收费.(1)当人数超过多少人时,选乙宾馆更实惠些?(2)此行教师人数不到50人,选择住乙宾馆比选择住甲宾馆可节省少300多元,问此行教师有多少人?23. 如图l ,//,AB CD 点E AB 上,点H 在CD 上,点F 在直线AB CD ,之间,连接,,EF FH73AEF CHF EFH ∠+∠=∠.(1)直接写出EFH ∠的度数为 ;(2)如图2,HM 平分CHF ∠,交FE 的延长线于点,M 证明:236FHD FMH ∠-∠=︒(3)如图3,点Р在FE 的延长线上,点K 在AB 上,点N 在PEB ∠内,连,NE ,//,NK NK FH 2PEN NEB ∠=∠,则23FHD ENK ∠-∠的值为 .24. 平面直角坐标系xOy 中,点()(),,,A a b B a c .(1)若2AB =,则b c -= ?(2)若,,a b c 满足224a b c a b c +-=⎧⎨-+=⎩①若点A 到x 轴的距离是它到y 轴距离的4倍,求点A 的坐标;②点C 的横坐标为m ,且342,m a b ABC =+△的面积等于92,求a 的值.试卷一、选择题1. 在平面直角坐标系中,点P(1,-2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号. 2. 4的值是( ) A. 2-B. 2C. 2±D. 16± 【答案】B【解析】【分析】根据算术平方根进行化简即可.【详解】解:42=,故选:B .【点睛】此题主要考查了算术平方根,关键是掌握2||a a =.3. 不等式组10215x x ->⎧⎨+≤⎩的解集在数轴上表示正确的是( ) A. B.C.D.【答案】C【解析】【分析】解不等式组,在数轴表示即可;【详解】解不等式组10215x x ->⎧⎨+≤⎩得, >12x x ⎧⎨≤⎩, 故不等式的解集为:12x ≤<, 在数轴表示为;故答案选C .【点睛】本题主要考查了一元一次不等式组的求解及解集表示,准确分析是解题的关键.4. 下列各数中,无理数是( ) 9 B. 0.141414 3 D. 17【答案】C【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可得出答案.【详解】解:93=,是有理数,此项不符合题意;B. 0.141414,是有理数,此项不符合题意;C. 3是无理数,此项符合题意;D. 17是有理数,此项不符合题意. 故选C .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:2ππ,等;开方开不尽的数;以及像0.1010010001...等有规律的数.5. 如图,直线12l l //,点C 在1l 上,点B 在2l 上,90,ACB ∠=︒125,∠=︒则2∠的度数是( )A. 35︒B. 45C. 55︒D.65︒ 【答案】D【解析】【分析】先根据两角互余求出3∠的度数,再根据两直线平行内错角相等即可求出答案.【详解】解:90,ACB ∠=︒125,∠=︒3=901=65∴∠︒-∠︒12l l //2365∴∠=∠=︒故选D .【点睛】本题考查了互余两角的关系、平行线的性质,根据图形找到角与角的关系是解题的关键.6.12xy=⎧⎨=-⎩是关于,x y的二元一次方程5x ay-=的一组解,则a的值是()A. 1B. 2C. 1- D. 2-【答案】B【解析】【分析】将12xy=⎧⎨=-⎩代入5x ay-=中,解出a的值即可.【详解】解:将12xy=⎧⎨=-⎩代入5x ay-=,得()125a--=解得:2a=故选B.【点睛】本题是对二元一次方程的考查,准确代入解方程是解决本题的关键.7. 下列调查中,适宜采用全面调查方式的是()A. 了解703班学生的视力情况B. 调查春节联欢晚会收视率C. 检测武汉市的空气质量D. 鞋厂检测生产的鞋底能承受的弯折次数【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行分析.【详解】A 、调查某中学七年级三班学生视力情况,人数不多,应采用全面调查,故此选项符合题意;B 、调查春节联欢晚会的收视率,适合抽样调查,故此选项不符合题意;C 、检测武汉市的空气质量,不能全面调查,只能抽样调查,故此选项不符合题意;D 、鞋厂检测生产的鞋底能承受的弯折次数,具有破坏性,应采用抽样调查,故此选项不合题意; 故选A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 下列实数中,在3与4之间的数是( ) A. 3 B. 32 C. 372 D. 25【答案】C【解析】【分析】根据二次根式的乘法公式和无理数的估算即可得出结论.【详解】解:∵1<3<2,故A 不符合题意;∵4<3218=<5,故B 不符合题意; ∵3<372=634<4,故C 符合题意; ∵4<2520=<5,故D 不符合题意. 故选C .【点睛】此题考查的是无理数的估算,掌握二次根式的乘法公式和无理数的估算方法是解决此题的关键.9. 如图,将一张长方形纸条折叠,如果2∠比1∠大6则2∠度数为( )A. 108B. 114C. 118D. 122 【答案】D【解析】【分析】如解图所示,根据平行线的性质可得∠1=∠3+∠4,∠2+∠4=180°,由折叠的性质可得∠3=∠4,从而得出∠2+12∠1=180°,结合已知条件即可求出结论. 【详解】解:如图所示∵AE ∥BF∴∠1=∠3+∠4,∠2+∠4=180°由折叠的性质可得∠3=∠4∴∠4=12∠1 ∴∠2+12∠1=180° ∵2∠比1∠大6︒∴∠2+12(∠2-6°)=180° 解得:∠2=122°故选D .【点睛】此题考查的是平行线的性质和折叠的性质,掌握平行线的性质和折叠的性质是解决此题的关键.10. 若关于x 的不等式mx m nx n +<-+的解集为23x >-,则关于x 的不等式2mx m nx n ->-的解集是( )A. 43x >B. 43x <C. 43x >-D. 43x <- 【答案】B【解析】【分析】先解出不等式,根据已知条件求出m ,n 的式子计算即可;;【详解】解不等式mx m nx n +<-+得,()m-n <n m x --, ∵23x >-, ∴23m n m n -=---, 得到:3322m n m n -=+,解得:5m n =,整理不等式2mx m nx n ->-,得55>2nx n nx n --, 解得:43x <. 故答案选B .【点睛】本题主要考查了一元一次不等式的解法,准确计算是解题的关键.二、填空题11. 若31,x =-则x =______________. 【答案】-1【解析】【分析】根据立方根的性质计算即可;【详解】∵31x =-,∴1x ==-;故答案是-1.【点睛】本题主要考查了立方根的计算,准确计算是解题的关键.12. 在某次数据分析中,该组数据最小值是149,最大值是172,若以4为组距,则可分____________组.【答案】6【解析】【分析】根据组数=(最大值-最小值) ÷组距计算即可,注意进一法的应用.【详解】解:(172-149)÷4=5(组) (3)5+1=6(组)∴若以4为组距,则可分6组故答案为:6.【点睛】本题考查的是组数的计算,属于基础题,掌握组数=(最大值-最小值) ÷组距和进一法是解决此题的关键.13. 如图,直线,EF CD 相交于点,,O OA OB OD ⊥平分,AOF ∠若4FOD COB ∠=∠,则AOE ∠=________________.【答案】36°【解析】【分析】根据垂直可得出,90BOC AOD ∠+∠=︒,根据角平分线及等量代换可得出90FOD BOC ∠+∠=︒,与4FOD COB ∠=∠联立可求得1872BOC FOD ∠=︒∠=︒,,从而求出144AOF ∠=︒,最后根据邻补角即可得出答案.详解】解:OA OB ⊥,90AOB ∠=︒∴,90BOC AOD ∴∠+∠=︒,OD 平分,AOF ∠AOD FOD ∴∠=∠,90FOD BOC ∴∠+∠=︒,又4FOD COB ∠=∠,1872BOC FOD ∴∠=︒∠=︒,,144AOF ∴∠=︒,180********AOE AOF ∴∠=︒-∠=︒-︒=︒.故答案为:36︒.【点睛】本题考查了邻补角、角平分线的性质、垂直的含义,根据图形找到角与角的关系是解题的关键.14.已知点(2P m m +在第二象限,且25,m =则点P 的坐标为_______________.【答案】(【解析】【分析】根据第二象限点的坐标特征求出m 的取值范围,然后根据题意即可求出m 的值,从而求出结论.【详解】解:∵点(2P m m +在第二象限,∴200m m ⎧+<⎪⎨+>⎪⎩解得:m -<< ∵25,m =∴m=m 的取值,舍去)将m=P 坐标中,可得(P故答案为:(.【点睛】此题考查的是求点的坐标,掌握第二象限点的坐标特征、平方根的定义和解一元一次不等式组是解决此题的关键.15. 从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3,km 平路每小时走4,km 下坡每小时走5,km 那么从甲地到乙地需48,min 从乙地到甲地需要36,min 则甲地到乙地的全程是__________________.km【答案】2.7【解析】【分析】设从甲地到乙地坡路长xkm ,平路长ykm ,根据“从甲地到乙地需48,min ,从乙地到甲地需36,min ”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入()x y +中即可求出结论.【详解】设从甲地到乙地坡路长xkm ,平路长ykm , 依题意,得:483460365460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6532x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴3 1.2 1.5 2.7265x y +=+=+=(km). 故答案为:2.7.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16. 在平面直角坐标系中,点A (0,4),B (-2,0),C (a ,-a ),△ABC 的面积小于10,则a 的取值范围是__________________. 【答案】1423a -<<且4-3a ≠ 【解析】【分析】根据A 、B 坐标,利用待定系数法可求出直线AB 的解析式,根据点C 坐标可得点C 在直线y=-x 上,即在直线OC 上,联立AB 、OC 解析式可得交点坐标,分a=0,a >0,43-<a <0、a <43-四种情况,画出图形,分别用a 表示出△ABC 的面积,根据△ABC 的面积小于10列不等式求出a 的取值范围即可得答案.【详解】设直线AB 的解析式为y=kx+b ,∵A(0,4),B(-2,0),∴OA=4,OB=2,∵点A、B在直线AB上,∴204k bk-+=⎧⎨=⎩,解得:24 kb=⎧⎨=⎩,∴直线AB的解析式为y=2x+4,①当a=0时,点C(0,0),与原点重合,S△ABC=12OA·OB=4<10,∴a=0符合题意,②如图,当a>0时,点C(a,-a)在第四象限,连接OC,∴S△ABC=S△ABO+S△AOC+S△BOC=12×2×4+12×4a+12×2a=4+3a,∵△ABC的面积小于10,∴4+3a<10,解得a<2,∴0<a<2,∵点C(a,-a),∴点C在直线y=-x上,即在直线OC上,联立直线AB与直线OC的解析式得24 y xy x=+⎧⎨=-⎩,解得:4343 xy⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB与直线OC的交点坐标为(43-,43),∴a≠43-,②如图,当43-<a<0时,点C在△ABO的内部,∴S△ABC<S△ABO<10,∴43-<a<0符合题意,③如图,当a<43-时,点C(a,-a)在第二象限,且在△ABO的外部,连接OC,∴S△ABC=S△AOC+S△BOC-S△ABO=12×4(-a)+12×2(-a)-12×2×4=3a-4,∵△ABC的面积小于10,∴-3a-4<10,解得:a>143-,∴143-<a<43-,综上所述:a的取值范围是143-<a<2,且a≠43-.故答案为:143-<a<2,且a≠43-【点睛】本题考查一次函数的交点问题及三角形的面积,熟练掌握待定系数法求一次函数解析式、利用图形正确表示出△ABC的面积并灵活运用分类讨论的思想是解题关键.三、解答题17. 解方程组:23 328 x yx y-=⎧⎨+=⎩【答案】21 xy=⎧⎨=⎩【解析】试题分析:方程组利用加减消元法求出解即可.试题解析:解:23{328x yx y-=+=①②,①×2+②,得:7x=14,解得:x=2,将x=2代入①,得:4﹣y=3,解得:y=1,则方程组的解为21 xy=⎧⎨=⎩.18. 解不等式组212 324x xx-≤+⎧⎨-<⎩【答案】2x<【解析】【分析】先求出不等式组中每一个不等式的解集,然后再求出它们的公共部分就是不等式组的解集.【详解】解:解不等式①得:3x≤由②得2x<∴ 不等式的解集是2x <【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.19. 填空完成推理过程,如图,点,,D E F 分别是ABC 的边,,AC BC AB 上的点,//,//DF BC DE AB .求证: FDA B =∠∠.求证:,FDE B ∠=∠证明//,DF BCFDB ∴∠= ( )//,DE ABB ∴∠= ( )FDE B ∴∠=∠.【答案】∠DEC ;两直线平行,内错角相等;∠DEC ;两直线平行,同位角相等;见解析【解析】【分析】根据平行线的性质与判定填写即可;【详解】证明//,DF BCFDB ∴∠=∠DEC (两直线平行,内错角相等)//,DE ABB ∴∠=∠DEC (两直线平行,同位角相等)FDE B∴∠=∠.故答案为∠DEC;两直线平行,内错角相等;∠DEC;两直线平行,同位角相等;【点睛】本题主要考查了平行线的性质与判定,准确分析是解题的关键.20. 一种商品有大小盒两种包装,3大盒、4小盒共装102瓶,2大盒、3小盒共装72瓶.大盒与小盒每盒各装多少瓶?【答案】大盒每盒装18瓶,小盒每盒装12瓶【解析】【分析】设大盒与小盒每盒分别装x瓶和y瓶,根据等量关系:3大盒、4小盒共装102瓶;2大盒、3小盒共装72瓶,列出方程组求解即可.【详解】解:设大盒每盒装x瓶,小盒每盒装y瓶.依题意得:34102 2372 x yx y+=⎧⎨+=⎩解得:1812 xy=⎧⎨=⎩答:大盒每盒装18瓶,小盒每盒装12瓶.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程组求解.21. 为了解学生每天的睡眠情况,某初中学校从全校960名学生中随机抽取了40名学生,调查(他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表41011t ≤< n请根据以上信息,解答下列问题:(1)m = ,n = ,a = ,b = ;(2)扇形统计图中,4组对应的圆心角度数为 ;(3)如果按照学校要求,学生平均每天的睡眠时间应不小于9h ,请估计该校学生中睡眠时间符合要求的人数.【答案】(1)10,4,25%,10%;(2)36°;(3)528人【解析】【分析】(1)由睡眠时间分组统计表即可得出m ,n 的值;100%,100%4040m n a b =⨯=⨯计算即可得出答案; (2)直接用10%乘以360度即可得出答案;(3)由学校总人数×该校学生中睡眠时间符合要求人数所占的比例,即可得出结果.【详解】解:(1)由睡眠时间分组统计表得:m=10,n=4, 10100%25%40a =⨯=,4100%10%40b =⨯=; (2)扇形统计图中,4组对应的圆心角度数为10%36036⨯︒=︒; (3)184********+⨯=(人) 答:学生中睡眠时间符合要求的人数528人.【点睛】本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息.22. 某教育行政部门计划今年暑假组织部分教师到外地学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,两家宾馆房源都很充足,其收费标准均为每人每天160元,并且各自推出不同的优惠方案.甲宾馆是20人(含20人)以内的按标准收费,超过20人的,超出部分按九折收费,乙宾馆是25人(含25人)以内的标准收费,超过25人的,超出部分按八折收费.(1)当人数超过多少人时,选乙宾馆更实惠些?(2)此行教师人数不到50人,选择住乙宾馆比选择住甲宾馆可节省少300多元,问此行教师有多少人?【答案】(1)人数超过30人时,选乙宾馆更实惠些;(2)49人【解析】【分析】(1)要想乙宾馆更实惠,人数首先要超过25人,设人数为x 人,根据题意列出甲宾馆收费及乙宾馆收费,化简后再列出甲宾馆收费大于乙宾馆收费的不等式,求解后即可得出答案;(2)根据题意,列出甲宾馆收费减去乙宾馆收费大于300的不等式,解出结果,并根据教师人数不到50人即可确定教师的人数.【详解】(1)解:依题意得:要想乙宾馆更实惠,人数首先要超过25人,设人数为x 人.甲宾馆收费为:16020(20)1600.9144320x x ⨯+-⨯⨯=+乙宾馆收费为:16025(25)1600.8128800x x ⨯+-⨯⨯=+要乙宾馆更实惠些,则144320128800x x +>+30x >当人数超过30人时,选乙宾馆更实惠些(2)∵住乙宾馆比选甲宾馆可节省300多元∴(144320)(128800)300x x +-+> ∴3484x > 又∵x<50,∴49x =答:此行教师有49人.【点睛】本题考查了不等式的应用及一次函数的应用,根据题意找到关系式是解题的关键.23. 如图l ,//,AB CD 点E 在AB 上,点H 在CD 上,点F 在直线AB CD ,之间,连接,,EF FH73AEF CHF EFH ∠+∠=∠.(1)直接写出EFH ∠的度数为 ;(2)如图2,HM 平分CHF ∠,交FE 的延长线于点,M 证明:236FHD FMH ∠-∠=︒(3)如图3,点Р在FE 的延长线上,点K 在AB 上,点N 在PEB ∠内,连,NE ,//,NK NK FH 2PEN NEB ∠=∠,则23FHD ENK ∠-∠的值为 .【答案】(1)108°;(2)见解析;(3)72°【解析】【分析】(1)过点F作FG∥AB,推出∠AEF+∠EFG=180︒,∠CHF+∠GFH=180︒,结合已知即可求解;(2)过点F作FF'∥AB,过点M作MM'∥AB,设∠FHD=α,利用平行线的性质得到∠3=∠EFH-∠F FH'=108°-α,利用邻补角和角平分线的定义得到∠1=180-2α︒,根据∠M MH'=∠1列出等式即可证明;(3)过点F作FG∥AB,延长NK交CD于Q,设∠FHD=α,根据平行线和邻补角的性质推出∠PEB=180︒-∠BEF =180︒-108︒+α=72︒+α,结合已知得到∠NEB=13∠PEB=13(72︒+α),利用∠NKB=∠NEB+∠ENK,列出等式即可求解.【详解】(1)过点F作FG∥AB,∵CD∥AB,∴FG∥CD∥AB,∴∠AEF+∠EFG=180︒,∠CHF+∠GFH=180︒,∴∠AEF+∠CHF+∠EFH=360︒,又∵∠AEF+∠CHF=73∠EFH , ∴73∠EFH +∠EFH=360︒, 解得:∠EFH=108︒;故答案为:108︒;(2)过点F 作FF '∥AB ,过点M 作MM '∥AB ,设∠FHD=α,∵AB ∥CD ,∴FF '∥MM '∥AB ∥CD ,∴∠F FH FHD ∠='=α,∴∠3=∠EFH-∠F FH ' =108°-α, ∴∠MMF '=∠3=108°- α, ∵∠1=∠2,∴∠1=180-2α︒, ∵MM '∥CD ,∴∠M MH '=∠1,∴∠FMH+108°-α =180-2α︒, ∴2∠FMH+2⨯108°-2α=180°- α, ∴α-2∠FMH=36°,即∠FHD-2∠FMH=36°;(3)过点F 作FG ∥AB ,延长NK 交CD 于Q ,设∠FHD=α,同理CD ∥AB ∥FG ,∴∠GFH=∠FHD=α, ∴∠BEF=∠EFG=108︒-α, ∴∠PEB=180︒-∠BEF =180︒-108︒+α=72︒+ α, ∵2PEN NEB ∠=∠,∴∠NEB=13∠PEB=13(72︒+ α), ∵NK ∥FH ,∴∠NQD=∠FHD=α,∵CD ∥AB ,∴∠NKB=∠NQD=α,∵∠NKB=∠NEB+∠ENK ,∴α=13(72︒+ α)+∠ENK , ∴2α=72︒+3∠ENK ,故2∠FHD-3∠ENK=72︒.【点睛】本题考查了平行线的性质,三角形外角性质及角平分线的定义,用到的知识点为:两直线平行,同旁内角互补;两直线平行,内错角相等;两直线平行,同位角相等.作出适当的辅助线,结合图形等量代换是解答此题的关键.24. 在平面直角坐标系xOy 中,点()(),,,A a b B a c .(1)若2AB =,则b c -= ?(2)若,,a b c 满足224a b c a b c +-=⎧⎨-+=⎩①若点A 到x 轴的距离是它到y 轴距离的4倍,求点A 的坐标;②点C 的横坐标为m ,且342,m a b ABC =+△的面积等于92,求a 的值.【答案】(1)±2;(2)①A(1,4)或(-3,12);②a=1或a=7【解析】【分析】(1)根据AB 的长和A 、B 两点坐标可得2b c -=,从而求出结论;(2)①解方程可得26310b a c a =-+⎧⎨=-+⎩,从而用a 表示出点A 的坐标,然后根据题意列出方程即可求解; ②分别求出AB b c =-,C 到AB 的距离为m a -,4233m a b =+,然后根据三角形的面积公式即可求出结论.【详解】解:(1)∵2AB =,()(),,,A a b B a c ∴2b c -=∴b c -=±2故答案为:±2 (2)①224a b c a b c +-=⎧⎨-+=⎩解得:26310b ac a =-+⎧⎨=-+⎩ ∴A(a ,-2a+6)∵点A 到x 轴的距离是它到y 轴距离的4倍 ∴264a a -+=∴264a a -+=或264a a -+=-∴a=1或a=-3∴A(1,4)或(-3,12)②∵A (a ,b ),B (a ,c ),∴AB ∥y 轴, ∴AB b c =-∵点C 的横坐标为m ,∴C 到AB 的距离为m a -∵342m a b =+,∴4233m a b =+ ∴42433m a a b a a -=+-=- ∴1122ABC S AB m a b c m a ∆=⨯-=-⨯- 将26310b a c a =-+⎧⎨=-+⎩代入得: 21144(4)22ABC S a a a ∆=-⨯-+=- ∴219(4)22a -=, ∴a=1或a=7【点睛】此题考查的是点的坐标与线段长度的关系,掌握点的坐标与线段长度的关系和方程组的解法是解决此题的关键.。
武昌区2019-2020学年度第一学期期末学业水平测试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)1.四个有理数-2、1、0-1,其中最小的是( ) A .1 B .0 C .-1 D .-22.21的相反数是( )A .2B .21C .21D .-23.全面贯彻“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进煤燃电厂脱硫改造15 000 000千万是《政府工作报告》中确定的中点任务之一,将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1084.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )5.多项式x 3+x 2+x +1的次数是( ) A .3 B .4 C .5 D .6 6.若x =-1是关于x 的方程2x +a =1的解,则a 的值为( ) A .-1 B .1 C .3 D .-3 7.下列各式中运算正确的是( ) A .4m -m =3 B .a 2b -ab 2=0 C .2a 3-3a 3=a 3 D .xy -2xy =-xy8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .08(1+0.5)x =x +28 B .08(1+0.5)x =x -28 C .08(1+0.5x )=x -28 D .08(1+0.5x )=x +289.在数轴上表示有理数a 、b 、c 的点如图所示,若ac <0,b +a <0,则( ) A .b +c <0 B .|b |<|c | C .|a |>|b | D .abc <010.如图,点C 、D 为线段AB 上两点,AC +BD =a ,且AD +BC =57AB ,则CD 等于( ) A .a 52B .a 32C .a 35D .a 75二、填空题(本大题共6个小题,每小题3分,共18分)11.某市2016年元旦的最低气温为-2℃,最高气温为8℃,这一天的最高气温比最低气温高__________℃ 12.38°15′=__________°13.若单项式-x 6y 3与2x 2n y 3是同类项,则常数n 的值是__________ 14.已知∠α和∠β互为补角,且∠β比∠α小30°,则∠β等于__________°15.延长线段AB 到点C ,使BC =2AB ,取AC 中点D ,BD =1,则AC =__________ 16.已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=-1,a 2=-|a 1+2|,a 3=-|a 2+3|,a 4=-|a 3+4|,……,a n +1=-|a n +n +1|(n 为正整数)依此类推,则a 2017的值为__________三、解答题(共8题,共72分)17.(本题8分)计算:(1) (-8)+10+2+(-1) (2) (-2)2×3+(-3)3÷918.(本题8分)解方程:(1) 5x -6=3x -4(2)46321-+=+x x19.(本题8分)先化简,再求值:2x 2-5x +4-(2x 2-6x ),其中x =-320.(本题8分)某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a hm 2,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3 hm 2 (1) 该村三种农作物种植面积一共是多少hm 2 (2) 水稻种植面积比玉米种植面积大多少hm 221.(本题8分)如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°,求∠DOE 的度数22.(本题8分)A 、B 两种型号的机器生产同一种产品,已知7台A 型机器一天生产的产品装满8箱后还剩2个,5台B 型机器一天生产的产品装满6箱后还剩8个.每台A 型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品?23.(本题10分)已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a-b|=14(1) 若b=-6,则a的值为__________(2) 若OA=3OB,求a的值(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值24.(本题12分)已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=80°(1) 如图1,当OD平分∠AOC时,求∠EOB的度数(2) 点F在射线OB上①若射线OF绕点O逆时针旋转n°(0<n<180且n≠60),∠FOA=3∠AOD,请判断∠FOE和∠EOC 的数量关系并说明理由②若射线OF绕点O顺时针旋转n°(0<n<180),∠FOA=2∠AOD,OH平分∠EOC.当∠FOH=∠AOC 时,则n=___________武昌区2019-2020学年度第一学期期末学业水平测试七年级数学试卷参考答案一、选择题。
2019-2020学年湖北省武汉市武昌区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.与﹣3互为倒数的是( )A.﹣B.﹣3 C.D.32.已知∠A=65°,则∠A的补角等于( )A.125°B.105°C.115°D.95°3.如果收入50元,记作+50元,那么支出30元记作( )A.+30元B.﹣30元C.+80元D.﹣80元4.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A.2771×107B.2.771×107 C.2.771×104 D.2.771×1055.化简5(2x﹣3)﹣4(3﹣2x)之后,可得下列哪一个结果?( )A.18x﹣27 B.8x﹣15 C.12x﹣15 D.2x﹣276.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是( )A.1 B.4 C.5 D.67.已知x=2是方程ax﹣3=x+1的解,则a的值是( )A.2 B.3 C.1 D.48.受季节的影响,某种商品每件按原售价降价10%,又降价a元,现每件售价为b元,那么该商品每件的原售价为( )A.B.(1﹣10%)(a+b)元C.D.(1﹣10%)(b﹣a)元9.下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个B.2个C.3个D.4个10.有一个班去划船,计划租若干条船,这时班长说,若再增加一条船,则每条船坐6人,若减少一条船,则每条船坐9人,这个班共有( )人.A.32 B.36 C.40 D.48二、填空题(本大题共6小题,每小题3分,共18分)11.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记__________米.12.34°30′=__________°.13.若单项式3xy m与﹣xy2是同类项,则m的值是__________.14.如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=__________°.15.如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D 始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD=__________cm.16.已知x、y、z为有理数,且|x+y+z+1|=x+y﹣z﹣2,则=__________.三、解答题(共8小题,共72分)17.计算:(1)7﹣(﹢2)+(﹣4)(2)(﹣1)2×5+(﹣2)3÷4.18.解方程:(1)3x﹣2=3+2x(2).19.先化简,再求值:ab+(a2﹣ab)﹣(a2﹣2ab),其中a=1,b=2.20.某工厂第一车间有x人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有__________人?(2)调动后,第一车间的人数为__________ 人,第二车间的人数为__________人;(3)求调动后,第一车间的人数比第二车间的人数多几人?21.如图,AD=,E是BC的中点,BE=,求线段AC和DE的长.22.下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.排名球队场次胜平负进球主场进球客场进球积分1 切尔西 6 ?? 1 13 8 5 132 基辅迪纳摩 63 2 1 8 3 5 113 波尔图 6 3 1 2 9 x 5 104 特拉维夫马卡比 6 0 0 6 1 1 0 0备注积分=胜场积分+平场积分+负场积分(1)表格中波尔图队的主场进球数x的值为__________,本次足球小组赛胜一场积分__________,平一场积分__________,负一场积分__________;(2)欧洲冠军杯奖金分配方案为:参加第一阶段小组赛6场比赛每支球队可以获得参赛奖金1200万欧元,以外,小组赛中每获胜一场可以再获得150万欧元,平一场获得50万欧元.请根据表格提供的信息,求出在第一阶段小组赛结束后,切尔西队一共能获得多少万欧元的奖金?23.已知数轴上,点O为原点,点A对应的数为9,点B对应的数为6,点C在点B右侧,长度为2个单位的线段BC在数轴上移动.(1)如图1,当线段BC在O、A两点之间移动到某一位置时恰好满足线段AC=OB,求此时b的值;(2)当线段BC在数轴上沿射线AO方向移动的过程中,若存在AC﹣0B=AB,求此时满足条件的b值;(3)当线段BC在数轴上移动时,满足关系式|AC﹣OB|=|AB﹣OC|,则此时的b的取值范围是__________.24.已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=__________.2019-2020学年湖北省武汉市武昌区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.四个有理数2、1、0、﹣1,其中最小的是( )A.1 B.0 C.﹣1 D.2【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:﹣1<0<1<2,最小的是﹣1.故选:C.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.相反数等于其本身的数是( )A.1 B.0 C.±1 D.0,±1【考点】相反数.【分析】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数的定义,则相反数等于其本身的数只有0.故选B.【点评】主要考查了相反数的定义,要求掌握并灵活运用.3.据统计部门预测,到2020年武汉市常住人口将达到约14500000人,数14500000用科学记数法表示为( )A.0.145×108 B.1.45×107C.14.5×106D.145×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将14500000用科学记数法表示为1.45×107.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,一个长方形绕轴l旋转一周得到的立体图形是( )A.棱锥 B.圆锥 C.圆柱 D.球【考点】点、线、面、体.【分析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.【解答】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选:C.【点评】本题主要考查点、线、面、体,圆柱的定义,根据圆柱体的形成可作出判断.5.多项式y2+y+1是( )A.二次二项式B.二次三项式C.三次二项式D.三次三项式【考点】多项式.【分析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:多项式y2+y+1是二次三项式,故选:B.【点评】此题主要考查了多项式,关键是掌握与多项式相关的定义.6.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为( )A.﹣1 B.0 C.1 D.2【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算,即可求出m的值.【解答】解:把x=2代入方程得:2m+2=0,解得:m=﹣1,故选A.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.下面计算正确的( )A.3x2﹣x2=3 B.a+b=ab C.3+x=3x D.﹣ab+ba=0【考点】合并同类项.【专题】计算题;整式.【分析】原式各项合并同类项得到结果,即可做出判断.【解答】解:A、原式=2x2,错误;B、原式为最简结果,错误;C、原式为最简结果,错误;D、原式=0,正确,故选D【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.8.甲厂有某种原料180吨,运出2x吨,乙厂有同样的原料120吨,运进x吨,现在甲厂原料比乙厂原料多30吨,根据题意列方程,则下列所列方程正确的是( )A.(180﹣2x)﹣(120+x)=30 B.(180+2x)﹣(120﹣x)=30C.(180﹣2x)﹣(120﹣x)=30 D.(180+2x)﹣(120+x)=30【考点】由实际问题抽象出一元一次方程.【分析】由题意可知:甲厂现有某种原料180﹣2x吨,乙厂现有同样的原料120+x吨,根据现在甲厂原料比乙厂原料多30吨,列出方程解答即可.【解答】解:由题意可知:(180﹣2x)﹣(120+x)=30.故选:A.【点评】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,那么点A对应的数是( )A.﹣6 B.﹣3 C.0 D.正数【考点】数轴.【专题】探究型.【分析】根据题意可以设点A表示的数为x,从而可以分别表示出点B、C、D,根据d﹣b+c=10,可以求得x的值,从而得到点A对应的数,本题得以解决.【解答】解:设点A对应的数是x,∵数轴上每相邻两点相距一个单位长度,∴点B表示数位:x+3,点C表示的数是:x+6,点D表示的数是:x+10,又∵点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,∴x+10﹣(x+3)+(x+6)=10,解得x=﹣3.故选B.【点评】本题考查数轴,解题的关键是明确数轴的特点,根据数轴可以分别表示出各个数.10.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是( )A.3b﹣2a B.C.D.【考点】整式的加减.【专题】计算题;整式.【分析】设小长方形的长为x,宽为y,根据题意求出x﹣y的值,即为长与宽的差.【解答】解:设小长方形的长为x,宽为y,根据题意得:a+y﹣x=b+x﹣y,即2x﹣2y=a﹣b,整理得:x﹣y=,则小长方形的长与宽的差是,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记﹣2米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“高”和“低”相对,若水库的水位高于标准水位3米时,记作+3米,则低于标准水位2米时,应记﹣2米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.34°30′=34.5°.【考点】度分秒的换算.【分析】根据小单位化大单位除以进率,可得答案.【解答】解:34°30′=34°+30÷60=34.5°,故答案为:34.5.【点评】本题考查了度分秒的换算,利用小单位化大单位除以进率是解题关键.13.若单项式3xy m与﹣xy2是同类项,则m的值是2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求出m的值.【解答】解:∵单项式3xy m与﹣xy2是同类项,∴m=2,故答案为:2.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.如图,∠AOB与∠BOC互补,OM平分∠BOC,且∠BOM=35°,则∠AOB=110°.【考点】余角和补角.【分析】根据补角定义可得∠AOB+∠BOC=180°,再根据角平分线定义可得∠BOC的度数,然后可得∠AOB的度数.【解答】解:∵∠AOB与∠BOC互补,∴∠AOB+∠BOC=180°,∵OM平分∠BOC,∴∠BOC=2∠BOM=70°,∴∠AOB=110°,故答案为:110.【点评】此题主要考查了补角和角平分线,关键是掌握两个角和为180°,这两个角称为互为补角.15.如图,AB=9,点C、D分别为线段AB(端点A、B除外)上的两个不同的动点,点D 始终在点C右侧,图中所有线段的和等于30cm,且AD=3CD,则CD=3cm.【考点】两点间的距离.【分析】根据AB与CD之间的关系计算即可.【解答】解:设CD=x,∵AB=9,AD=3CD,∴AD=3x,BD=9﹣3x,AC=2x,BC=9﹣2x,∵AB+AC+CD+BD+AD+BC=40,∴9+2x+x+9﹣3x+3x+9﹣2x=30,∴x=3故答案为:3.【点评】本题考查的是两点间的距离的计算,正确理解题意、灵活运用数形结合思想是解题的关键.16.已知x、y、z为有理数,且|x+y+z+1|=x+y﹣z﹣2,则=0.【考点】绝对值.【专题】计算题;推理填空题.【分析】根据绝对值的意义得到|x+y+z+1|=x+y+z+1或|x+y+z+1|=﹣(x+y+z+1),则x+y+z+1=x+y﹣z﹣2或﹣(x+y+z+1)=x+y﹣z﹣2,解得z=﹣或x+y=,然后把z=﹣或x+y=分别代入中计算即可.【解答】解:∵|x+y+z+1|=x+y+z+1或|x+y+z+1|=﹣(x+y+z+1),∴x+y+z+1=x+y﹣z﹣2或﹣(x+y+z+1)=x+y﹣z﹣2,∴z=﹣或x+y=,当z=﹣时,=(x+y﹣)[2×(﹣)+3]=0;当x+y=时,=(﹣)(2z+3)=0,综上所述,的值为0.故答案为0.【点评】本题考查了绝对值:当a是正数时,a的绝对值是它本身a;当a是负数时,a的绝对值是它的相反数﹣a;当a是零时,a的绝对值是零.三、解答题(共8小题,共72分)17.计算:(1)7﹣(﹢2)+(﹣4)(2)(﹣1)2×5+(﹣2)3÷4.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=7﹣2﹣4=7﹣6=1;(2)原式=1×5﹣8÷4=5﹣2=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.解方程:(1)3x﹣2=3+2x(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:x=5;(2)去分母得:3(3+x)﹣6=2(x+2),去括号得:9+3x﹣6=2x+4,移项合并得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.先化简,再求值:ab+(a2﹣ab)﹣(a2﹣2ab),其中a=1,b=2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=ab+a2﹣ab﹣a2+2ab=2ab,当a=1,b=2时,原式=4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.某工厂第一车间有x人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有(x﹣30)人?(2)调动后,第一车间的人数为(x+10)人,第二车间的人数为(x﹣40)人;(3)求调动后,第一车间的人数比第二车间的人数多几人?【考点】整式的加减;列代数式.【专题】计算题.【分析】(1)表示出第二车间的人数,进而表示出两个车间的总人数;(2)表示出调动后两车间的人数即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)根据题意得:x+x﹣30=(x﹣30)人;(2)根据题意得:调动后,第一车间人数为(x+10)人;第二车间人数为(x﹣40)人;(3)根据题意得:(x+10)﹣(x﹣40)=x+50(人),则调动后,第一车间的人数比第二车间的人数多(x+50)人.故答案为:(1)(x﹣30);(2)(x+10);(x﹣40)【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.如图,AD=,E是BC的中点,BE=,求线段AC和DE的长.【考点】两点间的距离.【分析】根据线段中点的性质,可得BC的长,根据线段的和差,可得AC的长,可得关于DB的方程,根据解方程,可得DB的长,再根据线段的和差,可得答案.【解答】解:由E是BC的中点,BE=,得BC=2BE=2×2=4cm,AB=3×2=6cm,由线段的和差,得AC=AB+BC=4+6=10cm;AB=AD+DB,即DB+DB=6,解得DB=4cm.由线段的和差,得DE=DB+BE=6+4=10cm.【点评】本题考查了两点间的距离,利用线段的和差得出关于DB的方程式解题关键.22.下表是2015﹣2016赛季欧洲足球冠军杯第一阶段G组赛(G组共四个队,每个队分别与其它三个队进行主客场比赛各一场,即每个队要进行6场比赛)积分表的一部分.排名球队场次胜平负进球主场进球客场进球积分1 切尔西 6 ?? 1 13 8 5 132 基辅迪纳摩 63 2 1 8 3 5 113 波尔图 6 3 1 2 9 x 5 104 特拉维夫马卡比 6 0 0 6 1 1 0 0备注积分=胜场积分+平场积分+负场积分(1)表格中波尔图队的主场进球数x的值为4,本次足球小组赛胜一场积分3分,平一场积分1分,负一场积分0分;(2)欧洲冠军杯奖金分配方案为:参加第一阶段小组赛6场比赛每支球队可以获得参赛奖金1200万欧元,以外,小组赛中每获胜一场可以再获得150万欧元,平一场获得50万欧元.请根据表格提供的信息,求出在第一阶段小组赛结束后,切尔西队一共能获得多少万欧元的奖金?【考点】一元一次方程的应用.【分析】(1)根据波尔图队总进球数=主场进球数+客场进球数,即可求出x的值;由特拉维夫马卡比队负6场积0分,可知负一场积0分.设胜一场积x分,平一场积y分,根据排名2,3的积分数列出方程组,求解即可;(2)设切尔西队胜a场数,则平(6﹣x﹣1)场,根据积分为13列出方程,解方程进而求解即可.【解答】解:(1)由题意得x=9﹣5=4;设胜一场积x分,平一场积y分,根据题意得,解得.即胜一场积3分,平一场积1分,负一场积0分.故答案为4;3分,1分,0分;(2)设切尔西队胜a场数,则平(6﹣a﹣1)场,根据题意得3a+(6﹣a﹣1)=13,解得a=4.切尔西队一共能获奖金:1200+150×4+50×1=1850(万).答:在第一阶段小组赛结束后,切尔西队一共能获得1850万欧元的奖金.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.已知数轴上,点O为原点,点A对应的数为9,点B对应的数为6,点C在点B右侧,长度为2个单位的线段BC在数轴上移动.(1)如图1,当线段BC在O、A两点之间移动到某一位置时恰好满足线段AC=OB,求此时b的值;(2)当线段BC在数轴上沿射线AO方向移动的过程中,若存在AC﹣0B=AB,求此时满足条件的b值;(3)当线段BC在数轴上移动时,满足关系式|AC﹣OB|=|AB﹣OC|,则此时的b的取值范围是b=3.5.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)由题意可知B点表示的数比点C对应的数少2,进一步用b表示出AC、OB 之间的距离,联立方程求得b的数值即可;(2)分别用b表示出AC、OB、AB,进一步利用AC﹣0B=AB建立方程求得答案即可;(3)分别用b表示出AC、OB、AB、OC,进一步利用|AC﹣OB|=|AB﹣OC|建立方程求得答案即可.【解答】解:(1)由题意得:9﹣(b+2)=b,解得:b=3.5.答:线段AC=OB,此时b的值是3.5.(2)由题意得:9﹣(b+2)﹣b=(9﹣b),解得:b=.答:若AC﹣0B=AB,满足条件的b值是.(3)由题意可得:|9﹣(b+2)﹣b|=|9﹣b﹣(b+2)|,整理得|7﹣2b|=|7﹣2b|,由|7﹣2b|=|7﹣2b|可知7﹣2b=0,解得b==3.5.故答案为b=3.5.【点评】本题考查了一元一次方程的应用,考查了数轴与两点间的距离的计算,根据数轴确定出线段的长度是解题的关键.24.已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=30.【考点】角的计算;角平分线的定义.【分析】(1)首先根据角平分线的定义求得∠EOB和∠COF的度数,然后根据∠EOF=∠EOB+∠COF求解;(2)解法与(1)相同,只是∠AOC=∠AOB+n°,∠BOD=∠COD+n°;(3)利用n表示出∠AOD,求得∠EOF的度数,根据∠AOD+∠EOF=6∠COD列方程求解.【解答】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOB=∠AOB=×100°=50°,∠COF=∠COD=×40°=20°,∴∠EOF=∠EOB+∠COF=50°+20°=70°;(2)∠AOE﹣∠BOF的值是定值,理由是:∠AOC=∠AOB+n°,∠BOD=∠COD+n°,∵OE平分∠AOC,OF平分∠BOD,∴∠AOE=∠AOC=(100°+n°),∠BOF=∠BOD=(40°+n°),∴∠AOE﹣∠BOF=(100°+n°)﹣(40°+n°)=30°;(3)∠AOD=∠AOB+∠COD+n°=100°+40°+n°=140°+n°,∠EOF=∠EOC+∠COF=∠EOC+∠COD﹣∠DOF=(100°+n°)+40°﹣(40°+n°)=70°,∵∠AOD+∠EOF=6∠COD,∴(140+n)+70°=6×40,∴n=30.故答案是:30.【点评】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.。
2019-2020学年武汉市初一下期末统考数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题只有一个答案正确)1.已知a>b,c≠0,则下列关系一定成立的是().A.ac>bc B.a bc c>C.c-a>c-b D.c+a>c+b【答案】D【解析】【分析】根据不等式的基本性质一一判断可得答案.【详解】解:A、当c<0时,不等式a>b的两边同时乘以负数c,则不等号的方向发生改变,即ac<bc.故本选项错误;B、当c<0时,不等式a>b的两边同时除以负数c,则不等号的方向发生改变,即a bc c<.故本选项错误;C、在不等式a>b的两边同时乘以负数-1,则不等号的方向发生改变,即-a<-b;然后再在不等式的两边同时加上c,不等号的方向不变,即c-a<c-b.故本选项错误;D、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确.故选D.【点睛】本题主要考查的是不等式的基本性质.不等式的性质1: 不等式两边加(或减)同一个数(或式子), 不等号的方向不变.即如果a>b, 那么a±c>b±c; 不等式的性质2: 不等式两边乘(或除)以同一个正数, 不等号的方向不变.即如果a>b, c>0, 那么ac>bc或(ac>bc);不等式的性质3: 不等式两边乘(或除)以同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac<bc或(ac<bc).2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.“杨絮”纤维的直径约为0.0000107米,则0.0000107用科学记数法表示为:()A.51.0710-⨯B.40.10710-⨯C.40.10710⨯D.51.0710⨯【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000107=51.0710-⨯,故选A.【点睛】本题考查科学记数法表示较小的数,需注意对于一般形式a×10-n,1≤a<10,n等于原数左边起第一个不为零的数字前面的0的个数.4.不等式组2201xx+>⎧⎨-≥-⎩的解在数轴上表示为( )A.B.【答案】D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x≤1;∴不等式组的解集是﹣1<x≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.5.某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品( ) A .5件B .6件C .7件D .8件 【答案】C【解析】【分析】 关系式为:原价×10折扣数×件数≤29,把相关数值代入计算求得最大的正整数解即可. 【详解】设可以购买x 件这样的商品,由题意,得5×0.8x ≤29,解得x ≤7.25,则最多可以购买该商品的件数是7,故选C .【点睛】本题考查了一元一次不等式的应用,弄清题意,找准不等关系列出不等式是解题的关键.6.如果21xy=-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m的值是()A.-2 B.2 C.-1 D.1 【答案】C【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】把21xy=-⎧⎨=⎩代入方程得:-2m+1=3,解得:m=-1,故选:C.7.下列多项式中,不能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣a﹣b)(﹣a+b)C.(﹣a+b)(a﹣b)D.(a+b)(﹣a+b)【答案】C【解析】【分析】根据平方差公式的特点对各个选项分析判断后,即可得到答案【详解】A. (﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b),能用平方差公式计算,故A项不符合题意;B. (﹣a﹣b)(﹣a+b)=﹣(a+b)(﹣a+b),能用平方差公式计算,故B项不符合题意;C. (﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不能用平方差公式计算,故C项符合题意;D. (a+b)(﹣a+b)能用平方差公式计算,故D项不符合题意;故选择C项.【点睛】本题考查平方差公式,解题的关键是熟练掌握平方差公式.8.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每天体育锻炼的时间D.调查某批次汽车的抗撞击能力【解析】【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断.【详解】A、范围较小,容易操作,适合普查,故该选项错误;B、要求比较严格,适合普查,故该选项错误;C、范围较小,容易操作,适合普查,故该选项错误;D、破坏性大,适合抽样调查,故本选项正确.故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.9.下列各数中属于无理数的是()A.3.14B.4C.35D.1 3【答案】C【解析】【分析】分别根据无理数、有理数的定义进行判定即可得出答案.【详解】3.14,143,是有理数,35是无理数,故选C.【点睛】本题考查了无理数的定义.牢记无限不循环小数为无理数是解题的关键. 10.下列四个图案中,是轴对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.【点睛】本题考查了轴对称图形,掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22-12=3,3就是智慧数,从0开始,不大于2019的智慧数共有_______ 个.【答案】1【解析】【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【详解】∵(n+1)2-n2=2n+1,∴所有的奇数都是智慧数,∵2019÷2=1009…1,∴不大于2019的智慧数共有:1009+1=1.故答案为:1.此题考查了新定义,平方差公式,理解“智慧数”的定义是解题关键.12.如果关于 x 的不等式 x <a +5 和 2x <4 的解集相同,则 a =_____.【答案】-2【解析】【分析】求得不等式1x <4的解集是x <1,由两不等式的解集相同,得a+5=1.【详解】不等式1x <4的解集是x <1.∵两不等式的解集相同,∴a+5=1,解得a=-2.故答案为:-2.【点睛】考核知识点:解一元一次不等式.解不等式是关键.13.已知关于x 的不等式组52112x x a ->-⎧⎪⎨->⎪⎩无解,请写出符合题意的一个整数值a 是_____________. 【答案】2(1a ≥即可)【解析】【分析】 先将52112x x a ->-⎧⎪⎨->⎪⎩变形得到6212x x a >⎧⎨->⎩,化简得到32+1x x a >⎧⎨>⎩,再结合题意得到2+13a ≥,计算即可得到答案.【详解】52112x x a ->-⎧⎪⎨->⎪⎩变形得到6212x x a >⎧⎨->⎩,化简得到32+1x x a >⎧⎨>⎩,因为关于x 的不等式组52112x x a ->-⎧⎪⎨->⎪⎩无解,所以2+13a ≥,解得1a ≥,故可取a=2.【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式组的方法.14.请写出一个比1大比2小的无理数:________________.(答案不唯一)【分析】利用1<2<4,再根据算术平方根的定义,有1<2<2,这样就可得到满足条件的无理数.【详解】∵1<2<4,∴1<2<2,故答案为:2(答案不唯一).【点睛】此题主要考查了估算无理数的大小,注意首先估算被开方数在哪两个相邻的平方数之间,再估算该无理数在哪两个相邻的整数之间.15.关于,x y 的方程11235m n x y +-+=是二元一次方程,则m n -=__________.【答案】-2.【解析】【分析】根据二元一次方程的定义,可得x 和y 的指数分别都为1,列关于m 、n 的方程,然后求解即可.【详解】根据二元一次方程的定义,11,11m n +=-=,解得0,2m n ==.所以022m n -=-=-.【点睛】本题考查二元一次方程的定义. 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.16.如图,长宽分别为 a ,b 的长方形的周长为 14,面积为 10,则 a 3b+ab 3的值为_____.【答案】1【解析】【分析】直接利用矩形的性质结合完全平方公式将原式变形得出答案.【详解】∴a+b=7,ab=10,∴a 3b+ab 3=ab[(a+b )2-2ab]=10×(72-20)=1.故答案为:1.【点睛】此题主要考查了提取公因式法以及完全平方公式,正确将原式变形是解题关键.17.如图,有两个大小不同的正方形A 和B ,现将A 、B 并列放置后构造新的正方形得到图①,其阴影部分的面积为16;将B 放在A 的内部得到图②,其阴影部分(正方形)的面积为4,则正方形A 、B 的面积之差为________________.【答案】12【解析】【分析】设正方形A 的边长为a ,正方形B 的边长为b ,由图①得22216a b a b +--=() ,2ab=16,由图②得2224a b a b b ---⨯=() 即2224a b ab +-=,进一步得24a b -=(),2222436a b a b ab ab +=+-+=(),据此求得a+b 和a-b 的值,由平方差公式可得答案. 【详解】设正方形A 的边长为a ,正方形B 的边长为b ,由图①得22216a b a b +--=(),2ab=16,由图②得2224a b a b b ---⨯=() 即2224a b ab +-=所以24a b -=(),2222436a b a b ab ab +=+-+=(),∴2,6a b a b -=±+=±,∵a>b>0∴a-b=2,a+b=6∴()()2212a b a b a b -=+-= , 则正方形A 、B 的面积之差为12,故答案为12.【点睛】三、解答题18.如图,已知AB =AD ,∠ABC =∠ADC .试判断AC 与BD 的位置关系,并说明理由.【答案】AC ⊥BD ,理由见解析.【解析】【分析】AC 与BD 垂直,理由为:由AB=AD ,利用等边对等角得到一对角相等,利用等式性质得到∠BDC=∠DBC ,利用等角对等边得到DC=BC ,利用SSS 得到三角形ABC 与三角形ADC 全等,利用全等三角形对应角相等得到∠DAC=∠BAC ,再利用三线合一即可得证.【详解】AC ⊥BD ,理由为:∵AB =AD (已知),∴∠ADB =∠ABD (等边对等角),∵∠ABC =∠ADC (已知),∴∠ABC ﹣∠ABD =∠ADC ﹣∠ADB (等式性质),即∠BDC =∠DBC ,∴DC =BC (等角对等边),在△ABC 和△ADC 中,AB AD AC AC BC DC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS ),∴∠DAC =∠BAC (全等三角形的对应角相等),又∵AB =AD ,∴AC ⊥BD (等腰三角形三线合一).【点睛】此题考查了全等三角形的判定与性质,等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.19.如图,在△ABC 中,∠1=110°,∠C =80°,∠2=13∠3,BE 平分∠ABC ,求∠4的度数.【答案】∠4=40°【解析】【分析】根据三角形的外角求出∠3,求出∠2,求出∠BAC ,根据三角形内角和定理求出∠ABC ,根据角平分线的性质求出∠ABE ,根据三角形外角性质求出即可.【详解】解:∵∠1=110°,∠C =80°,∴3130C ∠=∠-∠=︒,∵∠2=13∠3, ∴∠2=10°,∴2340BAC ∠=∠+∠=︒,∴180180408060ABC BAC C ∠︒∠-∠=︒-︒-︒=︒=﹣,∵BE 平分∠ABC , ∴1302ABE ABC ∠=∠=︒, ∴∠4=∠ABE+∠2=30°+10°=40°.【点睛】本题考查了角平分线的性质、三角形内角和定理和三角形外角性质,能求出∠ABE 的度数是解此题的关键. 20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加45万平方米.【解析】【分析】(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a )≥360解得:a≥1.答:则至少每年平均增加1万平方米.21.某体育用品商店购进乒乓球拍和羽毛球拍进行销售,已知羽毛球拍比乒乓球拍每副进价高20元,用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等.(1)求每副乒乓球拍、羽毛球拍的进价各是多少元?(2)该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副进行销售,且乒乓球拍的进货量不超过60副,请求出该商店有几种进货方式?【答案】(1)每副乒乓球拍、羽毛球拍进价分别为80元、100元;(2)共有3种进货方式,详见解析.【解析】【分析】(1)可设购买1副乒乓球拍需x 元,根据用10000元购进羽毛球拍与用8000元购进乒乓球拍的数量相等,列出分式方程,解方程检验即可.(2)可设购买了乒乓球拍y 副,根据该体育用品商店计划用不超过8840元购进乒乓球拍、羽毛球拍共100副,列出不等式求解,再根据乒乓球拍的进货量不超过60副取公共部分的整数,可知共有3种.【详解】(1)设每副乒乓球拍进价为x 元,由题意得:10000800020=+x x解得:80x =,经检验80x =是原方程的解,且符合题意,此时20100x +=.答:每副乒乓球拍、羽毛球拍进价分别为80元、100元.(2)设购进乒乓球拍y 副,由题意得:80100(100)8840+-≤y y解得:58≥y ,因为60,≤y 所以5860≤≤y ,所以58,59,60=y .故共有3种进货方式:①购买58副乒乓球拍,42副羽毛球拍;②购买59副乒乓球拍,41副羽毛球拍;③购买60副乒乓球拍,40副羽毛球拍.【点睛】本题考查了分式方程的应用及一元一次不等式组的应用,解题的关键是仔细审题,找到等量关系及不等关系,列出方程与不等式组,难度一般.22.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.比如在学习“同底数幂的乘法法则”过程中,利用有理数的乘方概念和乘法结合律,可由“特殊”抽象概括出“一般”,具体如下22×23=25,23×24=27,22×26=28…→2m •2n =2m +n …→a m •a n =a m +n (m 、n 都是正整数)我们亦知: 221331+<+, 222332+<+, 223333+<+, 224334+<+… (1)请你根据上面的材料,用字母a 、b 、c 归纳出a 、b 、c (a >b >0,c >0)之间的一个数学关系式. (2)请尝试说明(1)中关系式的正确性.(3)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m 克糖水里含有n 克糖,再加入k 克糖(仍不饱和),则糖水更甜了”【答案】(1)b bc a a c +<+;(2)见解析;(3)见解析. 【解析】【分析】(1)探究规律,利用规律即可解决问题;(2)利用求差法比较大小即可;(3)利用(1)中结论,即可解决问题;【详解】解:(1)b b c a a c+<+. (2)∵b b c a a c+-+=()()()ab bc ab ac c b a a a c a a c +---=++, ∵a >b >0,c >0,∴a +c >0,b ﹣a <0,∴()()c b aa a c-+<0,∴b b ca a c+<+.(3)∵原来糖水里含糖的质量分数为nm,加入k克糖后的糖水里含糖的质量分数为n km k++,由(1)可知:nm<n km k++,所以糖水更甜了.【点睛】本题考查分式的混合运算、同底数幂的乘法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.【答案】(1)25°(2)12n°+35°(3)215°-12n°【解析】试题分析:(1)根据角平分线直接得出答案;(2)过点E作EF∥AB,然后根据平行线的性质和角平分线的性质求出角度;(3)首先根据题意画出图形,然后过点E作EF∥AB,按照第二小题同样的方法进行计算角度.试题解析:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=12∠ADC=12×70°=35°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=12n°+35°;(3)过点E作EF∥AB∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=35°∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-12n°,∠CDE=∠DEF=35°,∴∠BED=∠BEF+∠DEF=180°-12n°+35°=215°-12n°.考点:平行线的性质.24.线段AB=12cm,点C在线段AB上,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长.(2)若AC=4cm,求DE的长.(3)若点C为线段AB上的一个动点(点C不与A,B重合),求DE的长.【答案】(1)DE的长为6cm;(2)DE=6cm;(3)DE=6cm.【解析】【分析】(1)根据线段中点的性质计算即可;(2)根据线段中点的性质和给出的数据,结合图形计算;(3)同(1)的解法相同;由AB=12cm,点D. E分别是AC和BC的中点,即可推出DE=12(AC+BC)=12AB=6cm;由AC=4cm,AB=12cm,即可推出BC=8cm,然后根据点D. E分别是AC和BC的中点,即可推出AD=DC=2cm,BE=EC=4cm,即可推出DE的长度;【详解】(1)∵点D是AC中点,∴AC=2AD=6,又∵D、E分别是AC和BC的中点,∴DE=DC+CE=12AC+12BC=12AB=6;故DE的长为6cm;(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴DC=12AC=2,CE=12BC=4,∴DE=6cm;(3)∵DE=DC+CE=12AC+12BC=12AB而AB=12,∴DE=6cm.【点睛】本题考查角的计算及角平分线的定义,熟练掌握计算法则及角平分线的性质是解题关键.25.(2016广西玉林市崇左市)为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)上个月借阅图书的学生有多少人?扇形统计图中“艺术”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书300册,请你估算“科普”类图书应添置多少册合适?【答案】(1)240,11°;(2)作图见解析;(3)1.【解析】【分析】(1)、用借“生活”类的书的人数除以它所占的百分比即可得到调查的总人数;然后用360°乘以借阅“艺术“的人数所占的百分比得到“艺术”部分的圆心角度;(2)、先计算出借阅“科普“的学生数,然后补全条形统计图;(3)、利用样本估计总体,用样本中“科普”类所占的百分比乘以300即可.【详解】(1)、上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“艺术”部分的圆心角度数=360°×100240=11°;(2)、借阅“科普“的学生数=240﹣100﹣60﹣40=40(人),条形统计图为:(3)、300×40240=1,估计“科普”类图书应添置1册合适.考点:(1)、条形统计图;(2)、用样本估计总体;(3)、扇形统计图。