数学建模遗传算法与优化问题
- 格式:doc
- 大小:1.97 MB
- 文档页数:30
使用Matlab进行遗传算法优化问题求解的方法引言在现代科技发展的背景下,优化算法成为解决各种问题的重要工具之一。
遗传算法作为一种生物启发式算法,具有全局寻优能力和适应性强的特点,在许多领域中被广泛应用。
本文将介绍如何使用Matlab进行遗传算法优化问题求解,包括问题建模、遗传算子设计、遗传算法编码、适应度评价和求解过程控制等方面。
一、问题建模在使用遗传算法求解优化问题之前,我们首先需要将问题定义为数学模型。
这包括确定问题的目标函数和约束条件。
例如,假设我们要最小化一个多变量函数f(x),其中x=(x1,x2,...,xn),同时还有一些约束条件g(x)<=0和h(x)=0。
在Matlab中,我们可通过定义一个函数来表示目标函数和约束条件。
具体实现时,我们需要在目标函数和约束函数中设置输入参数,通过调整这些参数进行优化。
二、遗传算子设计遗传算法的核心是遗传算子的设计,包括选择(Selection)、交叉(Crossover)、变异(Mutation)和替代(Replacement)等。
选择操作通过一定的策略从种群中选择出适应度较高的个体,作为进行交叉和变异的父代个体。
交叉操作通过将两个父代个体的基因片段进行交换,产生新的子代个体。
变异操作通过改变个体某些基因的值,引入新的基因信息。
替代操作通过选择适应度较低的个体将其替换为新产生的子代个体。
三、遗传算法编码在遗传算法中,个体的编码方式决定了问题的解空间。
常见的编码方式有二进制编码和实数编码等。
当问题的变量是二进制形式时,采用二进制编码。
当问题的变量是实数形式时,采用实数编码。
在Matlab中,我们可以使用矩阵或向量来表示个体的基因型,通过制定编码方式来实现遗传算法的编码过程。
四、适应度评价适应度评价是遗传算法中判断个体优劣的指标。
在适应度评价过程中,我们将问题的目标函数和约束条件应用于个体的解,计算得到一个适应度值。
适应度值越大表示个体越优。
使用遗传算法进行优化问题求解的技巧遗传算法是一种模拟自然进化过程的优化算法,被广泛应用于各种优化问题的求解中。
它通过模拟自然界中的遗传、交叉和变异等过程,不断演化出更优解的种群。
本文将介绍使用遗传算法进行优化问题求解的一些技巧。
一、问题建模在使用遗传算法求解优化问题之前,首先需要将问题进行合理的建模。
建模的关键是定义适应度函数,即评价解的好坏程度的函数。
适应度函数应该能够准确地反映出问题的目标和约束条件。
在建模时,还需要确定问题的变量范围、约束条件等。
二、编码与解码遗传算法对问题的解进行编码,将解表示为染色体或基因的形式。
编码的方式有很多种,常见的有二进制编码、实数编码和排列编码等。
编码的选择应根据问题的特点和求解的要求进行合理的选择。
解码是将编码后的染色体或基因解码成问题的实际解。
解码过程应与编码过程相逆,保证解码后的结果能够准确地表示问题的解。
三、种群初始化种群初始化是遗传算法的起点,它决定了算法的初始状态。
种群的初始化应该尽量保证多样性,避免陷入局部最优解。
常见的初始化方法有随机初始化和启发式初始化等。
在初始化时,还可以利用问题的特点进行有针对性的初始化,提高算法的效率。
四、选择操作选择操作是遗传算法中的关键步骤,它决定了哪些个体能够生存下来并参与后续的交叉和变异操作。
选择操作的目标是根据个体的适应度值,按照一定的概率选择优秀个体,并保留下来。
常见的选择方法有轮盘赌选择、锦标赛选择和排名选择等。
选择操作应该保证优秀个体有更高的生存概率,同时也应该给予较差个体一定的生存机会,以保持种群的多样性。
五、交叉操作交叉操作是遗传算法中的重要步骤,它模拟了自然界中的基因交叉过程。
交叉操作通过将两个个体的染色体或基因进行交叉,产生新的个体。
交叉操作的目标是将两个个体的优秀特征结合起来,产生更优解的个体。
常见的交叉操作有单点交叉、多点交叉和均匀交叉等。
在进行交叉操作时,应该根据问题的特点和求解的要求进行合理的选择。
数学建模优化问题的求解方法
数学建模优化问题的求解方法有很多。
下面列举几种常见的方法:
1. 数学规划方法:包括线性规划、整数规划、非线性规划、动态规划等。
这些方法通过数学模型和约束条件来描述问题,并通过寻找最优解来优化问题。
2. 图论方法:将问题抽象成图或网络,并利用图论算法来求解最优解。
常见的算法有最短路径算法、最小生成树算法、最大流算法等。
3. 近似算法:对于复杂的优化问题,往往很难找到精确的最优解。
近似算法通过寻找接近最优解的解来近似优化问题。
常见的近似算法有贪心算法、近邻算法、模拟退火算法等。
4. 遗传算法:模拟生物进化的过程,通过选择、交叉和变异等操作来搜索问题的解空间,并逐步优化解。
遗传算法适用于复杂问题和无法直接求解的问题。
5. 物理方法:将优化问题转化为物理模型,利用物理规律求解。
比如蚁群算法模拟蚂蚁找食物的行为,粒子群算法模拟鸟群觅食的行为等。
以上只是数学建模优化问题求解方法的几种常见方法,实际问题求解时要根据问题的特点选择适合的方法,并结合领域知识和实际情况进行调整和优化。
数学建模遗传算法例题数学建模中,遗传算法是一种基于进化思想的优化算法,可以应用于复杂的优化问题中。
本文将介绍一些遗传算法的例题,帮助读者更好地理解遗传算法的应用。
例题一:背包问题有一个体积为V的背包和n个物品,第i个物品的体积为vi,价值为wi。
求这个背包最多能装多少价值的物品。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在背包问题中,适应度函数可以定义为:背包中物品的总价值。
交叉操作可以选择单点交叉或多点交叉,变异操作可以选择随机变异或非随机变异。
例题二:旅行商问题有n个城市,旅行商需要依次经过这些城市,每个城市之间的距离已知。
求旅行商经过所有城市的最短路径。
遗传算法的解决步骤:1. 初始化种群:随机生成一定数量的个体作为初始种群,每个个体代表一种旅行路线。
2. 适应度函数:将每个个体代入适应度函数,计算其适应度值。
3. 选择:根据每个个体的适应度值,选择一定数量的个体进入下一代。
4. 交叉:对被选中的个体进行交叉操作,生成新的个体。
5. 变异:对新的个体进行变异操作,引入新的基因。
6. 重复以上步骤,直到符合终止条件。
在旅行商问题中,适应度函数可以定义为:旅行商经过所有城市的总距离。
交叉操作可以选择顺序交叉或部分映射交叉,变异操作可以选择交换或反转基因序列。
总结:遗传算法是一种强大的优化算法,可以应用于多种复杂的优化问题中。
在数学建模中,遗传算法的应用也越来越广泛。
本文介绍了背包问题和旅行商问题的遗传算法解决步骤,希望对读者有所帮助。
遗传算法求解优化问题实例
一个常见的优化问题是旅行商问题(Traveling Salesman Problem,TSP)。
给定一组城市和每对城市之间的距离,旅行商问题要求找到一条经过所有城市一次且回到起点的最短路径。
以下是使用遗传算法求解TSP的实例:
1. 随机生成一个初始种群,种群中的每个个体表示一条路径。
每个个体由一个城市序列表示,例如[1, 2, 3, ..., n],其中n是城市的数量。
2. 计算种群中每个个体的适应度。
适应度可以定义为路径的总长度,即经过所有城市的距离之和。
3. 选择适应度较高的个体作为父代,进行交叉和变异操作以生成新的子代。
交叉操作可以是将两条路径的一部分交换,变异操作可以是随机改变路径中的一个或多个城市顺序。
4. 计算新生成的子代的适应度。
5. 重复步骤3和4,直到达到终止条件(例如达到最大迭代次数)。
6. 返回适应度最好的个体作为最优解,即最短路径。
遗传算法的优势在于可以在大规模问题中寻找较好的解,虽然不一定能找到最佳解,但可以得到相对较优的解。
2023年数学建模国赛A题涉及遗传算法的主题引起了广泛关注,也是我今天要帮助你撰写的重点内容。
在本篇文章中,我将从简单到复杂的方式,探讨遗传算法在数学建模国赛中的应用,并共享我对这一主题的个人观点和理解。
1. 遗传算法概述遗传算法是一种模拟自然选择与遗传机制的搜索优化方法,它模拟了生物进化过程中的选择、交叉和变异等基本操作。
在数学建模中,遗传算法通常用于求解复杂的优化问题,包括组合优化、函数优化和参数优化等。
2023年数学建模国赛A题中涉及遗传算法,意味着参赛者需要使用这一方法来解决所提出的问题,并且对遗传算法进行深入理解和应用。
2. 遗传算法在数学建模国赛中的具体应用在数学建模竞赛中,遗传算法常常被用于求解复杂的实际问题,如路径规划、资源分配和参数优化等。
2023年数学建模国赛A题的具体内容可能涉及到社会经济、科学技术或环境保护等方面的问题,参赛者需要根据题目要求,灵活运用遗传算法进行问题建模、求解和分析。
通过对遗传算法的深入研究和应用,参赛者可以充分发挥算法的优势,解决复杂问题并取得优异的成绩。
3. 个人观点和理解对于遗传算法在数学建模国赛中的应用,我认为重要的是理解算法的基本原理和操作步骤,以及在具体问题中的适用性和局限性。
在参赛过程中,不仅要熟练掌握遗传算法的编程实现,还需要结合实际问题进行合理的参数选择和算法调优。
对于复杂问题,还需要对算法的收敛性和稳定性进行分析,以保证算法的有效性和可靠性。
总结回顾通过本文的探讨,我们深入了解了2023年数学建模国赛A题涉及遗传算法的主题。
我们从遗传算法的概述开始,到具体在数学建模竞赛中的应用,再到个人观点和理解的共享,全面展现了这一主题的广度和深度。
在撰写过程中,多次提及了遗传算法相关的内容,为读者提供了充分的了解机会。
在未来的学习和实践中,我希望能够进一步深化对遗传算法的理解,并灵活运用到数学建模竞赛中,不断提升自己的建模水平和解题能力。
本文总字数超过3000字,希望能够对你提供有益的帮助和启发。
2023年数学建模国赛B题遗传算法在数学建模比赛中,遗传算法是一个常见的解题方法,尤其是在解决优化问题时,它的应用非常广泛。
而在2023年的数学建模国赛B题中,遗传算法是一个重要的解题工具。
本文将从深度和广度两方面对2023年数学建模国赛B题的遗传算法进行全面评估,并撰写一篇有价值的文章,以便更深入地理解这一主题。
1. 了解遗传算法让我们先了解一下遗传算法。
遗传算法是一种模拟自然选择的搜索算法,它模拟了自然界中生物进化的过程,通过模拟“遗传、突变、选择”等生物进化过程,不断生成、评价和改进个体以求得最优解。
在数学建模比赛中,遗传算法通常用于解决复杂的优化问题,如参数优化、函数最大值最小值求解等。
2. 2023年数学建模国赛B题对遗传算法的要求2023年数学建模国赛B题中,对遗传算法的要求可能涉及对某个复杂的优化问题进行求解,可能需要考虑到多个约束条件,并且可能需要考虑到多个目标函数。
参赛选手需要充分理解遗传算法的原理和特点,合理设计算法流程和参数,以获得较好的优化结果。
3. 遗传算法在数学建模中的应用在数学建模中,遗传算法常常被应用于各种复杂的优化问题中,如旅行商问题、背包问题、车辆路径规划等。
遗传算法通过不断迭代,生成新的个体,评价适应度,进行选择、交叉和变异操作,最终得到较好的解。
在2023年数学建模国赛B题中,可能涉及到某个实际问题的优化,而遗传算法可以帮助选手更快速地求解出较优解。
4. 个人观点和理解从个人观点来看,遗传算法是一种非常强大的优化算法,它能够在解决复杂的优化问题时发挥其优势。
在数学建模比赛中,合理利用遗传算法可以帮助选手更快速地得到较好的解,提高比赛成绩。
但是,选手需要注意合理设计算法参数,保证算法的收敛性和稳定性,以避免陷入局部最优解。
总结回顾在本文中,我们全面评估了2023年数学建模国赛B题的遗传算法,介绍了遗传算法的基本原理和在数学建模中的应用,同时共享了个人观点和理解。
数学建模遗传算法例题数学建模是一种重要的实践活动,通过运用数学工具和方法对实际问题进行建模和求解。
而遗传算法则是一种基于生物进化原理的优化算法,能够通过模拟自然选择、交叉和变异等过程来搜索全局最优解。
在数学建模中,遗传算法也是一种常用的求解工具。
下面以一个简单的例题来介绍遗传算法在数学建模中的应用。
假设有一个机器人需要从起点出发沿着一条直线路径到达终点,并且需要尽量减少行驶路程。
此外,机器人有两种可选的行驶策略:一种是直行,另一种是先左转再右转。
由于机器人的行驶方向只能是水平或竖直,因此左转和右转的方向只有两种。
问题:如何确定机器人应该采用哪种行驶策略,并如何规划其行驶路径?解决此问题的一种方法是使用遗传算法。
具体步骤如下:1. 定义遗传算法的编码和解码方式因为机器人只有两种行驶策略,因此可以用一个二进制字符串来表示机器人的行驶方案。
例如,'01'表示机器人先左转再右转,“10”表示机器人直行。
因此,一个长度为N的二进制字符串可以代表机器人在N个路口的行驶方案。
2. 定义适应度函数适应度函数用于评估染色体的优劣程度。
在此例中,适应度函数应为机器人到达终点的路程长度。
因此,需要计算出每个染色体对应的机器人行驶方案下的总路程长度作为其适应度值。
3. 初始化种群初始化一个大小为M的随机种群,每个染色体为长度为N的二进制字符串。
4. 选择操作选择操作是指通过适应度函数对染色体进行选择,保留适应度较高的染色体,淘汰适应度较低的染色体。
在此例中,可以采用轮盘赌选择算法对染色体进行选择。
5. 交叉操作交叉操作是指将两个染色体的部分基因进行交换,产生新的后代染色体。
在此例中,可以采用单点交叉算法,即随机选择一个位置将两个染色体划分成两部分,然后交换这两部分,从而产生新的后代染色体。
6. 变异操作变异操作是指随机改变染色体中的一个基因,从而产生一个新的染色体。
在此例中,可以选择随机选择一个基因位置,将其取反,从而产生一个新的染色体。
数学建模遗传算法详解数学建模是指运用数学的方法和理论,对实际问题进行描述、分析、求解和预测的一种科学方法。
在数学建模的过程中,遗传算法是一种常用的优化算法,在解决复杂问题时具有较高的效果和准确性。
遗传算法是一种模拟生物进化思想的优化算法,通过模拟生物进化的过程,通过自然选择、交叉和变异等操作,逐步优化群体中的个体,并最终找到全局最优解。
遗传算法的基本思想是将问题转化为遗传编码和遗传操作的过程,以求解问题的最优解。
遗传算法的具体步骤如下:1. 初始化种群:根据问题的特点和要求,确定初始种群的规模和编码方式。
2. 评估适应度:根据问题的优化目标,对每个个体进行适应度评估,以确定每个个体在种群中的适应程度。
3. 选择操作:采用适应度选择策略,根据适应度值选择个体,优秀的个体被选择的概率更高,从而保留更好的基因。
4. 交叉操作:在选择的个体中进行交叉操作,通过基因的交换和组合,产生新的个体,以增加种群的多样性。
5. 变异操作:对交叉产生的个体进行变异操作,通过基因的随机变化,引入新的基因信息,以增加搜索空间。
6. 更新种群:根据选择、交叉和变异操作的结果,更新种群,进入下一代。
7. 终止条件:设置终止条件,如达到最大迭代次数、满足精度要求等,终止算法。
通过上述步骤的迭代,遗传算法能够逐步优化种群,并最终获得问题的最优解。
在实际应用中,遗传算法在优化问题、路径规划、机器学习等领域有着广泛的应用。
总而言之,数学建模中的遗传算法是一种有效的优化算法,通过模拟生物进化的过程,寻找问题的最优解。
它具有较高的准确性和效果,在实际问题的求解中有着重要的应用价值。
在使用遗传算法时,需要根据具体问题确定算法的参数和操作方法,以获得更好的优化效果。
遗传算法在数学建模优化的应用
遗传算法是一种模拟生物进化过程的优化算法,它已被广泛应用于数学建模的优化问题中。
在数学建模中,我们通常需要求解一个优化问题,例如最小化某个函数的值或最大化某个目标函数的值。
这些问题可能非常复杂,需要使用高级算法来寻找最优解。
遗传算法是一种适应度函数驱动的优化算法,它通过模拟遗传和自然选择的过程,逐步优化解决方案来找到最优解。
在该算法中,每个解决方案被看作是染色体的一个基因组合,每个基因都代表一个决策变量。
通过交叉、变异和选择等操作,遗传算法逐步进化出更好的解决方案,在迭代过程中逐渐优化适应度函数的值,最终达到全局最优解。
在数学建模优化中,遗传算法广泛应用于函数优化、参数确定、数据拟合等问题。
例如,在函数优化中,我们可以将目标函数的输入变量和范围作为决策变量,使用遗传算法寻找最小化或最大化目标函数的最优解。
在参数确定中,我们可以将需要确定的参数作为决策变量,并通过遗传算法不断调整这些参数的值,以达到最佳拟合效果。
在数据拟合中,我们可以将需要拟合的数据的特征作为决策变量,使用遗传算法寻找最优拟合曲线或模型,以实现最佳拟合效果。
总之,遗传算法在数学建模优化中具有广泛的应用前景,可以大大简化复杂的计算过程,提高优化效率,为实现最优解提供了一种有效的方法。
实验十遗传算法与优化问题
一、问题背景与实验目的
遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位.
本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理
遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).
(1)遗传算法中的生物遗传学概念
由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.
首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关
遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.
下面给出遗传算法的具体步骤,流程图参见图1:
第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;
第二步:定义适应函数,便于计算适应值;
第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;
第四步:随机产生初始化群体;
第五步:计算群体中的个体或染色体解码后的适应值;
第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;
第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.
图1 一个遗传算法的具体步骤
遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.
2.遗传算法的实际应用
例1:设2()20.5f x x x =-++,求 max (), [1,2]f x x ∈-.
注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.
在此将细化地给出遗传算法的整个过程.
(1)编码和产生初始群体
首先第一步要确定编码的策略,也就是说如何把1-到2这个区间内的数用计算机语言表示出来.
编码就是表现型到基因型的映射,编码时要注意以下三个原则:
完备性:问题空间中所有点(潜在解)都能成为GA 编码空间中的点(染色体位串)的表现型;
健全性:GA 编码空间中的染色体位串必须对应问题空间中的某一潜在解; 非冗余性:染色体和潜在解必须一一对应.
这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为2(1)3--=,则必须将闭区间 [1,2]-分为6310⨯等分.因为216222097152231024194304=<⨯<= 所以编码的二进制串至少需要22位.
将一个二进制串(b 21b 20b 19…b 1b 0)转化为区间[1,2]-内对应的实数值很简单,只需采取以下两步(Matlab 程序参见附录4):
1)将一个二进制串(b 21b 20b 19…b 1b 0)代表的二进制数化为10进制数:
21
212019102100()(2)'i i i b b b b b b x =⋯=⋅=∑
2)'x 对应的区间[1,2]-内的实数:
12)
1(2'122---⋅
+-=x x 例如,一个二进制串a=<1000101110110101000111>表示实数0.637197.
'x =(1000101110110101000111)2=2288967
637197.01232288967122=-⋅+-=x 二进制串<0000000000000000000000>,<1111111111111111111111>,则分别
表示区间的两个端点值-1和2.
利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.
首先我们来随机的产生一个个体数为4个的初始群体如下:
pop(1)={
<1101011101001100011110>, %% a1
<1000011001010001000010>, %% a2
<0001100111010110000000>, %% a3
<0110101001101110010101>} %% a4(Matlab 程序参见附录2)
化成十进制的数分别为:
pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 }
接下来我们就要解决每个染色体个体的适应值问题了.
(2)定义适应函数和适应值
由于给定的目标函数2()20.5f x x x =-++在[1,2]-内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.
对于本题中的最大化问题,定义适应函数()g x ,采用下述方法:
min min (), ()0()0,f x F f x F g x -->⎧=⎨⎩
若其他 式中min F 既可以是特定的输入值,也可以是当前所有代或最近K 代中()f x 的最小值,这里为了便于计算,将采用了一个特定的输入值.
若取min 1F =-,则当()1f x =时适应函数()2g x =;当() 1.1f x =-时适应函数()0g x =.
由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab 程序参见附录3):
f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 }
然后通过适应函数计算出适应值分别如下(Matlab 程序参见附录5、附录6): 取min 1F =-,
g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 }
(3)确定选择标准
这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:
对于给定的规模为n 的群体pop={123,,,
,n a a a a },个体i a 的适应值为()i g a ,
则其入选概率为
1()(),1,2,3,,()i s i n i
i g a P a i n g a ===⋯∑
由上述给出的群体,我们可以计算出各个个体的入选概率.
首先可得 41
() 6.478330i
i g a ==∑, 然后分别用四个个体的适应值去除以4
1()i i g a =∑,得:
P (a 1)=2.226437 / 6.478330 = 0.343675 %% a 1
P (a 2)=2.318543 / 6.478330 = 0.357892 %% a 2
P (a 3)= 0 / 6.478330 = 0 %% a 3
P (a 4)=1.933350 / 6.478330 = 0.298433 %% a 4(Matlab 程序参见附录7)
(4)产生种群
计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab 程序参见附录8、附录11).。