蓄电池组的均衡充电技术
- 格式:doc
- 大小:176.00 KB
- 文档页数:7
电池充电均衡器的均衡效果分析及其解决方案周宝林由于蓄电池都存在内阻并且各不相同,才导致组成串联电池组后各块电池的电压都不相同,由此催生了各种电池均衡器技术的研发,目前,技术上比较多的是电池充电均衡器,那么电池充电均衡器是否能彻底解决电池电压不平衡的问题呢,答案是否定的。
电池充电均衡器仅在电池充电期间起作用,可以有效控制个别电池防止出现过充电,在电池放电时不起作用,无法提升低电压电池的电压,依然会出现明显不均衡问题。
例如,电池组中有一块电池出现了内阻增大的问题(以下简称问题电池),在充电过程中,“问题电池”的端电压上升速度最快,首先达到充电限制电压,在充电均衡器的控制下,充电器此后的输出电能大部分都充到了其它正常电池中,“问题电池”相比其它电池只充入了部分电能。
在放电过程中,放电电流都是一样的,经过一段时间放电,“问题电池”储存的电量首先消耗完,电压下降最快,最先达到放电终止电压,如果继续放电,则“问题电池”将造成严重亏电,形成过放电,甚至会造成容量无法恢复的伤害,此时,大部分电池仍处于电量较为充足的状态,有效电量没有释放出来。
一块“问题电池”就成了电池组的瓶颈,随着接下来的连续充放电,“问题电池”将变得更加严重,变成了一个“可变电阻”,导致整个电池组的放电电流急剧减小,输出电压严重不足,经过多次充放电循环后,“问题电池”的储电能力和放电能力严重下降,严重影响整个电池组性能的发挥,成了“木桶效应”中的最短板。
如果再继续放电,那么“问题电池”不仅无法再释放电能,反而成了负载,极性反转,开始从其它电池吸收电能,导致温度升高。
对于重要系统,后备时间严重不足的问题还会导致重要设备的损坏,后果非常严重。
通过以上分析可以知道,电池充电均衡器虽然解决了电池在充电期间的均衡问题,但却无法解决电池放电期间的均衡问题,无法从根本上解决电池组的均衡问题,仍然属于功能上受限的均衡器。
适合的电池均衡器,应该同时具有充电均衡和放电均衡功能,不仅能够对电池充电期间进行均衡,而且在电池放电期间同样可以进行均衡。
蓄电池充放电要求说明
(1)初期充电
在电池储存和运输过程中电池有一些自放电,在运行过程中必须进行初期充电,其方法为:储存时间在6个月内,恒压2.35V/单体,充电8h;储存时间12个月内,恒压2.35V/单体,充电12h;储存时间24个月内,恒压2.35V/单体,充电24h;
(2)均衡充电
系列电池在下列情况下需要对电池组进行均衡充电:
①电池系统安装完毕后,对电池进行补充充电;
②电池组浮充运行3个月后,有单体电池电压低于2.18V、12V系列电池电压低于13.08V (2.18*6);
③电池搁置停用时间超过3个月;
④电池全浮充运行达3个月。
均衡充电的方法推荐采用 2.35V/单体充电24h。
注意上述充电时间是指温度范围在20-30度,如果环境温度下降,则充电时间应增加,反之亦然。
(3)电池充电
电池放电后应及时充电。
充电方法推荐为以0.1C10A的恒电流对电池组充电,到电池单体平均电压上升到2.35V,然后改用2.35/单体进行恒压充电,直到充电结束。
用上述方法进行充电,其充足电的标志可以用以下条件中任一条来判断。
①充电时间18-24h(非深放电时间可短,如20%的放电深度的电池充电时间可缩短为10h);
②电压恒定情况下,充电末期连续3h充电电流值不变。
在特殊情况下,电池组需尽快充足电可采用快速充电方法,即限流值小于等于0.15C10A,充电压为2.35V/单体。
蓄电池的运行有充放电、半浮充和全浮充三种工作方式。
通信局(站)现在都采用全浮充工作方式,即整流器与蓄电池组并联向负载(通信设备等)供电,正常情况下蓄电池组始终同整流器和负载并联,充电时也不脱离负载。
1、浮充电压平时(交流电正常时)整流器的输出电压值为浮充电压。
此时整流器供给全部负载电流,并对蓄电池组进行补充充电,使蓄电池组保持电量充足。
为补充自放电损失的电量,使蓄电池保持电量充足的连续小电流充电称为浮充充电,所需的充电电压称为浮充电压。
浮充供电的整流器,应在自动稳压状态工作,现在高频开关整流器的稳压精度均应达到£±0.6%。
所谓自放电,是由于电池内杂质的存在,使正极和负极活性物质逐渐被消耗而造成电池容量减小的现象。
浮充电压值的选取直接影响阀控式密封铅酸蓄电池的使用寿命、供电性能和运行的经济性。
浮充电压偏低,则补充充电电流太小,不够补充蓄电池的自放电,将使蓄电池长期处于充电不足的状态,一旦遇到交流电源停电,需要蓄电池组放电供给负载电流时,就会因蓄电池储存的电量不足而影响正常供电,并容易使极板硫酸盐化,从而缩短蓄电池的使用寿命;浮充电压偏高,则补充充电电流偏大,将加剧正极板的腐蚀,并可能使蓄电池排气频繁、失水、温度高,甚至造成蓄电池热失控(浮充状态下蓄电池放热,热失控是电池的浮充电流与电池温度发生积累性相互增强而使电池温度急剧升高的现象,轻则使电池槽变形鼓胀,重则导致电池失效),也会缩短蓄电池的使用寿命。
因此,阀控式密封铅酸蓄电池必须严格按照蓄电池厂家的规定来确定浮充电压值。
我国通信行业标准YD/T799—2002《通信用阀控式密封铅酸蓄电池》中规定:"蓄电池浮充电单体电压为2.20~ 2.27V(25℃)"。
需要注意,这是指不同厂家生产的阀控式密封铅酸蓄电池允许进网的浮充电压范围,而不是一个蓄电池成品的浮充电压允许变化范围。
对于一种具体产品,其浮充电压在25℃条件下是个确定值。
汽车蓄电池充电器原理详解现在市场上比较好的12V充电机一般都采用的是三段式智能充电模式,电路设计原理多常用开关恒流恒压电源的设计。
什么是三段式充电?让我们先来了解一些12V充电机的概念。
1、浮充:充电后的蓄电池,由于电解液及极板中存在杂质,会在极板上形成局部放电,因此为使电池在饱满的状态下处于备用状态,电池与12V充电机并联,接于直流母线上,12V充电机除担负经常的直流负荷外,还给电池适当的充电电流,这种方式叫做浮充电。
2、均充:均充就是均衡充电。
所谓均衡充电,就是均衡电池特性的充电,是指在电池的使用过程中,因为电池的个体差异、温度差异等原因造成电池端电压不平衡,为了避免这种不平衡趋势的恶化,需要提高电池组的充电电压,对电池进行活化充电。
均充电压一般为14.5V,均充时间不大于10小时。
一般是在下列情况下蓄电池需要均衡充电。
1、市电停电后电池释放的能量超过总容量的15%。
2、蓄电池长期处于浮充状态(电网稳定,长期不停电)。
3、电池组中,出现了落后电池,在浮充状态下单体电压低于2.2V,更换新电池后。
先充电的三个阶段:一、第一阶段-----恒流段,当电池电压较低时,为了避免充电电流过大损坏电池,应该限制充电电流不能过大,又为了缩短充电时间,应使用允许的最大电流充电,所以采用了恒流充电。
恒流充电过程中,12V充电机始终以恒定的电流(一般为0.18---3C,C为电池容量)自动调整输出电压对电池充电。
充电过程中电池电压会越充越高,直至升到2.45V每格。
然后转入下一阶段充电。
恒流充电阶段为主充电阶段,电池已经充入约85----90%的电量,恒流充电阶段,电池电压会超过析氢电压2.35V/格,这也就是电动车电池都会失水的原因。
蓄电池均衡器原理
蓄电池均衡器的工作原理是在电池充电过程中,电池组中电压最高的单体电池向均衡器放电,均衡能量由电池组向外部的均衡器转移,即在电池组充电过程中通过减小高能量单体电池的充电电流的方法来提高整个电池组的充电容量。
蓄电池均衡器本身就是一个典型电流、电压型的平衡器件。
充电时,均衡器通过对电压的检测,发现压差后通过电流、电压的相互能量转移补偿,达到各电池电压趋同的平衡目的,防止各电池的过充和欠充。
放电时,均衡器通过对各个电池电压的检测,发现压差后,从压差小的好电池对压差大的电池进行电流电量的转移,尽量达到各电池电压趋同的目的,控制电池过放电,最终达到保护电池的效果。
蓄电池组在线均衡技术的应用分析作者:劳迪明来源:《中国科技纵横》2013年第16期【摘要】本文从技术原理的角度介绍了蓄电池组的应用现状及问题,分析了蓄电池组在线均衡技术的原理及系统功能,指出串联蓄电池组在线均衡技术对给现有蓄电池组的运行所带来的巨大的社会效益和经济效益,对蓄电池组运行维护方式的革新具有现实借鉴意义。
【关键词】蓄电池组均衡技术无损电量交换内阻均衡度1 引言蓄电池组作为重要设备的后备电源是设备可靠运行的一道关键防线,绝不能出现半点闪失。
但事实上因蓄电池问题致使运行设备失去主供电源后最终被迫停用的现象却屡有发生,甚至造成不必要的损失,严重影响了用户对后备电源的信赖度。
究其原因,可以从蓄电池组的工作原理来分析。
传统的蓄电池组充电运行状况是:用充机对一组串联的蓄电池组进行在线充电。
这种充电方式无法保证蓄电池组中每节蓄电池的均衡充电,往往由于蓄电池组中某几节蓄电池的电压变化(变高或变低)而导致其它蓄电池处于过充电或欠充电,长时间的这种充电状态势必大大降低蓄电池组的使用寿命。
蓄电池组在线均衡技术则可以很好地解决运行中的蓄电池单体不均衡问题,用蓄电池组均衡技术对在线运行的蓄电池组的传统充电方式进行优化,使每节电池都处于相同的工作状态,通过使用先进的微机数字控制技术和电力电子技术来自动调节每节蓄电池的端电压,令每节蓄电池的端电压的一致;同时可对性能偏弱的电池进行在线活化,延长蓄电池的使用寿命,从而提高蓄电池设备运行可靠性。
2 蓄电池组在线均衡技术的原理及系统设计蓄电池组在线均衡系统可依托工业级高性能单片微机为平台,应用电力电子技术,由电池电压测量单元、均衡调节单元、电池内阻测量单元及监控管理单元组合而成。
通过对每节电池的高精度及高速测量,完成对蓄电池组的实时监测,并计算出电池组的均衡度,由均衡调节单元对相应电池进行电压调节,使整组电池达到较理想的均衡度。
系统通过电池内阻测量单元定期对蓄电池组进行内阻测量,监控管理单元将负责各单元的协调,进行计算分析、保护及告警处理、界面显示、综合管理及通讯功能。
我们时长会听到这样的言论,日本电池好,国内电池差一些。
这里所指重要一点,是电池单体之间的一致性,对于车辆续航,容量是最直接最重要的参数,因此一致性就主要的指向了容量。
容量是个不能短时间直接测量得到的参数,根据经验,人们发现,单体电芯容量跟它的开路电压有一一对应的关系。
因此,考察已经装车运营的系统中电池一致性的眼光最终落在电芯电压上。
单体电压是直接测量值,可以实时在线测量,这都使它成为衡量系统电芯一致性水平的有利条件。
不单如此,常见BMS管理策略中,把单体电压值作为触发条件的情况还有放电终止条件,充电终止条件等等。
处于这样位置的一个参数,单体电压一致性差异过大,则直接限制了电池包充电电量和放电电量。
基于此,人们用电池均衡方法解决已经处于运营状态的电池组单体电压差异过大问题,来提高电池组容量。
从而也就可以做出,均衡手段延长了续航里程,延长了电池使用寿命之类的推论。
但在参考了很多的文献之后,中我们了解到,目前我们掌握的均衡并非很理想,只是暂时没有更好的办法。
我们通常把能量消耗型均衡叫做被动均衡,而把其他均衡称为主动均衡。
而对系统进行人为干预的,虽然经常不被理论讨论,但在实际应用中却不可或缺的,单体充电均衡,就是人工单独给电压过低电芯充电的解决不一致问题的方式。
主动均衡的具体实施方案有很多种,从理念上可以再分成削高填低型和并联均衡型两大类。
通常被质疑主动均衡影响电池寿命的,特指削高填低这类主动均衡。
削高填低,就是把已经电压高的电芯的能量转移一部分出来,给电压低的电芯,从而推迟最低单体电压触及放电。
截止阈值和最高单体电压触及充电终止阈值的时间,获得系统提升充入电量和放出电量的效果。
但是在这个过程中,高电压单体和低电压单体都额外的进行了充放。
我们都知道,电池的寿命被称为“循环寿命”,仅仅就这颗电芯来说,额外的充放负担会带来寿命的消耗是一个确定的事,但对电池包系统而言,总体上是延长了系统寿命还是降低了系统寿命,目前还没有看到明确的实验数据予以证明。
铅酸电池并联平衡充电方法
铅酸电池并联平衡充电方法通常使用均流充电技术。
步骤如下:
1. 将需要充电的铅酸电池放置在并联充电装置中,并连接好充电线路。
2. 确保每个电池的电压基本相等,如果电池之间的电压差异较大,需要进行均衡处理。
可以使用均衡器或均衡电路来调整电池之间的电压。
3. 设置充电电流大小,通常为铅酸电池的额定电流的10%至20%左右。
4. 开始充电过程,保持充电电流稳定,直到电池充满电为止。
5. 在充电过程中,监测每个电池的电压,确保电池之间的电压差异不会超过规定范围,如果出现电压差异过大的情况,及时进行均衡处理。
6. 充电完成后,断开充电电源,并分别测试每个电池的电压,以确保它们的电压相等。
注意事项:
- 充电电流应根据电池的额定电流进行合理设置,过高或过低
的充电电流都可能对电池造成损害。
- 在充电过程中,要及时检查每个电池的温度,以防止过热导
致安全问题。
- 均衡充电过程中,要定期检查并清理电池端子和连接线路,保持电池的良好接触性能,以确保均衡充电效果。
请注意,以上方法适用于铅酸电池的并联充电,如果是串联充电,则需要使用不同的充电方法。
海南大学课程设计蓄电池均衡充电技术研究Research of Equalizing Charge of Battery Technology学院:机电工程学院专业年级:姓名:学号:指导教师:卢浩义2015 年6月15 日摘要摘要:锂离子电池组均衡充电是动力电池使用技术的重要组成部分,均衡充电技术的应用直接影响电池组的性能与使用寿命。
本文分析了均衡充电的原理及化学、物理实现方法,结合均衡充电的分类,还介绍了国内外均衡充电的研究进展,并指出均衡充电的研究方向目前串联电池组使用中的一个很重要的问题是循环寿命缩短达不到设计寿命。
在影响电池寿命的因素中,除了电池本身的物理性能和不正确的充放电制度外,各单体电池的充放电特性不一致是重要原因,单体电池的不一致会造成充放电时电池电量的不平衡,会对那些过充电或过放电的电池造成损害,进而影响整个电池组。
为了延长电池使用寿命电池组的充电模块需具备均衡充电的功能。
关键词:锂电池,充电实验平台,充电方法,均衡充电模块Abstractsystem is developed to improve the series battery pack s concerning their uniformity and charging protection. Measures for the implementation of battery equalization during charging and the protection system are discussed. Functions of equalization charging and over charging protection are analyzed, and model of control for series battery pack s equalization charging is setup .Diverting-current and feedback bus voltage are measured during experiments on series Li-ion battery pack s equalization charging. The monitor and control system is used for DC power supply to monitor and control data acquisition and transmit and inquiry, which is widely used in field. A problem occurs: the cycle life of series-connected Batteries is shorter than the normal life. There are three factors which can affect the cycle life, one is the physical parameter of the battery; the second is the unreasonable charging system; the third is the different restored capacity in each battery, which is harmful for those overcharged and over discharged batteries. In order to extend battery cycle life, the charging module for the battery must have the ability of charging equalization. This thesis proposes a non-dissipative balance charging circuit based on buck/boost converter for a series-connected battery. Each battery in the battery bank is associated with a buck-boost converter.Keywords: Li-ionBattery, Charging Experimental Platform, Charging Method, Equalization Charging Module目录1绪论 (4)2均衡充电的目的和意义 (4)2.1目的 (4)2.2意义 (4)3均衡充电的方法 (5)3.1化学均衡法...........................................................................5-7 3.1.1化学均衡法工作原理 (5)3.1.2氧化一还原电对研究进展 (6)3.2物理均衡法........................................................................8-10 3.2.1单路充电加均衡电路工作原理 (8)3.2.2均衡电路分类 (8)4全文总结 (10)致谢 (10)参考文献 (11)1绪论蓄电池的充电方法主流有浮充和均衡充电两种,下面我们只介绍均衡充电。
蓄电池组的均衡充电技术
2010年08月28日 11:49 本站整理作者:佚名用户评论(0)
关键字:蓄电池(115)均衡充电(1)
单个蓄电池的电压与容量有限,在很多场合下要组成串连蓄电池组来使用。
但蓄电池组的中的电池存在均衡性的问题。
如何提高蓄电池组的使用寿命,提高系统的稳定性和减少成本,是摆在我们面前的重要问题。
蓄电池的使用寿命是由多方面的因素所决定,其中最重要的是蓄电池本身的物理性能。
此外,电池管理技术的低下和不合理的充放电制度也是造成电池寿命缩短的重要原因。
对蓄电池组来说,除去上述原因,单体电池间的不一致性也是个重要因素。
针对蓄电池充放电过程中存在的单体电池不均衡的现象,笔者分析比较了目前的几种均充方法,结合实际提出了无损均充方法,并进行了试验验证。
现有的均衡充电方法
实现对串联蓄电池组的各单体电池进行均充,目前主要有以下几种方法。
1.在电池组的各单体电池上附加一个并联均衡电路,以达到分流的作用。
在这种模式下,当某个电池首先达到满充时,均衡装置能阻止其过充并将多余的能量转化成热能,继续对未充满的电池充电。
该方法简单,但会带来能量的损耗,不适合快充系统。
2.在充电前对每个单体逐一通过同一负载放电至同一水平,然后再进行恒流充电,以此保证各个单体之间较为准确的均衡状态。
但对蓄电池组,由于个体间的物理差异,各单体深度放电后难以达到完全一致的理想效果。
即使放电后达到同一效果,在充电过程中也会出现新的不均衡现象。
3.定时、定序、单独对蓄电池组中的单体蓄电池进行检测及均匀充电。
在对蓄电池组进行充电时,能保证蓄电池组中的每一个蓄电池不会发生过充电或过放电的情况,因而就保证了蓄电池组中的每个蓄电池均处于正常的工作状态。
4.运用分时原理,通过开关组件的控制和切换,使额外的电流流入电压相对较低的电池中以达到均衡充电的目的。
该方法效率比较高,但控制比较复杂。
图1 分时控制均充原理图
5.以各电池的电压参数为均衡对象,使各电池的电压恢复一致。
如图2所示,均衡充电时,电容通过控制开关交替地与相邻的两个电池连接,接受高电压电池的充电,再向低电压电池放电,直到两电池的电压趋于一致。
该种均衡方法较好的解决了电池组电压不平衡的问题,但该方法主要用在电池数量较少的场合。
图2 均衡电压充电原理示意图
6.整个系统由单片机控制,单体电池都有独立的一套模块。
模块根据设定程序,对各单体电池分别进行充电管理,充电完成后自动断开。
该方法比较简单,但在单体电池数多时会使成本大大增加,也不利于系统体积的减小。
无损均充电路
本文提出了一种无损均充电路。
均充模块启动后,过充的电池会将多余的电量转移到没有充满的电池中,实现动态均衡。
其效率高损失少,所有的电池电压都由均充模块全程
监控。
1 电路设计
N节电池串联组成的电池组,主回路电流是Ich。
各串联电池都接有一个均衡旁路,如图3所示。
图中BTi是单体电池,Si是MOSFET,电感Li是储能元件。
Si、Li、Di构成一个分流模块Mi。
在一个充电周期中,电路工作过程分为两个阶段:电压检测阶段(时间为Tv)和均充阶段(时间为Tc)。
在电压检测阶段,均衡旁路电路不工作,主电源对电池组充电,同时检测电池组中的单体电池电压,并根据控制算法计算MOSFET的占空比。
在均充阶段,旁路中被触发的MOSFET由计算所得的占空比来控制开关状态,对相应的电池进行均充处理。
在这个阶段中,流经各单体电池的电流是不断变化的,也是各不相同的。
图3 均充电路
除去连接在B1两端的M1,所有的旁路分流模块组成都是一样的。
在均充旁路中,由于二极管Di的单向导通作用,所有的分流模块都会将多余的电量从相应的电池转移到上游电池中,而M1则把多余的电量转移到下游的电池中。
2 开关管占空比的计算
充电时电池的荷电状态SOC(state of charge)可由下面的经验公式来得出,其中V 是电池的端电压。
SOC=-0.24V 2+7.218V- 53.088 (1)
SOC是电池当前容量与额定容量之比,SOC=Q/Q TOTAL×100%。
通过把电压检测阶段末期检测到的电池电压转化为荷电状态,而单节电池的储存容量Qest,n与SOC存在相应的关系,Qest,n可以被估算出来。
在充电平衡阶段,从主充器充入单节电池的电量是IchTcep。
其中,Tcep为一个充电周期内均充阶段的时间。
为使在均充阶段达到单节电池储存容量的平衡,均充的目标Q tar 应为:
(2)
但是,在被激发的旁路和其他电池之间的充电转换是相互影响的,单体电池经旁路输出给其他电池的电流和接收的充电电流很难用一个简单的公式进行计算。
不过,Gauss-Seidel迭代法可以解决这个问题。
期望的储存容量Q n可以用下式来计算:
(3)
其中,I dis,n是一个开关周期中的平均电流,I obt,n是从其他被触发的旁路中获得的电流。
Q tar是理想状态下电池经充电周期Ts达到均充时的电荷量,Q n是期望的储
存容量,取Q tar=Q n,即(2)、(3)相等。
通过相应换算,得到占空比的计算公式:
(4)
这里的函数f N只是一个示意函数,表示D n和D 2...D 3存在一定关系。
3 实验设计
为了验证本文的均衡充电方法,以两节单体电池组成的蓄电池组为例进行实验和分析,主要验证旁路中开关管对电压的调节作用。
控制流程见图4。
图4 控制流程
由于没有现成的蓄电池,需用替代电池来进行实验。
充电过程中蓄电池内阻和端电压都在不断变化,并且充电过程中电池蓄积能量,根据对蓄电池的物理性质的分析和相关资料,采用“电阻串联电容”来替代单体蓄电池来进行实验。
本实验中,选用两个小功率NPN管C1815(Q1、Q2)来替代开关管,用89C51芯片的P1.0和P1.1脚控制Q1、Q2的开关。
同时,蓄电池的端电压V1和V2由差动放大电路采集,经A/D转换送到CPU。
在整个过程中,电压每20ms采样一次,每隔1s上传上位机并保存并自动绘制曲线。
图5为试验电路图。
图5 实验电路原理图
图6为根据采样数值绘制的曲线。
图6 充电过程中蓄电池端电压曲线
实验结果与分析
通过实验结果可以看出,充电开始时电压相差为1.98V ,在经过充电140s后,电压相差值约为0.2V;在均充过程中,电池电压有趋向一致的趋势。
均充方法能根据单体电池的差异,缩短蓄电池组之间的不一致性,使蓄电池组的整体性能得到提高,寿命延长。
同时,从实验结果来看,该方法也有效果不理想的地方,那就是两节电池端电压差值较大。
究其原因,一是本实验中用“电阻串联电容”来替代蓄电池,这和真实的蓄电池存在差别,无法达到理想的模拟状态;二是本实验主要是检验开关管的开关对电压的均衡影响,在很多环节上进行了简化处理,忽略了一些次要因素,而这些因素也对实验结果有一定的影响。
但总的来说,本实验达到了预定的目的,证明了无损均充法的可行性。