人教A版模块5第三章《不等式》教材分析
- 格式:doc
- 大小:44.50 KB
- 文档页数:5
人教A版数学必修5第三章不等式教学案课题:§ 3.1不等式与不等关系第1课时授课类型:新授课【教学目标】1 •知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2 •过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3 •情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1. 课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2. 讲授新课1)用不等式表示不等关系引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h, 写成不等式就是:v乞40引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于 2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是用不等式组来表示问题1:设点A与平面:-的距离为d,B为平面〉上的任意一点,贝U d -| AB |。
问题2:某种杂志原以每本 2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?x _ 2 5解:设杂志社的定价为x元,则销售的总收入为(8 0.2)x万元,那么不等关系0.1“销售的总收入仍不低于20万元”可以表示为不等式x —2 5(8 0.2)x_200.1问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。
说课标,说教材说课稿人教版高中数学必修5第三章《不等式》各位评委、各位老师,大家好:今天我“说课标、说教材”的内容是人教版高中数学必修5第三章《不等式》。
下面我将从说课标、说教材、说建议三大方面面进行研说。
其中说课标包括数学课程的总体目标、必修五《不等式》课程目标、必修五《不等式》内容标准。
说教材包括教材的编写特点、教材编写体例、目的、教材的内容结构及知识与技能的立体式整合一、说课标(一)、数学课程的总体目标高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
具体目标如下:1、获得数学基础知识、基本技能、基本方法、基本实践活动2、培养学生的空间想象、抽象概括、推理论证、运算求解、数据处理的能力;培养应用意识、创新意识3、提高兴趣、树立信心、树立辩证唯物主义世界观这三个目标分别体现了数学课程在知识与技能、过程与方法、情感态度与价值观上对学生提出的要求。
(二)、必修五《不等式》课程目标:1、知识与技能:了解不等式(组)的实际背景。
经历从实际情境中抽象出一元二次不等式二元一次不等式组模型的过程。
探索并了解基本不等式的证明过程。
会用基本不等式解决简单的最值问题。
2、过程与方法:通过本章学习培养和发展学生勇于自主探索,合作学习,勇于创新精神,体会事物之间普遍联系的思想。
3、情感态度与价值观:激发学生学习兴趣,拓展学生视野,培养良好的学习习惯。
(三)、必修五《不等式》内容标准:在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。
二、说教材:(一)、教材的编写特点1、关注数学情境的建立,注重兴趣培养。
《基本不等式》(第一课时)教材:高中数学必修5(人教版)第三章教学目标:★知识与技能:引导学生从问题中发现基本不等式,让学生理解、掌握基本不等式,并能运用它解决一些简单问题;培养他们的探究能力以及分析问题解决问题的能力。
★过程与方法:1.通过问题情境的设置,使学生认识到数学是从实际中来,培养学生观察、分析、猜想等能力;2.通过引导学生用多种方法证明推导基本不等式,培养学生的创新思维和探索精神;3.通过不等式的应用培养学生的应用意识。
引领学生主动探索基本不等式性质,体会学习数学规律的方法。
★情感、态度与价值观:在教学中发挥学生学习的主体作用,培养学生勇于探索的精神,激发他们学习数学的兴趣。
教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式2ba ab +≤的证明过程及应用。
教学难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、用基本不等式求最大值和最小值。
教学方法:采用启发式教学和探究式教学的方法让学生掌握本节课的内容,并通过讲练结合的方法让学生巩固课堂所学的内容。
教学手段:借助PowerPoint课件整合教材内容,利用几何画板作出动画营造轻松生动的课堂学习氛围。
教学过程:板书设计《基本不等式》教案说明教材:高中数学必修5(人教版)第三章一、教材分析本课内容为普通高中课程标准实验教科书(人教A 版)数学必修5第三章不等式中的3.4 基本不等式。
新课标对该内容的相关要求为:①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的最大(小)值问题。
基本不等式是不等式证明和应用的重要依据和工具,要进一步了解不等式的性质及运用,研究最值问题,基本不等式是必不可缺的。
本节内容预计为两课时,第一课时侧重于基本不等式的理解及证明;第二课时侧重于基本不等式的应用。
二、教学目的分析本节课是在学生已经系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。
学生通过之前的学习已经掌握了证明不等式的基本方法,同时初步具备了从实际问题中抽象出不等式并运用数学方法解决实际问题的能力。
不等式的基本性质.一、教学背景分析1.教学内容分析不等式是初中代数的重要内容之一,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想,是初中数学教学的重点和难点.而不等式的性质是本章的重点内容之一,是在学生学习了数轴、等式的基本性质、不等式的概念的基础上进行的,是不等式变形的依据,也是学习一元二次方程、函数、高中不等式等知识的基础,是学生后继学习的重要基础和必备技能.2.学生情况分析我所任教的教学班的学生活泼好动,对学习充满兴趣,有一定的合作与探究意识,但基本功不扎实,缺乏毅力和恒心,应多给以鼓励;在知识方面已经学习了有理数大小的比较,等式的基本性质,有一定的认知基础,这些都为自主探究不等式的性质提供了条件.二、教学目标及重难点设计通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想;掌握不等式的基本性质,并会运用不等式的基本性质将不等式变形,发展符号表达能力、代数变形能力;通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力.重点:不等式的基本性质的应用.难点:不等式的基本性质的灵活应用.三、教学过程与教学资源设计1.教法分析基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容沿两条主线展开.第一条主线是探究性质,设计4组活动,分别是:自主探索性质→类比猜想性质→归纳得出性质→比较异同.第二条主线是应用性质,设计(三道例题)和3道巩固性变式训练.2.学法分析本节课在学法上突出学生的“探索发现”,通过观察、类比、猜想、验证等一系列探究活动,积累数学的探究方法和获得新知的经验.3.教学手段及媒体的选用在教学过程中,适时提出问题,引发学生思考.并借助多媒体辅助教学,增强图形的动感效应,增强教学的直观性和实效性.4.教学过程(略)四、学习效果评价设计1.学生在本节课的学习中,能够积极主动的参与学习活动,乐于与他人合作交流,尝试运用类比的方法探索不等式的基本性质,并能够用文字语言和符号语言描述性质;2.在应用性质解决问题的过程中,能够准确的运用性质进行推理;3.在畅谈收获中,能够说出收获和体会,建立学好数学的自信.五、教学设计特色总的来说,本节课呈现出以下三个特点:(1)以学生活动思索为主线——使学生主动建构.。
基本不等式一、对课标要求和教材特点的分析基本不等式又称均值不等式,是人教A版必修5的第三章第四节的内容。
基本不等式的学习为今后解决最值问题提供了新的手段,在高中数学有着重要的地位。
1.课标对本节课的要求:①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的最大(小)值问题。
要求中明确提出了探索过程、应用解决等词汇,体现了数学探索发现、应用实际的学科特点。
2. 对教材中本节课的内容安排特点的理解●课程教材十分注重现实问题、实际例子的转化与解决,突出并强调数学的应用性。
●教科书以问题方式代替例题,强化问题意识,促使学生在具体问题情景中学习如何用不等式研究及表示不等关系。
●课程教材关注学生的发展,使学生在学习过程中感受、体验、认识、理解,培养学生学习数学的兴趣。
●教科书更加注重学生数学思维的培养,十分注重借助几何直观(即用图形)来分析解决问题能力的培养和提高。
3.学情分析:学生在初中学习了完全平方公式、圆,初步认识了不等式。
同时,在本章前三节学习了一元二次不等式、二元一次不等式(组)与线性规划问题,这些都给学习本节课提供了坚实的基础;。
但接触的不等式较为单一,灵活度不够,学生在练习时运用困难,而基本不等式对于学生更为灵活,但也为学生掌握设置了障碍。
(根据以上情况,我制定了如下几点教学目标)二、教学重点、难点、目标1.重点:●应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
依据:通过对新课程标准的解读,教材内容的解析,我认为结果固然重要,但数学学习过程更重要,它有利于培养学生的数学思维和探究能力。
●均值不等式成立的条件及应用。
依据:均值不等式有比较广的应用,需重点掌握,而掌握均值不等式,关键是对不等式成立条件的准确理解。
突出重点的方法:我将采用分组讨论,多媒体展示、引导启发法来突出基本不等式的推导。
2.难点●基本不等式成立时的三个限制条件(简称一正、二定、三相等);●利用基本不等式求解实际问题中的最大值和最小值。
人教A版模块5第三章《不等式》教材分析课程目标:不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。
建立不等观念、处理不等关系与处理等量问题是同样重要的。
在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。
一、知识结构大纲教材中,一元二次不等式安排在集合之后、简易逻辑之前,作为初中一元一次不等式的自然延伸和新高一的起步内容之一,而课标教材把一元二次不等式安排在模块5,根据浙江省高中新课程实施意见,应在高二(上)学习;二元一次不等式(组)与简单的线性规划问题从大纲教材解析几何部分的一个单元移到模块5;删除一元高次、分式不等式,把绝对值不等式移到选修4-5,把不等式证明也移到1-2(文)、2-2(理)、选修4-5。
二、教学要求──立足基础、螺旋上升,促进主动学习、激励自主发展1.基本要求(1)了解不等式(组)的实际背景。
(2)理解不等式(组)对于刻画不等关系的意义和价值。
(3)会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题。
(4)了解不等式一些基本的性质。
(5)了解从实际情境中抽象出一元二次不等式模型的过程,理解一元二次不等式的概念。
(6)理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系。
(7)理解并掌握解一元二次不等式的过程。
(8)会求一元二次不等式的解集。
(9)掌握求解一元二次不等式的程序框图及隐含的算法思想。
(10)了解从实际情境中抽象出二元一次不等式(组)模型的过程。
(11)理解二元一次不等式(组)及其解集的概念。
(12)了解二元一次不等式的几何意义,理解(区域)边界的概念及其实、虚线的含义。
(13)会用二元一次不等式(组)表示平面区域。
(14)了解线性约束条件、目标函数、线性目标函数、线性规划、可行域、可行解、最优解的概念。
(15)掌握简单的二元线性规划问题的解法。
(16)了解基本不等式的代数、几何背景及其证明过程。
(17)理解算术平均数、几何平均数的概念。
(18)会用基本不等式解决简单的最大(小)值问题。
(19)通过基本不等式的实际应用,感受数学的应用价值。
2.发展要求(1)理解并掌握不等式的基本性质。
(2)体会不等式的基本性质在不等式证明中所起的作用。
(3)一元二次不等式解法及应用。
(4)能把一些简单的实际问题转化成二元线性规划问题并加以解决。
(5)掌握基本不等式应用及其使用的条件。
三、课标教材特点分析1.教学内容通过前后移动、左右拆分等动作试图把体现和刻画不等关系的意义、价值、方法和思想的有关内容进行了一次整编,使得内容上“形式的大拼盘”在不等关系和不等思想这个层次上得到“实质性的统一”。
从多角度(实际背景、几何意义、代数算理、不等思想等)体现课程标准基础性、发展性、应用性和思想性的要求。
2.教学要求(1)在解不等式方面,课标教材有二个特点:基本要求进一步降低、重视直观合情推理。
在大纲教材删除指、对数不等式和根式不等式之后又删除了一元高次不等式、分式不等式,绝对值不等式移到选修4-5(选修IB 之一,供浙江新课程高考一类考生选择);在课标教材的例题中,解一元二次不等式前都是先研究相应的一元二次方程的根、二次函数的图象,这是大纲教材所不及的。
(2)在不等式证明方面采取分步到位、螺旋上升的策略,但现阶段浙江省高考对不等式证明的要求是降低的。
虽然在选修1-2(文)、2-2(理)的推理与证明中提出用综合法与分析法是选修IA之一,作为浙江高考要求;但选修4-5中不等式选讲中不等式证明的常用方法(比较法、综合法、分析法和数学归纳法)及柯西(三角不等式)、排序、均值不等式及其应用,还介绍了贝努利不等式,这些内容是选修IB,供浙江新课程高考一类考生选择。
另外,基本不等式只要求了解其代数、几何背景及证明过程,应用上只要求用于求简单的最值问题。
3.教学意义数学是思维的体操,不等式作为大纲教材的一个重点和难点,在培养学生演绎推理能力方面起到重要作用,但大纲教材在推理的技巧性和严密性上多层次人为的过度强调,在演绎推理难度上不断提升,往往使得学生成为思维的机器,而不是思维的主人。
课标教材强调合情推理和演绎推理并重,强调不等式的背景和实际应用,把不等式作为刻画现实世界中不等关系的数学工具,作为描述优化问题的一种数学模型,而不是从数学到数学的纯理论,使思维成为自然的可能,将使学生成为思维的主人。
练;强调学生体验知识的形成过程,淡化一些技巧性的要求;强调利用图象的直观性和合情推理,淡化纯演绎推理。
3.1不等关系与不等式这一节让学生从大文化和实际背景认识不等关系的普遍性,如章头图及其说明诗:“横看成岭侧成峰,远近高低各不同”(这首苏东坡的《题西林壁》的后二句大家更熟悉:不识庐山真面目,只缘身在此山中);具体要求也和原教材有很大的不同,原教材作为研究不等式的理论基础,先结出实数大小比较的基本原理,再归结出五大定理和几个推论,部分还结出了证明。
而课标教材也先结出实数大小比较的基本原理,但把五大定理和几个推论整理为不等式的八大性质,并只作一些简要的说明,并强调这些关于不等式的事实和性质是解决不等式问题的依据,所以在教学中,我们不必在这些性质的证明中化过多的时间,而应该着眼于通过实际背景、几何意义、具体例子来说明这些性质的合理性,对一些不等式的推断作一些分析验证;在此过程中更要重视学生的参与,师生在实际背景、几何意义、具体例子的共同作用下接受合情推理及其结论,尽可能减少学习过程中被迫无奈的成分(包括教师作为成人已具有的,而学生未具备的文化背景和经验)。
另外,我个人认为引入不等关系和性质的实际背景、具体例子和性质本身都可以根据实际情况(当地学生情况和我省模块1-4-5-2-3的现实)作一些必要的调整,如问题1的内容(点到平面的距离)、章头图的形式(人教A版用熔岩峰岭图、上海教材用城市道路和高楼图)、八条性质的设置(如减对称性,增倒数性质)。
3.2一元二次不等式及其解法在大纲教材中,集合和逻辑联结词之后简易逻辑和函数之前安排了借助二次函数解决二次不等式有关问题,究其用意,一是让使学生进一步完善二次函数这一中学里最重要的函数的认识结构,并在理解抽象的函数概念时有一个具体的函数模型;二是巩固有关集合的基本概念;三是巩固并熟悉使用“或”、“且”二个逻辑联结词,并为学习“简易逻辑”打好基础;四是为下一章研究某些函数的定义域、值域、单调性作准备。
课标教材为了防止师生在学习集合和函数概念时,借助二次不等式对函数的定义域、值域、单调性等细小问题进行大量繁琐的所谓重点训练,而忽视对函数概念的本质的理解、忽视对函数性质的讨论、忽视函数的实际应用,故课标教材采取了釜底抽薪的方法,把二次不等式放到必修5。
但已经参与实验的教师中,特别是在一些多次使用传统教材的教师中,有许多人对此提出质疑,我认为这主要是受使用大纲教材(把二次不等式放在集合与函数之间)的经验和习惯性的影响。
对此,我有二个建议:部分现阶段一时难以适应的老教师,在尽可能实现课标教材设计意图的情况下可以暂时沿用以往的办法来处理;学生数学基本能力和思想(主要是本节内容学习过程中的蕴含的有关能力,如实际背景抽象出数学模型的能力、数形结合的能力、从直观到理性和从特殊到一般的认识能力)较好的班级也可以暂时沿用以往的办法来处理。
但我们应努力改变这种情况。
人教A版先通过一个上网费用问题引入一元二次不等式的概念,让学生了解从实际情境中抽象出一元二次不等式模型的过程,理解一元二次不等式的概念。
然后借助具体二次函数的图象研究二次函数的零点和一元二次方程根的关系,并观察当一点P在二次函数图象上移动(即点P的横坐标x变化)时,其纵坐标y 有什么变化?进而归纳出一般一元二次不等式的解法,最后让学生自主完成求解一般一元二次不等式的过程的程序框图。
从实际背景到数学模型,从直观感受到理性认识,从特殊到一般,这种处理符合学生的认知规律,有助于学生认清知识的形成过程,加深对知识的理解,更重要的是在此过程中学生能有体验的感受,往往使学生领悟到数学的思想方法。
故教学中要重体验淡模式、重应用淡技巧、重背景控难度。
总之,要重视理解并掌握解一元二次不等式的过程,突出数形结合的思想,理解二次函数、方程、不等式的关系,达到求一元二次不等式的解集的基本要求即可,相关内容在选修4-5中将进一步讨论。
3.3二元一次不等式(组)与简单的线性规划问题不等关系在日常生活、现实生产、科学实验中大量存在,如上网时间费用、刹车距离与车速关系、资源利用、人力调配、生产安排等问题。
不等式是用来刻画不等关系的优化工具,二元一次不等式(组)刻画区域的准确性和可活动性使之成为解决二元线性规划问题的有效工具。
本节安排了线性规划及其实习作业内容,教学中要立足于实际问题是数学问题的源泉,解决实际问题是数学研究的主要目的之一;同时,由于浙江省先安排上模块5,后上模块2,故高一教学时应作适当调整,一种是把整节切割到直线方程之后,另一种是适当补充直线方程有关内容(如倾斜角、斜率等),我倾向选择后一种方案(主要基于二点理由:倾斜角、斜率比较直观,三角函数已学),主要理由是遵循教材设计意图(不等关系);另外,多元条件极值是有一定难度的,教学中不应再过多展开,要让学生通过自主研究理解掌握基本解法即可,如可让学生自主探究完成二元一次不等式表示的平面区域(象探究一元二次不等式的解法一样,经历观察、尝试、思考等探究的过程);最后,要帮助学生实现从实际问题中抽象出二元一次不等式(组),这是本节的难点。
3.4基本不等式:2ba ab +≤首先,我们应明确,本节的重点是应用数形结合的思想理解基本不等式,从不同角度探索它的证明过程(证明意识的培养),难点是利用之求最大(小)值,一般不等式证明不是本节的重点和难点,选修1-2(文)、2-2(理)、4-5中将会继续研究;其次,基本不等式只限于二元;第三,教学中应突出用基本不等式解决简单问题,特别是实际问题(如周长、面积、造价等)的最大(小)值;第四,不要有意设置一些特殊问题去强调所谓“一正、二定、三相等”。