生活中的数学(倒推法)学生用
- 格式:doc
- 大小:42.00 KB
- 文档页数:1
第12讲倒推法解题【解题秘钥】有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。
所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
【经典例题】例题1:一本文艺书,小明第一天看了全书的1/3,第二天看了余下的3/5,还剩下48页,这本书共有多少页?练习1:1.某班少先队员参加劳动,其中3/7的人打扫礼堂,剩下队员中的5/8打扫操场,还剩12人打扫教室,这个班共有多少名少先队员?2.一辆汽车从甲地出发,第一天走了全程的3/8,第二天走了余下的2/3,第三天走了250千米到达乙地。
甲、乙两地间的路程是多少千米?例题2:筑路队修一段路,第一天修了全长的1/5又100米,第二天修了余下的2/7 ,还剩500米,这段公路全长多少米?练习2:1.一堆煤,上午运走2/7,下午运的比余下的1/3还多6吨,最后剩下14吨还没有运走,这堆煤原有多少吨?2.用拖拉机耕一块地,第一天耕了这块地的1/3又2公顷,第二天耕的比余下的1/2多3公顷,还剩下35公顷,这块地共有多少公顷?例题3:有甲、乙两桶油,从甲桶中倒出1/3给乙桶后,又从乙桶中倒出1/5给甲桶,这时两桶油各有24千克,原来甲、乙两个桶中各有多少千克油?练习3:1.小华拿出自己的画片的1/5给小强,小强再从自己现有的画片中拿出1/4给小华,这时两人各有画片12张,原来两人各有画片多少张?2.甲、乙两人各有人民币若干元,甲拿出1/5给乙后,乙又拿出1/4给甲,这时他们各有90元,他们原来各有多少元?例题4:甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与这时甲相同的钱数给甲。
这样,甲、乙、丙三人的钱数相等,原来甲比乙多多少元钱?练习4:1.甲、乙、丙三个班共有学生144人,先从甲班调出与乙班相同的人数给乙班,再从乙班调出与丙班相同的人数到丙班。
第十六讲:倒推法示例爱学教育蔡老师奥数2015·四年级·竞赛集训·秋●竞赛与集训题●1、小华在荷塘里种了一棵莲藕,开始时它只有1片荷叶,以后每天都增加1倍的荷叶。
假如现在它有1024片荷叶,在4周前它有片荷叶。
2、喜羊羊和懒羊羊做游戏,喜羊羊说:你随便想一个数,并记住这个数,但不要说出来。
然后用这个数加上70,减去32,再减去所想的数,再乘以5,再除以2,我就能猜出答案。
小朋友你能猜出最终的答案是多少吗?请说出其中的奥秘。
3、甲乙丙三人手中各有苹果若干个.现在甲把手中苹果的一部分分给乙,使得乙的苹果个数变为原来的2倍,乙在得到苹果之后再将手中的苹果的一部分分给丙,使得丙的苹果个数变为原来的2倍.这样一来,3人手中的苹果就一样多了.如果再分的过程中,每人手中的苹果都是整数个.那么三人手中的苹果总数至少是个。
4、有一类4位数,任意相邻两位数字之和均不大于2,这样的数从小到大排列,倒数第二个是。
5、电脑按照指示进行运算:如果数据是偶数,就将它除以2;如果数据是奇数,就将它加3,这样继续进行了三次得出结果为27,原来的数据可能是〔填出所有可能):。
6、小明在桌上将若干个红球排成一排,然后在每相邻的2个球之间放2个黄球,最后在每相邻的2个球之间再放2个蓝球,这时桌上共有2008个球,那么其中黄球有_____个。
7、老师在黑板上写了三个不同的整数,小明每次先擦掉第一个数,然后在最后写上另两个数的平均数,如此做了7次,这时黑板上三个数的和为159 ,如果老师在黑板上写的三个数之和为2008,且所有写过的数都是整数。
那么开始时老师在黑板上写的第一个数是。
8、有一类多位数,从左数第三位数字开始,每位上的数都等于其左边第2个数减去左边第1个数的差。
如74312,6422。
那么这类数中最大的是。
9、在信息时代信息安全十分重要,往往需要对信息进行加密,若按照"乘3加1取个位"的方式逐渐加密,明码"16"加密之后的密码为"49",若某个四位明码按照上述加密方式,经过两次加密得到的密码是"2445",则明码是。
倒推法
例1、一个数的4倍,加上2减去10,乘以2得48,求这个数。
例2、小明问妈妈:“奶奶今年多少岁?”妈妈想了想对小明说:“把奶奶的年龄加上17用4除,再减去15后用10乘,恰好是100岁”。
请你帮小明算一算,奶奶今年多少岁?
例3、甲、乙、丙三筐水果共192个,现在从甲筐拿出与乙筐同样多的个数到乙筐,再从乙筐拿出与丙筐同样多的个数到丙筐,最后,从丙筐拿出与甲筐剩下的个数到甲筐,这时三筐水果的个数一样多。
这三筐水果原来各有多少个?
例4、某仓库存有化肥若干吨,第一天上午运出总数的一半多5吨,下午运出6吨,第二天上午运出剩下化肥的一半少2吨,此时,仓库还存有化肥24吨。
这个仓库原有化肥多少吨?
练习:
1、某数加上7乘以7,再减去7,除以7商7,求某数。
2、某数减去60,用所得的差的2倍再减去60,所得差的2倍再减去60,最后得零,这个数是多少?
3、有甲、乙、丙三个数,从甲数中拿出15加到乙数,再从乙数中拿出18加到丙数,最后从丙数拿出12加到甲数,这时三个数都是180。
甲、乙、丙三个数原来各是多少?
4、某文具店卖跳绳,第一次卖掉总数的一半多2根,第二次卖出剩下的一半多1根,第三次卖出第二次卖后剩下的一半多1根,这时只剩下1根跳绳。
三次共卖得48元,每根跳绳多少元?
5、一个数增加100,然后缩小5倍,再减去20得30,这个数是多少?
6、一个数的2倍加1,再乘以3,再减去3得9,这个数是多少?。
五年级奥数讲义:倒推法解题在我们生活中经常会遇到“还原问题”,如把一盒包装精美的玩具打开,再把它重新包装好,重新包装的步骤与打开的步骤正好相反。
其实在数学中,也有许多类似的还原问题。
解决这类问题最常用的方法就是倒推法,即从结果入手,逐步向前逆推,最终找到原问题的答案。
例题选讲例1:有一群猴子分吃桃子,第一只拿走—半,第二只拿走余下的一半多3个,第三只拿走第二只取剩的一半少3个,第四只拿走第三只取剩的一半多3个,第五只拿走第四只取剩的一半,最后还剩3个,这堆桃原来有多少个?【分析与艉答】l|这道题条件比较多,顺向思考很困难,如果根据最后的结果倒推还原,解决起来就轻松了。
曲于第五只猴子拿走余下的一半,还剩3个,所以第五只猴子拿之前应该有桃子:3×2=6(个),同理,第四只猴子拿之前应该有桃子:(6+3)×2=18(个),第三只猴子拿之前应该有桃子:(18—3)×2=30(个),第二只猴子拿之前应该有桃子:(30+3)×2=66(个),第一只猴子拿之前应该有桃子:66×2=132(个),即这堆桃有132个。
例2:甲、乙、丙三人各有若干元钱,甲拿出与乙相同多的钱给乙,也拿出与丙相同多的钱给丙;然后乙也按甲和雨手中的钱分别给甲、丙相同的钱;最后丙也按甲和乙手中的钱分别给甲、乙相同的钱,此时三人都有48元钱。
问:开始时三人各有多少元钱?【分析与解答】从第三次丙给甲、乙钱逐步向前推算,根据三人最后都有48元,那么在丙给甲、乙添钱之前:甲:48÷2:24(元),乙:48÷2—24(元),丙:48+24+24—96(元);第二次在乙给甲、丙添钱之前:甲:24÷2—12(元),乙:24+12+48===84(元),丙:96÷2=48(元);第一次在甲给乙、丙添钱之前:甲:12+42+24—78(元),乙:84÷2=42(元),丙:48÷2=24(元)。
小学二年级数学:倒推法解应用题以下是###为大家整理的【小学二年级数学:倒推法解应用题】,供大家参考!例1 明明有4张卡通画报,明明的画报数是亮亮的一半,亮亮的画报数是宏宏的一半,宏宏有几张卡通画报?解答这道应用题时,要充分使用两次“一半”的关系实行倒推.通过“明明的画报数是亮亮的一半”能够推算出亮亮的画报数是8张;又从“亮亮的画报数是宏宏的一半”能够推算出宏宏的画报数是1 6张.4×2=8(张),8×2=16(张).答:宏宏有16张卡通画报.随堂练习1 张老师有3条连衣裙,张老师的裙子数是王老师的一半.张老师和王老师一共有几条连衣裙?例2小红问妈妈多大年龄,妈妈说:“把我的年龄加10,然后乘以5,减25,再除以2,恰巧是100岁.”小红妈妈的年龄是多少?解题目最后一步是除以2得100岁,说明除以2前就是100×2=200.减了25是200,那么不减25就是200+25=225.同理不用乘5就是225÷5=45,不加10就是45—10=35.这样,通过逐步倒推的方法就得到了小红妈妈的年龄是35岁,即(100×2+25)÷5—10=35(岁).答:小红妈妈的年龄是35岁.随堂练习2 小明爷爷今年的年龄加上15后,缩小4倍,再减去15之后,扩大10倍,恰好是100岁.小明爷爷今年是多少岁?例3一个水池中睡莲所遮盖的面积,每天扩大l倍,10天正好遮住整个水池.请你算一算,多少天时,睡莲正好遮住水池的一半?解倒推着想:因为睡莲遮盖的面积每天扩大1倍,若今天睡莲把整个池面遮满了,那么昨天睡莲只遮住了水面的一半.今天是第10天,昨天就是第9天.答:第9天时,睡莲正好遮住整个水池面积的一半.随堂练习3 有一列数,第一个是6,后面每一个数都比前面一个数大3.请你算一算,这列数中,第几个数是21 7例4某数加上6,乘以6,减去6,除以6,最后结果是6.这个数是多少?解我们能够根据题目的意思列出原来计算的算式:[(某数+6)×6—6]÷6=6.根据上面的算式,通过倒推的方法,能够得到下面的倒推算式:(6×6+6)÷6—6=某数.通过计算这个算式,能够得出答案是1.答:这个数是1.随堂练习4 一个数加上5,乘以5,减去5,除以5,最后结果等于5.问:这个数是几?例5 有一批水果,第一天卖出一半,第二天卖出剩下的一半,这时还剩4箱水果,这批水果一共有几箱?解从最后的结果是还剩4箱水果开始倒推思考,因为第二天卖出的一半,说明还剩下一半即为4箱,则第二天时有8箱水果.同样道理,第一天卖出一半,剩下的一半就是8箱,所以这批水果一共有16箱,即4×2×2=16(箱).答:这批水果共有16箱.随堂练习5 玩具店里有一些卡通玩具,第一天卖出一半,第二天卖出剩下的一半,这时玩具店里还有5个卡通玩具.请你算一算,玩具店里原来共有几个卡通玩具?练习题1、二年级舞蹈兴趣组有6个同学,是体育组人数的一半,体育兴趣组的人数是合唱组人数的一半.合唱组有多少个同学?2、姐姐有9张邮票,是哥哥邮票数的一半.姐姐比哥哥少多少张邮票?3、爸爸买了一些巧克力,分给哥哥和弟弟吃,哥哥吃了4颗,弟弟吃了6颗,正好都吃了各自的一半.爸爸买回来多少颗巧克力?4、某数的5倍加上6,再除以7,结果是8,求某数.5、猴子吃桃,第一天吃了桃子的一半,第二天又吃了余下桃子的一半,这时还有8个桃子.原来树上有多少个桃子?6、一筐鸡蛋,第一天吃了全部的一半,第二天吃了余下的一半,第三天吃了5只,刚好吃完.这筐鸡蛋有多少只?7、有一根绳子,第一次剪去一半多2米,第二次剪去剩下的一半多2米,这时绳子还剩2米,这根绳子长几米?8、有一根绳子,第一次剪去一半多1米,第二次剪去剩下的一半少1米,这时绳子还剩3米,这根绳子长几米?。
知识改变命运 中科成就梦想 (6年级数学) 杨 1 生活中的数学(倒推法)
一、游戏互动: 桌上放着15张一块钱纸币,教师和一个学生轮流取走若干张,规则是:每人每次至少取一张,至多取五张,谁拿到最后一张纸币谁就赢得全部15张纸币。
二、方法学习:
这个游戏有没有能保证赢的办法?若有,这办法是什么?
三、思维迁移:
今有一个人,一只狐狸,一只鹅和一袋玉米要过一条河,河边有一只小船,但船只能装一个人和另外一个实体,同时狐狸和鹅不能单独在一起,鹅和玉米也不能单独留在河的一边,怎样过河?
四、举一反三:
9个大人和2个小孩用一条船过河。
已知船的载重量是一个大人或两个小孩,这条船要过河几次才能把大人和小孩送过河在?。