2020年浙江省丽水市中考数学试卷-最新整理
- 格式:doc
- 大小:849.57 KB
- 文档页数:25
2020年浙江省丽水市中考数学必修综合测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题如图是一个正方体纸盒的平面展开图,每一个正方形内部都有一个单项式.当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所表示的单项式是( )A .bB .cC .dD .e2.已知反比例函数2y x=-过两点 (x 1,y 1)、(x 2,y 2),当120x x <<时,y, 与 y 2 大小关 系为( )A .12y y =B .12y y >C .12y y <D . y 1与 y 2 大小不确定3. 如图,四边形 ABCD 内接于⊙O ,若∠BOD=150°,则∠BCD=( )A .65°B .130°C . 105°D .115°4.老师对某班同学中出现的错别字情况进行抽样调查,一个小组10位同学在一篇作文中 出现的错别字个数统计如下(单位:个):0,2,0,2,3,0,2,3,1,2.有关这组数据的下列说法中,正确的是( )A .平均数是2B .众数是3C .中位数是1.5D .方差是1.25 5. 一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是( )6.如图,指出OA 是表示什么方向的一条射线() A .南偏东40° B .北偏东40° C .东偏北40°D .北偏西40° 7.如图,A 、B 、C 是同一直线上的顺次三点,下面说法正确的是( )A .射线AB 与射线BA 是同一条射线B .射线AB 与射线BC 是同一条射线C .射线AB 与射线AC 是同一条射线D .射线BA 与射线BC 是同一条射线二、填空题8.如图,过点P 画⊙O 的切线PQ ,Q 为切点,过P ﹑O 两点的直线交⊙O 于A ﹑B 两点,且2sin ,12,5P AB ∠==则OP=__________. 9.某单位内线电话的号码由 3 个数字组成,每个数字可以是 1,2,3 的一个,如果不知道某人的内线电话号码,任意拨一个号码接通的概率是 .10.从1-,1,2这三个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经过第四象限的概率是 .11.正方形边长为 4,若边长增加 x ,则面积增加 y ,则y 与x 的函数关系式是 .12.若点A 的坐标是(-7,-4),则它到x 轴的距离是 .13.在直角三角形中,两个锐角的差为20°,则两个锐角的度数分别为__ ___.14.若分式13a -无意义,242b b --的值为 0,则ab = . 15.已知113x y -=,则代数式21422x xy y x xy y----的值为 . 16.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE =__________cm .17.点A 和点A ′关于直线l 成轴对称,则直线l 和线段AA ′的位置关系是: .18.如图,延长线段AB 到C ,使4BC =,若8AB =,则线段AC 的长是BC 的 倍.19.买6千克苹果,付出10元,找回3元4角,则每千克苹果的价格是_______元.三、解答题20.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.21.在摸奖活动中,游乐场在一只黑色的口袋里装有只颜色不同的50只小球,其中红球1只、黄球2只、绿球10只,其余为白球,搅拌均匀后,每2元摸1个球,奖品的标准在球上(如下图)(1) 如果花2元摸1个球,那么摸不到奖的概率是多少?(2) 如果花4元同时摸2个球,那么获得10元奖品的概率是多少?22.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系?并证明你的猜想.23.如图所示,在等腰梯形ABCD中,AD∥BC,DE⊥BC于点E,BF⊥AE于点F,请你添加一个条件,使△ABF≌△CDE.(1)你添加的一个..条件是;(2)请写出证明过程.24.某教育局在中学开展的“创新素质实践行”中,进行了小论文的评比,各校交论文的时间为5月1日至30日,评委会把各校交的论文的件数按5天一组分组统计,绘制了频数分布直方图(如图所示),已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18,请同答下列问题:(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?25.如图,在四边形ABCD中,AC⊥DC,∠ADC的面积为30cm2,DC=12 cm ,AB=3cm ,BC=4 cm,求△ABC的面积.26.阅读下列解法,并回答问题:如图,∠1 = 75°,∠2 = 105°,说明 AB∥CD,以下几种说明方法正确吗?如果正确,请说出利用了平行线的哪一种判定方法,如果不正确,请给予纠正.解法1:∵∠1 +∠3 = 180°,∠1 = 75°,∴∠3= l05°,又∵∠2=105°,∴∠2 =∠3,∴.AB∥CD.解法2:∵∠2+∠4 = 180°,∠2 = 105°,∴∠4= 75°,又∵∠1= 75°,∴∠1 = ∠4,∴AB∥CD.解法 3:∵∠ 2 =∠5,∠2= 105°,∴∠5 =105°,又∵∠1 = 75°,∴∠1 +∠5 =180°,∴.AB∥CD.27. 已知1x a y =⎧⎨=-⎩是二元一次方程122x y a -=的一个解,求a 的值. 23a =-28.(1)计算:2432(21)(21)(21)(21)(21)-++++;(2)试求(1)中结果的个位数字.29.自然数中有许多奇妙而有趣的现象,很多秘密等待我们探索. 比如:写出一个你喜欢 欢的数,把这个数乘以 2,再加上 2,把结果乘以 5,再减去 10,再除以 10,结果你会重新得到原来的数.假设一开始写出的数为n ,根据这个例子的每一步,列出最后的表达式.30.合并同类项:(1)222442ayb a b ab a b --++(2)2223232a a a a --+--【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.C4.D5.A6.7.C二、填空题8.159.110.27111.328=+12.y x x413.55°,35°14.-615.416.2.417.垂直且平分18.319.1.1三、解答题20.略21.(1)白球的个数37102150=---摸不到奖的概率是5037; (2)获10元的奖品只有一种可能即同时摸出两个黄球的获得10元奖品的概率是1225149251=⨯. 22.解:DE =DF .证明如下:连结BD .∵四边形ABCD 是菱形∴∠CBD =∠ABD(菱形的对角线平分一组对角)∵DF ⊥BC ,DE ⊥AB ,∴DF =DE(角平分线上的点到角两边的距离相等)23.(1)如AF=EC ;(2)证明略.(答案不惟一).24.(1)120篇;(2)第四组,36篇;(3)第六组25.6cm226.解法都是正确的,解法l利用了同位角相等来判定两直线平行,解法2得用了内错角相等来判定两直线平行,解法3利用了同旁内角互补来证明两直线平行27.23a=-28.(1)6421-;(2)529.例如写出一个数为 3,则(232)510310⨯+⨯-=.若写出的数为n,则5(22)101010101010n nn +-+-==30.(1)2234a b ab-+ (2)26a a--。
2020年浙江省丽水市中考数学经典试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,几何体的主视图是( )A .B .C .D .2.在Rt △ABC 中, ∠C=90°,若AB=2AC,则cosA 的值等于( ) A .3B .23 C .21 D .33 3.如图,⊙O 的直径 CD 过弦 EF 的中点G ,∠EOD=40°,则∠DCF 等于( ) A .80°B .50°C .40°D .20°4.依次连接菱形各边中点所得到的四边形是( ) A .梯形B .菱形C .矩形D .正方形5.将△ABC 的三个顶点的横坐标都乘-l ,纵坐标保持不变,则所得图形( ) A .与原图形关于x 轴对称 B .与原图形关于k 轴对称 C .与原图形关于原点对称 D .向x 轴的负方向平移了一个单位6.一个三角形的周长为30cm ,且其中两条边长都等于第三条边长的2倍,那么这个三角形的最短边长为( ) A . 4cm B . 5cm C . 6cm D .10cm 7.如图,AB ∥CD ,如果∠2=2∠1,那么∠2 为( )A .105°B .120°C .135°D .150°8.下列各图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .9.下列从左到右的变形是因式分解的为( )A .2(3)(3)9a a α-+=-B .22410(2)6x x x ++=++C .2269(3)x x x -+=-D .243(2)(2)3x x x x x -+=-++ 10.-3 不是( ) A . 有理数B . 整数C .自然数D .负有理数二、填空题11.如图,四圆两两相切,⊙O 的半径为 a ,⊙O 1、⊙O 2半径为 12a ,则⊙O 3的半径为 .12.如图所示是由 8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,问蚂蚁停留在黑色瓷砖上的概率是 .13.在△ABC 中,∠C= 90°,若2cos 3A =,则tanA= . 14.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 .15.某校团委准备举办学生绘画展览,为美化画面,在长为30cm 、宽为20的矩形画面四周镶上宽度相等的彩纸成较大的矩形,并使彩纸的面积恰好与原画面面积相等,设彩纸的宽为x cm ,可列方程 .16.一等腰三角形的腰长与底边长之比为 5:8,它的底边上的高为33的周长为 ,面积为 .17.如果=+=+-==+2222,7,0y x xy y x xy y x ,则.18.如图,图①经过 变为图②,再经过 变为图③.19.如图,△A′B′C′是△ABC经旋转变换后的像,(1)旋转中心是 ,旋转角度是;(2)图中相等的线段:OA= ,OB= ,OC= ,AB= ,BC= ,CA= .(3)图中相等的角:∠CAB= ,∠BCA= ,∠AOA′= = .20.网①是一个三角形.分别连结这个三角形三边的中点得到图乙;再分别连结图②中间的小三角形三边的中点,得到图③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:(1)将下表填写完整:图形编号12345…三角形个数159(2)在第n个图形中有个三角形 (用含n的式子表示).21.请写出25ab合并后结果为0. 你给出的两个同类项5ab的两个同类项,且这两个同类项与2是 ..三、解答题22.已知:如图,在Rt△ABC中,∠C=90°,AC=BC,AD是∠A的平分线.试说明AC+CD=AB成立的理由.23.画出如图所示的轴对称图形的对称轴,并回答下列问题: (1)连结BD ,则对称轴和线段BD 有怎样的位置关系? (2)原图形中有哪些相等的角?哪些全等的三角形? (3)分别作出图形中点F 、G 的对称点.24.计算: (1)22216946xy x yx xy ÷- (2)22111x x x --+-25.将下面的代数式尽可能化简,再选择一个你喜欢的数代入求值:212(1)1a a a a --++-.26.某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.A 35%B 20%C 20%D各型号种子数的百分比图1图2A B C D 型号800 600400 200630 370 470发芽数/粒27.根据下列条件列方程:(1)某数与5的差的3倍等于21(2)某数的20%减去该数的l0%等于500(3)把一条带子剪去5 cm后,再对折一次,此时带子的长度正好是原带子长的13,求这条带子的原长.(4)彩票发行者预计将发行额的35%作为奖金,若奖金总数为70000元,彩票每张5元,问卖出多少张彩票时,刚好是这笔奖金?28.两个代数式的和是223x xy y-+,其中一个代数式是22x xy+,试求出另一个代数式.29.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在小组;(3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?30.2008年四川省遭受地震灾害,全国人民万众一心,众志成城,抗震救灾.如图(1)是某市一所中学根据“献出爱心,抗震救灾”自愿捐款活动期间学生捐款情况制成的条形统计图,图(2)是该中学学生人数比例统计图(该校共有学生 1450人).(1)该校九年级学生共捐款多少元?(2)该校学生均每人捐款多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.C5.B6.C7.B8.C9.C10.C二、填空题13a 12. 0. 5.13.214. 1215. 20302)230)(220(⨯⨯=++x x 16.17.0,1418.平移变换,轴对称变换19.(3)∠C ′A ′B ′,∠B ′C ′A ′,∠BOB ′,∠COC ′(1)0,60°;(2)OA ′,OB ′,OC ′,A ′B ′,B ′C ′,C ′A ′;20.(1)13,17 (2)4n-321.答案不唯一,如22ab 和27ab -三、解答题 22. 略23.如图所示,连结BD ,作线段BD 的垂直平分线m ,直线m•就是所求的对称轴. (1)对称轴垂直平分线段BD ;(2)原图形中相等的角有:∠B=∠D ,∠BAC=∠DEC ,∠BCA=∠DCE ,∠CAE=∠CEA ,∠BCE=∠DCA ,∠BAE=∠DEA .全等的三角形有:△ABC 和△EDC ; (3)点F 、G 的对称点分别是F ′、G ′,如图所示.(1)2238x y -;(2)x-11. 25.2a ,所得的值不唯一26.解:(1)500; (2)如图; (3)A 型号发芽率为90%,B 型号发芽率为92.5%,D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广.27.略28.2x 2-3xy+y 229.⑴10, 0.100;(2)第三小组 1400~1600;⑶ 180.30.(1) 5.4×1450×(1-34% -38%)=2192.4(元);(2)6.452元800 600 4002000 630 370 470发芽数/粒 380。
2020年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数3的相反数是( ) A .﹣3 B .3C .−13D .132.(3分)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是( ) A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 24.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .166.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =kx(k >0)的图象上,则下列判断正确的是( ) A .a <b <cB .b <a <cC .a <c <bD .c <b <a8.(3分)如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF ̂上一点,则∠EPF 的度数是( )A .65°B .60°C .58°D .50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) . 12.(4分)数据1,2,4,5,3的中位数是 .13.(4分)如图为一个长方体,则该几何体主视图的面积为 cm 2.14.(4分)如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是 °.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tan β的值是 .16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为 cm .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.20.(8分)如图,AB(1)求弦AB的长.̂的长.(2)求AB21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h (百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.参考答案一、选择题(本题有10小题,每小题3分,共30分) 1.(3分)实数3的相反数是( ) A .﹣3B .3C .−13D .13【解答】解:实数3的相反数是:﹣3. 故选:A . 2.(3分)分式x+5x−2的值是零,则x 的值为( )A .2B .5C .﹣2D .﹣5【解答】解:由题意得:x +5=0,且x ﹣2≠0, 解得:x =﹣5, 故选:D .3.(3分)下列多项式中,能运用平方差公式分解因式的是( ) A .a 2+b 2B .2a ﹣b 2C .a 2﹣b 2D .﹣a 2﹣b 2【解答】解:A 、a 2+b 2不能运用平方差公式分解,故此选项错误; B 、2a ﹣b 2不能运用平方差公式分解,故此选项错误; C 、a 2﹣b 2能运用平方差公式分解,故此选项正确; D 、﹣a 2﹣b 2不能运用平方差公式分解,故此选项错误; 故选:C .4.(3分)下列四个图形中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、该图形不是中心对称图形,故本选项不合题意; B 、该图形不是中心对称图形,故本选项不合题意; C 、该图形是中心对称图形,故本选项符合题意; D 、该图形不是中心对称图形,故本选项不合题意;5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A .12B .13C .23D .16【解答】解:∵共有6张卡片,其中写有1号的有3张, ∴从中任意摸出一张,摸到1号卡片的概率是36=12;故选:A .6.(3分)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b .理由是( )A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行 【解答】解:由题意a ⊥AB ,b ⊥AB , ∴a ∥b (垂直于同一条直线的两条直线平行), 故选:B .7.(3分)已知点(﹣2,a )(2,b )(3,c )在函数y =kx (k >0)的图象上,则下列判断正确的是( ) A .a <b <cB .b <a <cC .a <c <bD .c <b <a【解答】解:∵k >0,∴函数y =kx (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3, ∴b >c >0,a <0,故选:C.8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF̂上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°【解答】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∴∠EPF=12∠EOF=60°,故选:B.9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A .3×2x +5=2xB .3×20x +5=10x ×2C .3×20+x +5=20xD .3×(20+x )+5=10x +2【解答】解:设“□”内数字为x ,根据题意可得: 3×(20+x )+5=10x +2. 故选:D .10.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCD S 正方形EFGH的值是( )A .1+√2B .2+√2C .5−√2D .154【解答】解:∵四边形EFGH 为正方形, ∴∠EGH =45°,∠FGH =90°, ∵OG =GP ,∴∠GOP =∠OPG =67.5°, ∴∠PBG =22.5°, 又∵∠DBC =45°, ∴∠GBC =22.5°, ∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG , ∴△BPG ≌△BCG (ASA ), ∴PG =CG .设OG =PG =CG =x , ∵O 为EG ,BD 的交点, ∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”, ∴BF =CG =x , ∴BG =x +√2x ,∴BC 2=BG 2+CG 2=x 2(√2+1)2+x 2=(4+2√2)x 2, ∴S 正方形ABCD S 正方形EFGH=(4+2√2)x 22x =2+√2.故选:B .二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). .【解答】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).12.(4分)数据1,2,4,5,3的中位数是 3 .【解答】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5, 则这组数据的中位数是3, 故答案为:3.13.(4分)如图为一个长方体,则该几何体主视图的面积为 20 cm 2.【解答】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm 2. 故答案为:20.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是30°.【解答】解:∵四边形ABCD是平行四边形,∴∠D=180°﹣∠C=60°,∴∠α=180°﹣(540°﹣70°﹣140°﹣180°)=30°,故答案为:30.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是19√315.【解答】解:如图,作AT∥BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=√32a.观察图象可知:BH=192a,AH=5√32a,∵AT∥BC,∴∠BAH =β,∴tan β=BH AH =192a 532a=19√315. 故答案为19√315.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD (点A 与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是 16 cm . (2)当夹子的开口最大(即点C 与点D 重合)时,A ,B 两点的距离为6013cm .【解答】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形,∵OE =OF =1cm , ∴EF =2cm , ∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm ), 故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm ), ∵OE =OF =1cm , ∴CO 垂直平分线段EF , ∵OC =2+OE 2=√(125)2+12=135(cm ), ∵12•OE •EC =12•CO •EH , ∴EH =1×125135=1213(cm ),∴EF =2EH =2413(cm ) ∵EF ∥AB , ∴EF AB=CE CB=25,∴AB =52×2413=6013(cm ). 故答案为6013.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(6分)计算:(﹣2020)0+√4−tan45°+|﹣3|. 【解答】解:原式=1+2﹣1+3=5. 18.(6分)解不等式:5x ﹣5<2(2+x ). 【解答】解:5x ﹣5<2(2+x ), 5x ﹣5<4+2x 5x ﹣2x <4+5, 3x <9, x <3.19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题: 抽取的学生最喜爱体育锻炼项目的统计表 类别 项目 人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.【解答】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200﹣59﹣31﹣48﹣22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.20.(8分)如图,AB̂的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求AB̂的长.【解答】解:(1)∵AB̂的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×√32=√3,∴AB =2AC =2√3;(2)∵OC ⊥AB ,∠AOC =60°, ∴∠AOB =120°, ∵OA =2, ∴AB̂的长是:120π×2180=4π3.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C ), ∴13.2﹣1.2=12,∴高度为5百米时的气温大约是12°C ;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15;(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米.22.(10分)如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.【解答】解:(1)如图1中,过点A作AD⊥BC于D.在Rt△ABD中,AD=AB•sin45°=4√2×√22=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°﹣90°=90°.②如图3中,由(1)可知:AC=ADsin60°=8√33,∵PF⊥AC,∴∠PF A=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.23.(10分)如图,在平面直角坐标系中,已知二次函数y=−12(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.【解答】解:(1)当m=5时,y=−12(x﹣5)2+4,当x=1时,n=−12×42+4=﹣4.(2)当n=2时,将C(1,2)代入函数表达式y=−12(x﹣m)2+4,得2=−12(1﹣m)2+4,解得m=3或﹣1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=−12m2+4,∴点B的坐标为(0,−12m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,−12m2+4=0,解得m=2√2或﹣2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴−12m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2√2.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.【解答】(1)证明:如图1中,∵AE∥DF,AD∥EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=12×8×4=16,S△EOD=12×4×4=8,∴S△AED=S正方形ABOC﹣2S△ABD﹣S△EOD=64﹣2×16﹣8=24,∴S菱形AEFD=2S△AED=48.(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK =3DK ,①当AP 为菱形的一边,点Q 在x 轴的上方,有图2,图3两种情形:如图2中,设AG 交PQ 于H ,过点H 作HN ⊥x 轴于N ,交AC 于M ,设AM =t .∵菱形P AQG ∽菱形ADFE ,∴PH =3AH ,∵HN ∥OQ ,QH =HP ,∴ON =NP ,∴HN 是△PQO 的中位线,∴ON =PN =8﹣t ,∵∠MAH =∠PHN =90°﹣∠AHM ,∠PNH =∠AMH =90°,∴△HMA ∽△PNH ,∴AM NH =MH PN =AH PH =13, ∴HN =3AM =3t ,∴MH =MN ﹣NH =8﹣3t ,∵PN =3MH ,∴8﹣t =3(8﹣3t ),∴t =2,∴OP =2ON =2(8﹣t )=12,∴P (12,0).如图3中,过点H 作HI ⊥y 轴于I ,过点P 作PN ⊥x 轴交IH 于N ,延长BA 交IN 于M .同法可证:△AMH ∽△HNP ,∴AM HN =MH PN =AH HP =13,设MH =t , ∴PN =3MH =3t ,∴AM =BM ﹣AB =3t ﹣8,∵HI 是△OPQ 的中位线,∴OP =2IH ,∴HIHN ,∴8+t =9t ﹣24,∴t =4,∴OP =2HI =2(8+t )=24,∴P (24,0).②当AP 为菱形的边,点Q 在x 轴的下方时,有图4,图5两种情形:如图4中,QH =3PH ,过点H 作HM ⊥OC 于M ,过D 点P 作PN ⊥MH 于N .∵MH 是△QAC 的中位线,∴MH =12AC =4,同法可得:△HPN ∽△QHM ,∴NP HM =HN MQ =PH QH =13, ∴PN =13HM =43,∴OM =PN =43,设HN =t ,则MQ =3t ,∵MQ =MC ,∴3t =8−43,∴t =209,∴OP =MN =4+t =569,∴点P 的坐标为(569,0).如图5中,QH =3PH ,过点H 作HM ⊥x 轴于M 交AC 于I ,过点Q 作QN ⊥HM 于N .∵IH 是△ACQ 的中位线,∴CQ =2HI ,NQ =CI =4,同法可得:△PMH ∽△HNQ ,∴MH NQ =PM HN =PH HQ =13,则MH =13NQ =43, 设PM =t ,则HN =3t ,∵HN =HI ,∴3t =8+43,∴t =289, ∴OP =OM ﹣PM =QN ﹣PM =4﹣t =89,∴P (89,0). ③如图6中,当AP 为菱形的对角线时,有图6一种情形:过点H 作HM ⊥y 轴于于点M ,交AB 于I ,过点P 作PN ⊥HM 于N . ∵HI ∥x 轴,AH =HP ,∴AI =IB =4,∴PN =IB =4,同法可得:△PNH ∽△HMQ ,∴PN HM =HN MQ =PH HQ =13, ∴MH =3PN =12,HI =MH ﹣MI =4,∵HI 是△ABP 的中位线,∴BP =2IH =8,∴OP =OB +BP =16,∴P (16,0),综上所述,满足条件的点P 的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).。
2020年浙江省丽水市中考数学试题与答案( WORD 版)数 学考生须知:1 .全卷总分值为120分,考试时刻为120分钟.2 .答题前,请在答题卡上先填写姓名和准考证号,再用铅笔将准考证号和科目对应的括号或方框涂 里八、、♦3•请在”答题卷n 〃上填写座位号并在密封线内填写县(市、区)学校、姓名和准考证号.4. 本卷答案必须做在答题卷i 、n 的相应位置上,做在试题卷上无效.答题时,不承诺使用运算器. 温馨提示:带着愉悦的心情,载着自信与细心,靠着沉着与平复,迈向理想的彼岸!2参考公式:二次函数y ax 2 bx c (a 丸)图象的顶点坐标是〔—,4ac -〕.2a 4a试卷I一、选择题〔本大题有10小题,每题3分,共30分•请选出各题中一个符合题意的正确选项,将答题卡 上相应的位置涂黑•不选、多项选择、错选,均不给分〕 1. 卜面四个数中,负数是A . -3B . 0C . 0.2D . 3C 2. 如图,D ,E 分不是△ ABC 的边AC 和 BC 的中点,DE=2,那么AB=A . 1B . 2C . 3D . 4EX\E 3. 不等式x v 2在数轴上表示正确的选项是AB(第2题)■ 11012 3 "-10 12i 3 ' -10 12 3 ~ -10 1" 23一A .B .C .D .):成绩(分) 0 1 2 3 4 5 6 7 8 9 10 人数(人)113561519这次听力测试成绩的众数是 A . 5 分 B . 6 分 C . 9 分 D . 10 分5.粉笔盒里只有2支黄色粉笔和3支红色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,那么 取出黄色粉笔的概率是B .6.如下图的物体由两个紧靠在一起的圆柱组成,小刚预备画出它的三视 所画的三视图中的俯视图应该是A .两个相交的圆B .两个内切的圆图,那么他主视方向(第6题)C .两个外切的圆D .两个外离的圆以下四个函数图象中,当 x > 0时,y 随x 的增大而增大的是如图,边长为(m+3)的正方形纸片剪出一个边长为 m 的正方形之后,剩余部分又剪拼成一个矩形 (不重分解因式:x 2- 9=_▲玉树地震灾区小朋友卓玛从某地捐赠的 2种不同款式的书包和 2种不同款式的文具盒中,分不取一个书包和一个文具盒进行款式搭配,那么不同搭配的可能有▲ 种.7. 8. 9. 10. 上._ 、 11. 12. 13. 14.15. a M 0, S 1 2a , S 2S 3S 2,,S 2 010S 2 009那么S 2 010 ▲(用含a 的代数式表示).B (第 16题)叠无缝隙),假设拼成的矩形一边长为 一边长是 3,那------------ 么另 A . 2m+3 B . 2m+6 C . m+3D . m+61i* 1 1 11 1 13♦ m+3 + m +f小刚用一张半径为 24cm 的扇形纸板做一个如下图的 小丑帽子侧面(接缝忽略不计),假如做成的圆锥形小 的底面半径为10cm ,那么这张扇形纸板的面积是 A . 120 n cm 2 B . 240 n cm 2 C . 260 n cm 2D . 480 n cm 2圆锥形 如图,四边形ABCD 中,. / BAD= / ACB=90 ° AB=AD ,AC=4BC ,设CD 的长为x ,四边形 ABCD 的面积为y ,那么y函数关系式是八224 2A . yxB y x 2525 2 24 2 C . yx Dy -x 55与x 之间的讲明:本卷有二大题, 14小题,共90分,请将本卷的答案或解答过程用钢笔或圆珠笔写在答题卷H填空题 〔此题有6小题,每题 4分,共24分〕假设点〔4, 如图,直线那么/ ADEA8 y (X M 0)的图象上,那么 m 的值是 ▲. xDE 交/ ABC 的边 BA 于点 D ,假设 DE // BC ,Z B=70 °的度数是 ▲.m 〕在反比例函数 (第8丑帽子E BC(第13题)16.如图,△ ABC 是O O 的内接三角形,点 D 是BC 的中点,/ AOB=98° , / COB=120° .那么/ ABD 的度数是 ▲ 三、解答题〔此题有8小题,第17〜19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分〕1 17.运算:20 折 — si n302 18•解方程组2x y 3,①3x y 7.② 19.:如图,E , F 分不是兀ABCD 的边AD , BC 的中点. 求证:AF =CE . 20.如图,直线I 与O O 相交于A , B 两点,且与半径为 H , AB=16cm , cos OBH 4. 5 (1) 求O O 的半径; (2) 假如要将直线l 向下平移到与O O 相切的位置,平移的距离 应是多少?请讲明理由. OC 垂直,垂足C l(第20题)21.黄老师退休在家,为选择一个合适的时刻参观 2018年上海世博会,他查阅了 5月10日至16日(星期 一至星期日)每天的参观人数,得到图 1、图2所示的统计图,其中图 1是每天参观人数的统计图,图 2是5月15日(星期六)这一天上午、中午、下午和晚上四个时刻段参观人数的扇形统计图•请你依照 统计图解答下面的咨询题: (1) 5月10日至16日这一周中,参观人数最多的是哪一天?有多少人?参观人数最少的又是哪一天? 有多少人? (2) 5月15日(星期六)这一天,上午的参观人数比下午的参观人数多多少人 (精确到 1万人)? (3) 假如黄老师想尽择参观人数较少 去参观世博会,你 选择什么时刻比 适?上海世博会5月10日至16日(星期一上海世博会5月15日〔星期六〕四 个时刻段参观人数的扇形统计图 晚上8 %(图2)可能选 的时刻 认为他 较 合(第21题)22•如图,方格纸中每个小正方形的边长为 1 , △ ABC 和厶DEF 的顶点都在方格纸的格点上.-1(1) ⑵当点B 在第一象限,假如抛物线y ax 2①当a — , b4纵坐标是 乜时,求点B 的横坐标;2 c (a 工0的对称轴通过点 C ,请你探究: c3 5时,A , B 两点是否都 5 bx1 2 在这条抛物线上?并讲明理由; ② 设b=-2am ,是否存在如此的 m 的值,使A , B 两点不 可能同时在这条抛物线上?假设存在,直截了当写出m 的值;A假设不存在,请讲明理由.判定△ ABC 和厶DEF 是否相似,并讲明理由; P i , P 2, P 3, P 4, P 5, D ,F 是厶 DEF 边上 的7个格点,请在这7个格点中选取3个点 作为三角形的顶点,使构成的三角形与△ ABC 相似(要求写出2个符合条件的三角 形,并在图中连结相应线段,不必讲明理由23.小刚上午7:30从家里动身步行上学, 途经青年宫时走了 1200步,用时10分钟,到达学校的时刻是 7:55.为了估测路程等有关数据,小刚专门在学校的田径跑道上,按上学的步行速度,走完100米用了150 步.(1)小刚上学步行的平均速度是多少米/分?小刚家和青年宫之间、青年宫和学校之间的路程分不是多少米?(2)下午4: 00,小刚从学校动身,以45米/分的速度行走,按上学时的原路回家,在未到青年宫300米处与同伴玩了半小时后,赶忙以110米/分的速度回家,中途没有再停留.咨询: ① 小刚到家的时刻是下午几时? ② 小刚回家过程中,离家的路程s (米)与时刻t (分)之间关系如图,请写出点 B 的坐标,并求出线段 CD 所在 函数解析式.24. △ ABC 中,/ A=Z B=30 ° AB=^/3 .把△ ABC 放在平面直角坐标系中,使0(如图),△ ABC 能够绕点O 作任意角度的旋转.AB 的中点位于坐标原点F的函数 直线的1(第24浙江省2018年初中毕业生学业考试〔丽水市〕数学试题参考答案及评分标准题号12345678910答案A D A D B C C A B C 评分标准选对一题给3分,不选、多项选? 择、错选均不给分111. (x+3)(x-3) 12. 2 13. 70 °14. 4 15. 16. 101°a三.解答题(此题有8小题,共66分)17.(此题6分)解:原式=1 21212(母项运算1分).... 4分=3. ..... 2分18.(此题6分)解法1 :①+②,得5x=10. x=2. ..... 3分把x=2代入①,得4-y=3. y=1. ..... 2分• 方程组的解是x 2, y 1...... 1分解法2 :由①,得y=2x- 3. ③ ..... 1分把③代入②,得3x+2x-3=7. x=2 . ..... 2分把x=2代入③,得y=1 . ..... 2分• 方程组的解是x 2,y 1...... 1分19.(此题6分)四边形ABCD是平行四边形,且E, F分不是AD , BC的中点,/• AE = CF ...... 2分又•/四边形ABCD是平行四边形,AD // BC ,即卩AE // CF .四边形AFCE是平行四边形. ……3分AF=CE. ……1分方法2:•••四边形ABCD是平行四边形,且E, F分不是AD , BC的中点,BF=DE . ……2分又•/四边形ABCD是平行四边形,/ B= / D, AB=CD .••• △ ABF◎△ CDE . ……3 分••• AF=CE. ……1 分证明:方法1:20.(此题8分)1 1HB -AB2 2OBHHB 4cosOB 5OB = 5 HB = :5 X 8=10OH = OBBH 10CH 10 6 因此将直线I 向下平移到与O O 相切的位置时, 4 .平移的距离是21.(此题8分)解: (1) 参观人数最多的是15日(或周六),有34万人;参观人数最少的是10日(或周一),有16万人. 34 X (74%-6%)=23.12 〜23. 上午参观人数比下午参观人数多23万人.答案不唯独,差不多合理即可,如选择星期一下午参观等.22.(此题10分) 解:⑴△ ABC 和厶DEF 相似.依照勾股定理,得AB 2 • 5 , AC 5 ,BC=5 ;DE 4.2 , DF 2.2 , EF 2.10 .AB AC BC DE DF EF••• △ ABCDEF .(2)答案不唯独,下面 6个三角形中的任意 △ P 2P 5D , △ P 4P 5F , △P 2P 4D ,23.(此题10分)2解:(1) 小刚每分钟走 1200-10=120(步),每步走100-150=(米) 3 因此小刚上学的步行速度是 小刚家和青年宫之间的路程是 青年宫和学校之间的路程是 (2)①叮302120X — =80(米/分).380X 10=800(米). 80X(25- 10)=1200(米). 800 30060(分钟),解:⑴I(第20直线I 与半径OC 垂直,16 8 . 4 4 (2)在 Rt △ OBH 中,2个均可.BF…1分 …4分D(第22因此小刚到家的时刻是下午5: 00.② 小刚从学校动身,以45米/分的速度行走到离青年宫300米处时实际走了900米,用时900 20分,45现在小刚离家1 100米,因此点B的坐标是〔20,1100〕...... 2分线段CD表示小刚与同伴玩了30分钟后,回家的那个时刻段中离家的路程s(米)与行走时刻t(分)之间的函数关系,由路程与时刻的关系得s 1100 110(t 50),即线段CD所在直线的函数解析式是s 6 600 110t . ……2分(线段CD所在直线的函数解析式也能够通过下面的方法求得:点C的坐标是〔50, 1100〕,点D的坐标是〔60, 0〕设线段CD所在直线的函数解析式是s kt b,将点C, D的坐标代入,得50k b 1100,解得k 110,60k b 0. b 6 600.因此线段CD所在直线的函数解析式是s 110t 6 600)解:(1)•/ 点O是AB的中点,••设点B的横坐标是x(x>0),那么x2O B 1A B 3.1分..... 1分解得X1,x2f (舍去)22• 点B的横坐标是_62:i 1⑵①当a —, b , c42y(5)2 13 5 / _ •4520以下分两种情形讨论.X时,得y二x2丄X X5 4 2 5.... 2分..... (伙)情形1:设点C在第一象限(如图甲),那么点C的横坐标为 55OC O B tan30 3于由此,可求得点C的坐标为(_i kl)(5 ' 5 ),15 )丿,5••• A, B两点关于原点对称,• 点B的坐标为(J5, 』).5 5将点A的横坐标代入(衣)式右边,运算得』,即等于点A的纵坐5标;24.(此题12分)(乙)将点B的横坐标代入(*)式右边,运算得-15,即等于点B的纵坐标.5•••在这种情形下,A, B两点都在抛物线上.情形2:设点C在第四象限(如图乙),那么点C的坐标为(迁,-525 )F,..... 2分点A的坐标为(三15,上),点B的坐标为( 2.1515 )).5 555经运算,A, B两点都不在这条抛物线上. ..... 1分(情形2另解:经判定,假如A, B两点都在这条抛物线上,那么抛物线将开口向下,而的抛物线开口向上.因此A, B两点不可能都在这条抛物线上)②存在.m的值是1或-1 . ……2分2 2 . _ . _(y a(x m) am c,因为这条抛物线的对称轴通过点C,因此-K m< 1.当m=±1时,点C在x轴上,现在A, B两点都在y轴上.因此当m=±1时,A, B两点不可能同时在这条抛物线上)。
2020年浙江省丽水市中考数学精品试题C 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,圆内接△ABC 的外角∠ACH 的平分线与圆交于D 点,DP ⊥AC ,垂足为 P ,DH ⊥BH ,垂足为 H ,下列推理:①CH = CP ,②⌒AD =⌒BD ,③AP=BH,④ ⌒AB =⌒BC ,其中一定成立的结论为( )A .1 个B .2 个C .3 个D .4 个2. 已知二次函数图像与 x轴两交点间的距离是8,且顶点为M(1,5),则它的解析式( )A .y =-516 x 2+58 x +7516B .y =-516 x 2-58 x +7516C .y =-516 x 2+58 x -7516D .y =-516 x 2-58 x -75163.某电视机厂计划用两年的时间把某种型号的电视机成本降低36%,若每年下降的百分比相同,则这个百分比为( )A .16%B .18%C .20%D .22% 4.如图,在正方形ABCD 中,CE=MN ,∠BCE=40°,则∠ANM 等于( )A .70°B .60°C .50°D .40°5.下列方程中,无实数根的是( )A .2250x x ++=B .220x x --=C .22100x x +-=D .2210x x --= 6.如图,AB ∥EF ∥DC ,EG ∥DB ,则图中与∠1相等的角(∠1除外)共有( ) A .6个B .5个C .4个D .2个 7.下列函数中,其图象同时满足两个条件①y 随着x 的增大而增大;②与y 轴的正半轴相交.则它的解析式为( )A .у=-2χ-1B .у=-2χ+1C .у=2χ-1D .у=2χ+18. 有一种足球是由 32块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,黑皮有y 块,则列出的方程组是( )A .323x y x y +=⎧⎨=⎩B .3235x y x y +=⎧⎨=⎩C .3253x y x y +=⎧⎨=⎩D .326x y x y +=⎧⎨=⎩9.如果22129k xy x -+是一个完全平方式,那么k 应为( )A .2B .4C .22yD .44y10.已知c b a 、、三个数在数轴上对应点的位置如图所示,下列几个判断①b c a <<; ②b a <-;③0>+b a ; ④0<-a c 中,错误的个数是( )A .1B .2C .3D .411.下面对么AOB 的理解正确的是( )A .∠AOB 的边是线段OA 、OBB .∠AOB 中的字母A 、O 、B 可调换次序C .∠AOB 的顶点是0,边是射线OA 、OBD .∠AOB 是由两条边组成的12.某校篮球队员的身高(单位:cm )如下:168、167、160、164,168、168,167、167、163、170.获得这组数据的方法是 ( )A .直接观察B .查阅文献资料C .互联网查询D .测量 13.下列说法中,错误的是( ) A .-1 的立方根是-1B .-1的立方是-1C .-1的平方是 1D .-1的平方根是-1 14.9416 ) A .34 B .324± C .223 D 1734二、填空题15.如图所示,P 为⊙O 外一点,PB 切⊙O 于B ,连结 PO 交⊙O 于A ,已知 OA=12OP ,OB= 5cm ,则PB= cm .①② 16.在航天知识竞赛中包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为 分.17.如果一个角的两边分别与另一个角的两边平行,并且这两个角相差 90°,那么这两个角的度数分别是 .18.如果4n x y 与2m xy 相乘的结果是572x γ,那么m ,n = .19.①244a a -+;②214a a ++;③2144a a -+;④2441a a ++.以上各式中属于完全平方式的有 .(填序号)20.已知方程组357,3511x y x y +=⎧⎨-=⎩ ①+②得x=_________;①-②得y=__________. 3,-2521.笔直的窗帘轨,至少需要钉 个钉子才能将它固定,理由是 .22.某音像社对外出租光盘的收费方法是:每张光盘在租出后的前两天每天收0.8元,以后每天收0.5元.若一张光盘租出n 天(n 是大于2的自然数),应收租金 元.23.41()2-表示的意义是 ,22223333⨯⨯⨯可写成 . 三、解答题24.曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD 和直杆EC 都与BC 垂直,BC =2.8米,CD =1.8米,∠ABD =40°,求斜杆AB 与直杆EC 的长分别是多少米?(结果精确到0.01米)25.如图①,在矩形 ABCD 中,AB =20 cm ,BC=4 cm ,点 P 从A 开始沿折线A B C D --- 以 4 cm/s 的速度移动,点Q 从C 开始沿 CD 边以 1 cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达 D 时,另一点也随之停止运动,设运动时间为 t(s).(1)t 为何值时,四边形 APQD 为矩形?(2)如图②,如果⊙P 和⊙Q 的半径都是2 cm ,那么t 为何值时,OP 与⊙Q 外切?26.计算:(1)3cos10-2sin20+tan60(精确到0.001)(2)35cos 35sin (结果保留4个有效数字)27.烟囱高 45m ,影长 30,竿高 1.5m 影长1m 物高与影长成比例吗?28.为了解某城镇中学学做家务的时间,一综合实践活动小组对该班50•名学生进行了调查,根据调查所得的数据制成如图的频数分布直方图.(1)补全该图,并写出相应的频数;(2)求第1组的频率;(3)求该班学生每周做家务时间的平均数;(4)你的做家务时间在哪一组内?请用一句话谈谈你的感受.29.如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D 使 BD=BA ,延长 BC 至E 使 CE=CA. 连结 AD 、AE ,求△ADE 各内角的度数.30.某同学做一道整式运算题,误将求“A-B”看成求“A+B”,结果求出的答案是2-+.x x325已知2=--,请你帮他求出A-B的正确答案.436A x x222-=-+=----+=--2A()2(436)(325)5417A B A B x x x x x x【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.C5.A6.B7.C8.B9.D10.C11.C12.D13.D14.D二、填空题15..7117.135°、45°18.3,419.①②④20.21.2,两点确定一条直线22.0.50.6n +23.4个(12-)相乘,42()3三、解答题24.解:在Rt △BAD 中 ∵ABDB B =∠cos ,∴00.640cos 6.4cos ≈=∠= B DB AB (米). 在Rt △BEC 中, ∵CBEC B =∠tan ,∴35.240tan 8.2tan ≈⨯=∠⋅= B CB EC (米). 则斜杆AB 与直杆EC 的长分别是2.35米和6.00米. 25.(1)当四边形 APQD 为矩形时,DQ=AP,20-t=4t,t=4(s)(2)∵r=2,∴当 PQ=4 时,⊙P 与⊙Q外切,即四边形APQD为矩形20-t=4t,t=4(s).26.(1)4.003;(2) 0.7002.27.∵453302=,15312⋅=,∴45 1.5301=,∴45,30,1. 5,1 成比例.28.(1)图略,频数为14,(2)频率为0.52,(3)1.24,(4)略29.∠D=25°,∠E=35°,∠DAF=120°30.2222A()2(436)(325)5417 A B A B x x x x x x-=-+=----+=--。
2020年浙江省丽水市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,在四边形ABCD 中,∠B=∠D=90°,:C:1:2:2CD B CA=,则∠DAB 等于()A.60°B.75°C.90°D.105°2.两个相似三角形对应高的长分别为 8 和 6则它们的面积比是()A.4:3 B.16:9 C.2:3D.3:23.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2 C.2.5 D.34.过⊙O内一点M的最长的弦长为4cm,最短的弦长为2cm ,则OM 的长为()A.3cm B.2cm C . 1cm D. 3cm5.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路程长度为()A.32πB.43πC.4 D.322π+6.下列命题为真命题的是()A.三角形的中位线把三角形的面积分成相等的两部分B.对角线相等且相互平分的四边形是正方形C.关于某直线对称的两个三角形是全等三角形D.一组对边平行,另一组对边相等的四边形一定是等腰梯形7.如图,顺次连结四边形ABCD各边的中点得四边形EFGH,要使EFGH是菱形,应添加的条件是()A.AD∥BC B.AC=BD C.AC⊥BD D.AD=AB8.下列命题中,是假命题的为()A.两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形9.下列说法错误的是()A.错误的判断也是命题B.命题有真命题和假命题两种C.定理是命题D.命题是定理10.已知正比例函数y kx=的图象经过点(2,4),k的值是()A. 1 B.2 C. -1 D.-211.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t表示时间,s表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是()A.35min B.45min C.50min D.60min12.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩13.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是()14.若-2 减去一个有理数的差等于-7,则-2乘以这个有理数的积等于( ) A .-10B .10C .-14D .14二、填空题15.如图,在⊙O 中,已知20=∠OAC °,OA ∥CD ,则 =∠AOD .16.设计一个商标图形(如图所示),在△ABC 中,AB=AC=2cm,∠B=30°,以A 为圆心,AB 为半径作B ⌒EC ,以BC 为直径作半圆B ⌒FC ,则商标图案面积等于________cm 2.F ECBA17.命题“关于x 的一元二次方程20ax bx c ++=(a ≠0),若240b ac -=,则这个方程有两个相等的实数根.”的逆命题是: ,这个命题是 命题.(填“真”或“假”)18.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平 方米售价30元,主楼梯宽2 m ,其侧面图如图所示,则购买地毯至少需要 元.19.某初级中学八年级(1)班若干名同学(不足20人)星期日去公园游览,公园售票窗口标明票价:每人10元,团体票20人以上(含 20人)八折优惠. 他们经过核算,买团体票比买单人票便宜,则它们至少有 人.20.在四边形ABCD 中.给出下列论断:①AB ∥DC ;②AD=BC ;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果…,那么…”的形式,写出一个你认为正确的命题 . 21.一个几何体的三视图都是正方形,则这个几何体是 . 22.填空:(1)∵∠1=∠E ,∴ ∥ ( )(2)∵∠2=∠ ,∴AB ∥ (同位角相等,两直线平行)23. 写出一个二元一次方程组,使它的解为23x y =⎧⎨=-⎩,则二元一次方程组为 . 24.观察下表: 的个位数字是 . 25.已知a 、b 为两个连续整数,且a <7<b ,则b a += .三、解答题26.已如图所示,梯子 AB 长为 2. 5米,顶端A 靠在墙壁上,这时梯子底端 B 与墙角的距离为1. 5 米,梯子滑动后停在 DE 的位置上,测得 BD 的长为0. 5 米,求梯子顶端A 下滑了多少?27.(1)你能找出几个使不等式2 2.515x -≥⋅成立的 x 的值吗? (2)x=3,5,7 能使不等式225 1.5x -⋅≥成立吗?28.“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学对部分同学暑假在家做家务的时问进了抽样调查(时间取整上数),所得数据统计如表2: 表2 时间分组/时0.5~20.520.5~40.540.5~60.5 60.5~80.5 80.5~100.5幂的运算 18 182 183 184 185 186 187 188 … 结果的个位数字84268426…人数20253015lO(1)抽取样本的容量是;(2)样本的中位数所在时间段的范围是;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?29.已有长为l的篱笆,利用它和房屋的一面墙围成如图形状的园子,园子的宽为t.(1)用关于l、t的代数式表示园子的面积;(2)当l=100 m,t=30 m 时,求园子的面积.30.如图,任意剪一个三角形纸片ABC,设它的锐角为∠A,首先用对折的方法得到高AN,然后按图中所示的方法分别将含有∠B,∠C的部分向里折,找出AB,AC的中点D,E,同时得到两个折痕DF,EG,分别沿折痕DF,EG剪下图中的三角形①,②,并按图中箭头所指的方向分别旋转180°.(1)你能拼成一个什么样的四边形?并说明你的理由.(2)请你利用这个图形,证明三角形的面积公式:12S=⨯⨯底高.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.B4.A5.B6.C7.B8.D9.D10.B11.CA13.A14.A二、填空题 15. 40°16.361+π 17. 若关于x 的一元二次方程20ax bx c ++=(0a ≠)有两个相等的实数根,则240b ac -=,真18.480°19.1720.略21.立方体22.(1)AC ;DE ;同位角相等,两直线平行;(2)B ,CD23.略24.625.5三、解答题 26.梯子顶端下滑了 0. 5 米.(1)能,x=2,3,4,…;(2)成立28.(1)100;(2)40.5~60.5小时; (3)∵3015101260693100++⨯=,∴大约有693名学生在暑假做家务的时间在40.5~100.5小时之间.29.(1) (2)t l t ⋅- (2)1200 (m 2 )30.(1)矩形;(2)略。
2020年浙江省丽水市中考数学试卷一.选择题(共10小题)1.有理数3的相反数是( )A. ﹣3B. ﹣13C. 3D. 13 2.分式52x x +-的值是零,则x 的值为( ) A. 5 B. 2 C. -2 D. -53.下列多项式中,能运用平方差公式分解因式的是( )A. 22a b +B. 22a b -C. 22a b -D. 22a b --4.下列四个图形中,是中心对称图形的是( )A. B. C. D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )A. 12B. 13C. 23D. 166.如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b ,理由是( )A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行7.已知点(-2,a ),(2,b ),(3,c )在函数()0k y k x =>的图象上,则下列判断正确的是( ) A. a <b <c B. b <a <c C. a <c <b D. c <b <a8.如图,⊙O 是等边△ABC 的内切圆,分别切AB ,BC ,AC 于点E ,F ,D ,P 是DF 上一点,则∠EPF 的度数是( )A. 65°B. 60°C. 58°D. 50°9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x ,则列出方程正确的是( )A. 3252x x ⨯+=B. 3205102x x ⨯+=⨯C. 320520x x ⨯++=D. ()3205102x x ⨯++=+10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO=GP ,则ABCDEFGH S S 正方形正方形的值是( )A. 1+B. 2+C. 5D. 154二.填空题(共6小题)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______.12.数据1,2,4,5,3的中位数是______.13.如图为一个长方体,则该几何体主视图的面积为______cm2.14.如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是______°.15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是______.16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O 是夹子转轴位置,O E⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是_____cm.(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为_____cm.三.解答题(共8小题)17.计算:()0o 2020tan 45+3--- 18.解不等式:552(2+)x x -<19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:(1)求参与问卷调查的学生总人数. 的(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求AB的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6..气温T(.)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T关于h的函数表达式.(3)测得山顶的气温为6.,求该山峰的高度.22.如图,在△ABC中,AB=B=45°,∠C=60°.(1)求BC边上高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.如图,在平面直角坐标系中,已知二次函数21()42y x m =--+图象的顶点为A ,与y 轴交于点B ,异于顶点A 的点C (1,n )在该函数图象上.(1)当m=5时,求n 的值.(2)当n =2时,若点A 在第一象限内,结合图象,求当y 2≥时,自变量x 取值范围.(3)作直线AC 与y 轴相交于点D .当点B 在x 轴上方,且在线段OD 上时,求m 取值范围.24.如图,在平面直角坐标系中,正方形ABOC 两直角边分别在坐标轴的正半轴上,分别过OB.OC 的中点D ,E 作AE ,AD 的平行线,相交于点F , 已知OB=8.(1)求证:四边形AEFD 为菱形.(2)求四边形AEFD 的面积.(3)若点P 在x 轴正半轴上(异于点D ),点Q 在y 轴上,平面内是否存在点G ,使得以点A ,P , Q ,G 为顶点的四边形与四边形AEFD 相似?若存在,求点P 的坐标;若不存在,试说明理由.的的的参考答案一、选择题(本题有10小题,每小题3分,共30分)1-5 ADCCA 6-10 BCBDB二、填空题 (本题有6小题,每小题4分,共24分)11.答案:-1(答案不唯一,负数即可)12.答案:313.答案:2014.答案:3015.16.答案: (1). 16 (2). 6013三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程)17.计算:()0o 2020tan 45+3--- 解:原式12135.18.解不等式:552(2+)x x -<解:552(2)x x , 5542x x 5245x x ,39x <,3x <.19.解:(1)22÷11%=200. ∴参与问卷调查的学生总人数为200人.(2)200×24%=48.答:最喜爱“开合跳”的学生有48人.(3)抽取学生中最喜爱“健身操”的初中学生有200-59-31-48-22=40(人), 4080001600200⨯=. ∴最喜爱“健身操”初中学生人数约为1600人.20.解:(1)AB 的半径2OA =,OC AB ⊥于点C ,60AOC ∠=︒, 3sin 6023AC OA ,2AB AC ∴==;(2)OC AB ⊥,60AOC ∠=︒,120AOB ∴∠=︒,2OA =,∴AB 的长是:120241803ππ⨯=.21.解:(1)由题意得 高度增加2百米,则温度降低2×0.6=1.2(.). ∴13.2-1.2=12∴高度为5百米时的气温大约是12..(2)设T=-0.6h+b(k≠0),当h =3时,T =13.2,13.2=-0.6⨯3+b ,解得 b=15.∴T =-0.6h +15.(3)当T =6时,6=-0.6h +15,解得h =15.∴该山峰的高度大约为15百米.22.解:(1)如图1,过点A 作AD ⊥BC 于点D ,在Rt △ABD 中,sin 45AD AB =⋅︒==4.(2)①如图2,∵△AEF ≌△PEF ,∴AE =EP .又∵AE =BE ,∴BE =EP ,∴∠EPB =∠B =45°,∴∠AEP =90°.②如图3,由(1)可知:在Rt △ADC 中,sin 60AD AC ==︒. ∵PF ⊥AC ,∴∠PF A =90°.∵△AEF ≌△PEF ,∴∠AFE =∠PFE =45°,则∠AFE =∠B .又∵∠EAF =∠CAB ,∴△EAF ∽△CAB ,∴AFAB =AE AC∴AF =在Rt △AFP 中,AF =PF ,则AP =23.解:(1)当5m =时,21(5)42y x =--+, 当1x =时,214442n.(2)当2n =时,将(1,2)C 代入函数表达式21()42y x m =--+,得212(1)42m ,解得3m =或1-(舍弃), ∴此时抛物线的对称轴3x =,根据抛物线的对称性可知,当2y =时,1x =或5,x 的取值范围为15x .(3)点A 与点C 不重合,1m ∴≠,抛物线的顶点A 的坐标是(,4)m ,∴抛物线的顶点在直线4y =上,当0x =时,2142y m , ∴点B 的坐标为21(0,4)2m , 抛物线从图1的位置向左平移到图2的位置,m 逐渐减小,点B 沿y 轴向上移动, 当点B 与O 重合时,21402m ,解得m =或-,当点B 与点D 重合时,如图2,顶点A 也与B ,D 重合,点B 到达最高点, ∴点(0,4)B , 21442m ,解得0m =,当抛物线从图2的位置继续向左平移时,如图3点B 不在线段OD 上, B ∴点在线段OD 上时,m 的取值范围是:01m <或122m .24.【详解】(1)∵DF∥AE,EF∥AD,∴四边形AEFD是平行四边形.∵四边形ABOC是正方形,∴OB=OC=AB=AC,∠ACE=∠ABD=90°.∵点D,E是OB,OC的中点,∴CE=BD,∴△ACE≌△ABD(SAS),∴AE=AD,∴AEFD是菱形(2)如图1,连结DE∵S△ABD=12AB·BD=184=162⨯⨯,S△ODE=12OD·OE=144=82⨯⨯,∴S△AED=S正方形ABOC-2 S△ABD-S△ODE=64-216⨯-8=24,∴S菱形AEFD=2S△AED=48(3)由图1,连结AF与DE相交于点K,易得△ADK的两直角边之比为1:31)当AP为菱形一边时,点Q在x轴上方,有图2、图3两种情况:如图2,AG与PQ交于点H,∵菱形PAQG∽菱形ADFE,∴△APH的两直角边之比为1:3过点H作HN⊥x轴于点N,交AC于点M,设AM=t ∵HN∥OQ,点H是PQ的中点,∴点N是OP中点,∴HN是△OPQ的中位线,∴ON=PN=8-t又∵∠1=∠3=90°-∠2,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴AMHN=MHPN=13,∴HN=3AM=3t,∴MH=MN-NH=8-3t.∵PN=3MH,∴8-t =3(8-3t),解得t=2∴OP=2ON=2(8-t)=12∴点P的坐标为(12,0)如图3,△APH的两直角边之比为1:3过点H作HI⊥y轴于点I,过点P作PN⊥x轴交IH于点N,延长BA交IN于点M∵∠1=∠3=90°-∠2,∠AMH =∠PNH ,∴△AMH ∽△HNP , ∴AM HN =MH PN =13,设MH =t , ∴PN =3MH =3t ,∴AM =BM -AB =3t -8,∴HN =3AM =3(3t -8) =9t -24又∵HI 是△OPQ 的中位线,∴OP =2IH ,∴HI =HN ,∴8+t =9t -24,解得 t =4∴OP =2HI =2(8+t)=24,∴点P 的坐标为(24,0)2)当AP 为菱形一边时,点Q 在x 轴下方,有图4、图5两种情况: 如图4,△PQH 的两直角边之比为1:3过点H 作HM ⊥y 轴于点M ,过点P 作PN ⊥HM 于点N∵MH 是△QAC 的中位线,∴HM =2AC =4又∵∠1=∠3=90°-∠2,∠HMQ=∠N,∴△HPN∽△QHM,∴NPHM=HNMQ=13,则PN=13HM=43,∴OM=4 3设HN=t,则MQ=3t ∵MQ=MC,∴3t=8-43,解得t=209∴OP=MN=4+t=569,∴点P的坐标为(569,0)如图5,△PQH的两直角边之比为1:3过点H作HM⊥x轴于点M,交AC于点I,过点Q作NQ⊥HM于点N∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4∵∠1=∠3=90°-∠2,∠PMH=∠QNH,∴△PMH∽△HNQ,∴MHNQ=PMHN=PHHQ=13,则MH=13NQ=43设PM=t,则HN=3t,∵HN=HI,∴3t=8+43,解得t=289∴OP=OM-PM=QN-PM=4-t=89,∴点P的坐标为(89,0)3)当AP为菱形对角线时,有图6一种情况:如图6,△PQH的两直角边之比为1:3过点H作HM⊥y轴于点M,交AB于点I,过点P作PN⊥HM于点N∵HI∥x轴,点H为AP的中点,∴AI=IB=4,∴PN=4∵∠1=∠3=90°-∠2,∠PNH=∠QMH=90°,∴△PNH∽△HMQ,∴PNMH=PMHN=PMHN=13,则MH=3PN=12,HI=MH-MI=4∵HI是△ABP的中位线,∴BP=2HI=8,即OP=16,∴点P的坐标为(16,0)综上所述,点P的坐标为(12,0),(24,0),(569,0),(89,0),(16,0).。
2020年浙江省丽水市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,AB 是⊙O 的直径,弦 AC 、BD 相交于点P ,CD AB 等于( )A .sin ∠BPCB .cos ∠BPC C .tan ∠BPCD .cot ∠BPC 2.如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )A .DCE △B .四边形ABCDC .ABF △D .ABE △ 3.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d .若直线l 与⊙O 有交点,则下列结论正确的是( )A .d =rB .d ≤rC .d ≥rD .d <r 4. 过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( ) A .3cmB .2cmC . 1cmD . 3cm 5.一个多边形的内角和与外角和相等,则这个多边形是( ) A .三角形B .四边形C .五边形D .六边形 6.如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=800,则∠2的度数是( )A .600B .800C .1000D .12007.给出下列运算:①326()a a -=-;②224-=-;③22()()x y x y y x ---=-;④0(31)1=.其中运算正确的是( )A . ①和②B . ①和③C . ②和④D . ③和④ 8.256421的结果为( )A . 61B .19C .-21D .-8 二、填空题9.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .10.“平行四边形的对角线互相平分”的逆命题是 . 11.如图,四边形ABCD 是各边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在四边形的相邻两边上),则这四条弧长的和是_________.12.已知221y x x =-+-+,则y x= . 13.把如图所示折叠成正方体,如果相对面的值相等,则一组x ,y 的值是 .14.已知点P (x-1,x+3),那么点P 不可能在第 象限.15.如图,乙图形可以由图形 得到.16.若方程组7336029510x y x y +-=⎧⎨+-=⎩的解也是方程21mx y +=的解,则m = . 17.长方形的长是(2a b +)cm, 宽是(a b +)cm,它的周长是 cm, 面积是 cm 2.18.已知三角形的两条边的长分别是3和5,第三条边的长为a ,则a 的长度在 和 之间.19.比较两条线段的大小的方法有两种:一种是 ;另一种是 .20.在有理数中,倒数是它本身的数有 ,平方等于它本身的数有 ,立方等于它本身的数有 ,绝对值等于它本身的数有 .21.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .22.已知x 的与 3 的差小于 5,用不等式表示为 .三、解答题23.将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率;(2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.24.已知方程组713x y a x y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数,求a 的取值范围.25.如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点围形. 如图中的△ABC 称为格点△ABC. 请根据你所学过的平移、旋转、对称等知识,说明网中“格点四边形图案”是如何通过“格点A4BC 图案”变换得到的.26.已知,4425,7522==y x 求22)()(y x y x --+的值.27.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如 果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?28.有10 张相同的卡片上写的数字如下:卡片任意搅乱后,一个人随机抽取一张,卡片上的数字是下列情况的概率是多少?(1)2;(2)大于2;(3)8;(4)一个偶数;(5)一个奇数.29.如图,D、B是线段AC上的两点,且D为AC的中点,BC=DB,DC= 3.5,求线段AB的长.30.解下列方程(1)1(5)7 2x-=(2)5x-2(x-1)=14(3) 5(x-1)=2(4x+2)-20( x-1)(4) 324 [2(6)]1 233-+=【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.B6.答案:B7.D8.B二、填空题9.510.对角线互相平分的四边形是平行四边形11.π6 12.21 13. 23x y =⎧⎨=⎩或32x y =⎧⎨=⎩ 14.四15.甲先向左平移3个单位长度,再向下平移6个单位长度16.-317.64a b +,2223a ab b ++18.2,819.叠合法、度量法20.1±,0和 1,0 和1±,非负数21.亿两;3,3;千,三;2,6,522.1352x -<三、解答题23.解:(1)P 偶数=42 =21 (2)P (4的倍数)=123=41.24.解原方程组,得342x a y a =-+⎧⎨=--⎩,∵x 为非正数,y 为负数,∴30420a a -+≤⎧⎨--<⎩,∴23a -<≤. 25.把“格点△ABC 图案”向右平移 10个单位长度,再向上平移5个单位长度,以BC 中点为旋转中心旋转 180°(或以 BC 所在直线为对称轴作轴对称变换),即得到“格点四边形图案”26.32.27.12 个月28. (1)110;(2)910;(3)12;(4)1;(5)0 29.因为D 为 AC 的中点,∴CD=12AC. ∵CD =3.5,∴AC =7.又∵ BC=BD ,∴BC=12CD=12×3.5=1.75.∴AB=AC-BC=7-1.75=5.25 30. (1)x=19 (2)x=4 (3)2917x = (4)13y =。
2020年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数3的相反数是()A. −3B. 3C. −13D. 132.分式x+5x−2的值是零,则x的值为()A. 2B. 5C. −2D. −53.下列多项式中,能运用平方差公式分解因式的是()A. a2+b2B. 2a−b2C. a2−b2D. −a2−b24.下列四个图形中,是中心对称图形的是()A. B. C. D.5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A. 12B. 13C. 23D. 166.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a//b.理由是()A. 连结直线外一点与直线上各点的所有线段中,垂线段最短B. 在同一平面内,垂直于同一条直线的两条直线互相平行C. 在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D. 经过直线外一点,有且只有一条直线与这条直线平行7.已知点(−2,a)(2,b)(3,c)在函数y=kx(k>0)的图象上,则下列判断正确的是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF⏜上一点,则∠EPF的度数是()A. 65°B. 60°C. 58°D. 50°9. 如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是( )A. 3×2x +5=2xB. 3×20x +5=10x ×2C. 3×20+x +5=20xD. 3×(20+x)+5=10x +210. 如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH.连结EG ,BD 相交于点O 、BD 与HC 相交于点P.若GO =GP ,则S 正方形ABCDS 正方形EFGH的值是( )A. 1+√2B. 2+√2C. 5−√2D. 154二、填空题(本大题共6小题,共24.0分)11. 点P(m,2)在第二象限内,则m 的值可以是(写出一个即可)______. 12. 数据1,2,4,5,3的中位数是______.13. 如图为一个长方体,则该几何体主视图的面积为______cm 2.14. 如图,平移图形M ,与图形N 可以拼成一个平行四边形,则图中α的度数是______°.15. 如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A ,B ,C 均为正六边形的顶点,AB 与地面BC 所成的锐角为β.则tanβ的值是______.16. 图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC ,BD(点A与点B 重合),点O 是夹子转轴位置,OE ⊥AC 于点E ,OF ⊥BD 于点F ,OE =OF =1cm ,AC =BD =6cm ,CE =DF ,CE :AE =2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.(1)当E ,F 两点的距离最大时,以点A ,B ,C ,D 为顶点的四边形的周长是______cm .(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为______cm.三、解答题(本大题共8小题,共66.0分)17.计算:(−2020)0+√4−tan45°+|−3|.18.解不等式:5x−5<2(2+x).19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生8000人,估算该市初中学生中最喜爱“健身操”的人数.20.如图,AB⏜的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求AB⏜的长.21.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度ℎ(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.如图,在△ABC中,AB=4√2,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长(x−m)2+4图象的顶点为A,23.如图,在平面直角坐标系中,已知二次函数y=−12与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.答案和解析1.【答案】A【解析】解:实数3的相反数是:−3.故选:A.直接利用相反数的定义分析得出答案.此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【答案】D【解析】【分析】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.利用分式值为零的条件可得x+5=0,且x−2≠0,再解即可.【解答】解:由题意得:x+5=0,且x−2≠0,解得:x=−5,故选:D.3.【答案】C【解析】解:A、a2+b2不能运用平方差公式分解,故此选项错误;B、2a−b2不能运用平方差公式分解,故此选项错误;C、a2−b2能运用平方差公式分解,故此选项正确;D、−a2−b2不能运用平方差公式分解,故此选项错误;故选:C.根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.【答案】C【解析】解:A、该图形不是中心对称图形,故本选项不合题意;B、该图形不是中心对称图形,故本选项不合题意;C、该图形是中心对称图形,故本选项符合题意;D、该图形不是中心对称图形,故本选项不合题意;故选:C.根据中心对称图形的概念对各图形分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】A【解析】解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是36=12;故选:A.根据概率公式直接求解即可.此题考查了概率的求法,用到的知识点为:可能性等于所求情况数与总情况数之比.6.【答案】B【解析】【分析】本题考查行公理以及推论等知识,解题的关键是理解题意,灵活运用所学知识解决问题.根据垂直于同一条直线的两条直线平行判断即可.【解答】解:由题意a⊥AB,b⊥AB,∴a//b(垂直于同一条直线的两条直线平行),故选:B.7.【答案】C【解析】【分析】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关(k>0)的图象分布在第一、三象限,在每一键.根据反比例函数的性质得到函数y=kx象限,y随x的增大而减小,则b>c>0,a<0.【解答】解:∵k>0,(k>0)的图象分布在第一、三象限,在每一象限,y随x的增大而减小,∴函数y=kx∵−2<0<2<3,∴b>c>0,a<0,∴a<c<b.故选:C.8.【答案】B【解析】解:如图,连接OE,OF.∵⊙O是△ABC的内切圆,E,F是切点,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵△ABC是等边三角形,∴∠B=60°,∴∠EOF=120°,∠EOF=60°,∴∠EPF=12故选:B.如图,连接OE,OF.求出∠EOF的度数即可解决问题.本题考查三角形的内切圆与内心,切线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】D【解析】解:设“□”内数字为x,根据题意可得:3×(20+x)+5=10x+2.故选:D.直接利用表示十位数的方法进而得出等式即可.此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.10.【答案】B【解析】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BG=90°,BG=BG,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=√2x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+√2x,∴BC2=BG2+CG2=x2(√2+1)2+x2=(4+2√2)x2,∴S正方形ABCDS正方形EFGH=(4+2√2)x22x2=2+√2.故选:B.证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=√2x,由勾股定理得出BC2=(4+2√2)x2,则可得出答案.本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.11.【答案】−1(答案不唯一).【解析】解:∵点P(m,2)在第二象限内,∴m<0,则m的值可以是−1(答案不唯一).故答案为:−1(答案不唯一).直接利用第二象限内点的坐标特点得出m的取值范围,进而得出答案.此题主要考查了点的坐标,正确得出m的取值范围是解题关键.12.【答案】3【解析】解:数据1,2,4,5,3按照从小到大排列是1,2,3,4,5,则这组数据的中位数是3,故答案为:3.先将题目中的数据按照从小到大排列,即可得到这组数据的中位数.本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数.13.【答案】20【解析】解:该几何体的主视图是一个长为4,宽为5的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.【答案】30【解析】解:∵四边形ABCD是平行四边形,∴∠D=180°−∠C=60°,∴∠α=180°−(540°−70°−140°−180°)=30°,故答案为:30.根据平行四边形的性质解答即可.此题考查平行四边形的性质,关键是根据平行四边形的邻角互补解答.15.【答案】19√315【解析】解:如图,作AT//BC,过点B作BH⊥AT于H,设正六边形的边长为a,则正六边形的半径为,边心距=√32a.观察图象可知:BH=192a,AH=5√32a,∵AT//BC , ∴∠BAH =β, ∴tanβ=BHAH =192a 5√32a =19√315.故答案为19√315.如图,作AT//BC ,过点B 作BH ⊥AT 于H ,设正六边形的边长为a ,则正六边形的半径为,边心距=√32a.求出BH ,AH 即可解决问题.本题考查解直角三角形的应用,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题.16.【答案】16 6013【解析】解:(1)当E ,F 两点的距离最大时,E ,O ,F 共线,此时四边形ABCD 是矩形,∵OE =OF =1cm , ∴EF =2cm ,∴AB =CD =2cm ,∴此时四边形ABCD 的周长为2+2+6+6=16(cm), 故答案为16.(2)如图3中,连接EF 交OC 于H .由题意CE =CF =25×6=125(cm),∵OE =OF =1cm , ∴CO 垂直平分线段EF ,∵OC =√CE 2+OE 2=√(125)2+12=135(cm),∵12⋅OE ⋅EC =12⋅CO ⋅EH , ∴EH =1×125135=1213(cm),∴EF =2EH =2413(cm) ∵EF//AB , ∴EFAB =CECB =25,∴AB=52×2413=6013(cm).故答案为6013.(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.本题考查旋转的性质,矩形的判定和性质,平行线分线段成比例定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.17.【答案】解:原式=1+2−1+3=5.【解析】利用零次幂的性质、二次根式的性质、特殊角的三角函数值、绝对值的性质进行计算,再算加减即可.此题主要考查了实数运算,关键是掌握零次幂、二次根式的性质、特殊角的三角函数值、绝对值的性质.18.【答案】解:5x−5<2(2+x),5x−5<4+2x5x−2x<4+5,3x<9,x<3.【解析】去括号,移项、合并同类项,系数化为1求得即可.本题考查了解一元一次不等式,熟练掌握解不等式的步骤是解题的关键.19.【答案】解:(1)22÷11%=200(人),答:参与调查的学生总数为200人;(2)200×24%=48(人),答:最喜爱“开合跳”的学生有48人;(3)最喜爱“健身操”的学生数为200−59−31−48−22=40(人),8000×40200=1600(人),答:最喜爱“健身操”的学生数大约为1600人.【解析】(1)从统计图表中可得,“E组其它”的频数为22,所占的百分比为11%,可求出调查学生总数;(2)“开合跳”的人数占调查人数的24%,即可求出最喜爱“开合跳”的人数;(3)求出“健身操”所占的百分比,用样本估计总体,即可求出8000人中喜爱“健身操”的人数.考查统计表、扇形统计图的意义和制作方法,理解统计图表中的数量之间的关是解决问题的关键.20.【答案】解:(1)∵AB⏜的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA⋅sin60°=2×√32=√3,∴AB=2AC=2√3;(2)∵OC ⊥AB ,∠AOC =60°,∴∠AOB =120°,∵OA =2,∴AB ⏜的长是:120π×2180=4π3.【解析】(1)根据题意和垂径定理,可以求得AC 的长,然后即可得到AB 的长;(2)根据∠AOC =60°,可以得到∠AOB 的度数,然后根据弧长公式计算即可.本题考查弧长的计算、垂径定理,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(°C), ∴13.2−1.2=12,∴高度为5百米时的气温大约是12°C ;(2)设T 关于h 的函数表达式为T =kℎ+b ,则:{3k +b =13.25k +b =12, 解得{k =−0.6b =15, ∴T 关于h 的函数表达式为T =−0.6ℎ+15;(3)当T =6时,6=−0.6ℎ+15,解得ℎ=15.∴该山峰的高度大约为15百米.【解析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2°C ,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.22.【答案】解:(1)如图1中,过点A 作AD ⊥BC 于D .在Rt △ABD 中,AD =AB ⋅sin45°=4√2×√22=4.(2)①如图2中,∵△AEF≌△PEF,∴AE=EP,∵AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°−90°=90°.②如图3中,由(1)可知:AC=ADsin60∘=8√33,∵PF⊥AC,∴∠PFA=90°,∵△AEF≌△PEF,∴∠AFE=∠PFE=45°,∴∠AFE=∠B,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AFAB =AEAC,即4√2=√28√33,∴AF=2√3,在Rt△AFP,AF=FP,∴AP=√2AF=2√6.【解析】(1)如图1中,过点A作AD⊥BC于D.解直角三角形求出AD即可.(2)①证明BE=EP,可得∠EPB=∠B=45°解决问题.②如图3中,由(1)可知:AC=ADsin60∘=8√33,证明△AEF∽△ACB,推出AFAB=AEAC,由此求出AF即可解决问题.本题属于三角形综合题,考查了解直角三角形的应用,翻折变换,全等三角形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.23.【答案】解:(1)当m=5时,y=−12(x−5)2+4,当x=1时,n=−12×42+4=−4.(2)当n=2时,将C(1,2)代入函数表达式y=−12(x−m)2+4,得2=−12(1−m)2+4,解得m=3或−1(舍弃),∴此时抛物线的对称轴x=3,根据抛物线的对称性可知,当y=2时,x=1或5,∴x的取值范围为1≤x≤5.(3)∵点A与点C不重合,∴m≠1,∵抛物线的顶点A的坐标是(m,4),∴抛物线的顶点在直线y=4上,当x=0时,y=−12m2+4,∴点B的坐标为(0,−12m2+4),抛物线从图1的位置向左平移到图2的位置,m逐渐减小,点B沿y轴向上移动,当点B与O重合时,−12m2+4=0,解得m=2√2或−2√2,当点B与点D重合时,如图2,顶点A也与B,D重合,点B到达最高点,∴点B(0,4),∴−12m2+4=4,解得m=0,当抛物线从图2的位置继续向左平移时,如图3点B不在线段OD上,∴B点在线段OD上时,m的取值范围是:0≤m<1或1<m<2√2.【解析】(1)利用待定系数法求解即可.(2)求出y=2时,x的值即可判断.m2+4),求出几个特殊位置m的值即可判断.(3)由题意点B的坐标为(0,−12本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一次函数的性质等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考常压轴题.24.【答案】(1)证明:如图1中,∵AE//DF,AD//EF,∴四边形AEFD是平行四边形,∵四边形ABCD是正方形,∴AC=AB=OC=OB,∠ACE=∠ABD=90°,∵E,D分别是OC,OB的中点,∴CE=BD,∴△CAE≌△ABD(SAS),∴AE=AD,∴四边形AEFD是菱形.(2)解:如图1中,连接DE.∵S△ADB=S△ACE=1×8×4=16,2×4×4=8,S△EOD=12−2S△ABD−S△EOD=64−2×16−8=24,∴S△AED=S正方形ABOC=2S△AED=48.∴S菱形AEFD(3)解:如图1中,连接AF,设AF交DE于K,∵OE=OD=4,OK⊥DE,∴KE=KD,∴OK=KE=KD=2√2,∵AO=8√2,∴AK=6√2,∴AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形:如图2中,设AG交PQ于H,过点H作HN⊥x轴于N,交AC于M,设AM=t.∵菱形PAQG∽菱形ADFE,∴PH=3AH,∵HN//OQ,QH=HP,∴ON=NP,∴HN是△PQO的中位线,∴ON=PN=8−t,∵∠MAH=∠PHN=90°−∠AHM,∠PNH=∠AMH=90°,∴△HMA∽△PNH,∴AMNH =MHPN=AHPH=13,∴HN=3AM=3t,∴MH=MN−NH=8−3t,∵PN=3MH,∴8−t=3(8−3t),∴t=2,∴OP=2ON=2(8−t)=12,∴P(12,0).如图3中,过点H作HI⊥y轴于I,过点P作PN⊥x轴交IH于N,延长BA交IN于M.同法可证:△AMH∽△HNP,∴AMHN =MHPN=AHHP=13,设MH=t,∴PN=3MH=3t,∴AM=BM−AB=3t−8,∵HI是△OPQ的中位线,∴OP=2IH,∴HIHN,∴8+t=9t−24,∴t=4,∴OP=2HI=2(8+t)=24,∴P(24,0).②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形:如图4中,QH=3PH,过点H作HM⊥OC于M,过D点P作PN⊥MH于N.∵MH是△QAC的中位线,∴MH=12AC=4,同法可得:△HPN∽△QHM,∴NPHM =HNMQ=PHQH=13,∴PN=13HM=43,∴OM=PN=43,设HN=t,则MQ=3t,∵MQ=MC,∴3t=8−43,∴t=209,∴OP=MN=4+t=569,∴点P的坐标为(569,0).如图5中,QH=3PH,过点H作HM⊥x轴于M交AC于I,过点Q作QN⊥HM于N.∵IH是△ACQ的中位线,∴CQ=2HI,NQ=CI=4,同法可得:△PMH∽△HNQ,∴MHNQ =PMHN=PHHQ=13,则MH=13NQ=43,设PM=t,则HN=3t,∵HN=HI,∴3t=8+43,∴t=289,∴OP=OM−PM=QN−PM=4−t=89,∴P(89,0).③如图6中,当AP为菱形的对角线时,有图6一种情形:过点H作HM⊥y轴于于点M,交AB于I,过点P作PN⊥HM于N.∵HI//x轴,AH=HP,∴AI=IB=4,∴PN=IB=4,同法可得:△PNH∽△HMQ,∴PNHM =HNMQ=PHHQ=13,∴MH=3PN=12,HI=MH−MI=4,∵HI是△ABP的中位线,∴BP=2IH=8,∴OP=OB+BP=16,∴P(16,0),综上所述,满足条件的点P的坐标为(12,0)或(24,0)或(569,0)或(89,0)或(16,0).【解析】(1)根据邻边相等的四边形是菱形证明即可.(2)连接DE,求出△ADE的面积即可解决问题.(3)首先证明AK=3DK,①当AP为菱形的一边,点Q在x轴的上方,有图2,图3两种情形.②当AP为菱形的边,点Q在x轴的下方时,有图4,图5两种情形.③如图6中,当AP为菱形的对角线时,有图6一种情形.分别利用相似三角形的性质求解即可.本题属于相似形综合题,考查了正方形的性质,菱形的判定和性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会寻找相似三角形,利用相似三角形的性质构建方程解决问题,属于中考压轴题.。
2019年浙江省丽水市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分).1.(3分)实数4的相反数是()A.﹣B.﹣4C.D.42.(3分)计算a6÷a3,正确的结果是()A.2B.3a C.a2D.a33.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.84.(3分)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()星期一二三四最高气温10°C12°C11°C9°C最低气温3°C0°C﹣2°C﹣3°C A.星期一B.星期二C.星期三D.星期四5.(3分)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A.B.C.D.6.(3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处7.(3分)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=18.(3分)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是()A.∠BDC=∠αB.BC=m•tanαC.AO=D.BD=9.(3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.10.(3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.﹣1C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)不等式3x﹣6≤9的解是.12.(4分)数据3,4,10,7,6的中位数是.13.(4分)当x=1,y=﹣时,代数式x2+2xy+y2的值是.14.(4分)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是.15.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.16.(4分)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD =40cm.(1)如图3,当∠ABE=30°时,BC=cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为cm2.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程。
)17.(6分)计算:|﹣3|﹣2tan60°++()﹣1.18.(6分)解方程组19.(6分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(1)求m,n的值.(2)补全条形统计图.(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数.20.(8分)如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F均为格点),各画出一条即可.21.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.22.(10分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=(k >0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.23.(10分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y =﹣(x﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.2019年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分).1.(3分)实数4的相反数是()A.﹣B.﹣4C.D.4【分析】根据互为相反数的定义即可判定选择项.【解答】解:∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选:B.【点评】此题主要考查相反数的定义:只有符号相反的两个数互为相反数.2.(3分)计算a6÷a3,正确的结果是()A.2B.3a C.a2D.a3【分析】根据同底数幂除法法则可解.【解答】解:由同底数幂除法法则:底数不变,指数相减知,a6÷a3=a6﹣3=a3.故选:D.【点评】本题是整式除法的基本运算,必须熟练掌握运算法则.本题属于简单题.3.(3分)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.【点评】本题考查了三角形三边关系定理,能根据定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.(3分)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()星期一二三四最高气温10°C12°C11°C9°C最低气温3°C0°C﹣2°C﹣3°C A.星期一B.星期二C.星期三D.星期四【分析】用最高温度减去最低温度,结果最大的即为所求;【解答】解:星期一温差10﹣3=7℃;星期二温差12﹣0=12℃;星期三温差11﹣(﹣2)=13℃;星期四温差9﹣(﹣3)=12℃;故选:C.【点评】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.5.(3分)一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是白球的概率为()A.B.C.D.【分析】让白球的个数除以球的总数即为摸到白球的概率.【解答】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是.故选:A.【点评】本题考查的是随机事件概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(3分)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南偏东75°方向5km处【分析】根据方向角的定义即可得到结论.【解答】解:由图可得,目标A在南偏东75°方向5km处,故选:D.【点评】此题主要考查了方向角,正确理解方向角的意义是解题关键.7.(3分)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.【解答】解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是()A.∠BDC=∠αB.BC=m•tanαC.AO=D.BD=【分析】根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形求出即可.【解答】解:A、∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,∴AO=OB=CO=DO,∴∠DBC=∠ACB,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意;B、在Rt△ABC中,tanα=,即BBC=m•tanα,故本选项不符合题意;C、在Rt△ABC中,AC=,即AO=,故本选项符合题意;D、∵四边形ABCD是矩形,∴DC=AB=m,∵∠BAC=∠BDC=α,∴在Rt△DCB中,BD=,故本选项不符合题意;故选:C.【点评】本题考查了矩形的性质和解直角三角形,能熟记矩形的性质是解此题的关键.9.(3分)如图物体由两个圆锥组成.其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=AB,再证明△CBD为等边三角形得到BC=BD=AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【解答】解:∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=×1=.故选:D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.10.(3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.﹣1C.D.【分析】连接HF,设直线MH与AD边的交点为P,根据剪纸的过程以及折叠的性质得PH=MF且正方形EFGH的面积=×正方形ABCD的面积,从而用a分别表示出线段GF和线段MF的长即可求解.【解答】解:连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF==∴HF=GF=∴MF=PH==a∴=a÷=故选:A.【点评】本题主要考查了剪纸问题、正方形的性质以及折叠的性质,由剪纸的过程得到图形中边的关系是解题关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)不等式3x﹣6≤9的解是x≤5.【分析】根据移项、合并同类项、化系数为1解答即可.【解答】解:3x﹣6≤9,3x≤9+63x≤15x≤5,故答案为:x≤5【点评】本题考查了解一元一次不等式,能根据不等式的性质求出不等式的解集是解此题的关键.12.(4分)数据3,4,10,7,6的中位数是6.【分析】将数据重新排列,再根据中位数的概念求解可得.【解答】解:将数据重新排列为3、4、6、7、10,∴这组数据的中位数为6,故答案为:6.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.(4分)当x=1,y=﹣时,代数式x2+2xy+y2的值是.【分析】首先把x2+2xy+y2化为(x+y)2,然后把x=1,y=﹣代入,求出算式的值是多少即可.【解答】解:当x=1,y=﹣时,x2+2xy+y2=(x+y)2=(1﹣)2==故答案为:.【点评】此题主要考查了因式分解的应用,要熟练掌握,根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.14.(4分)如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是40°.【分析】过A点作AC⊥OC于C,根据直角三角形的性质可求∠OAC,再根据仰角的定义即可求解.【解答】解:过A点作AC⊥OC于C,∵∠AOC=50°,∴∠OAC=40°.故此时观察楼顶的仰角度数是40°.故答案为:40°.【点评】考查了解直角三角形的应用﹣仰角俯角问题,仰角是向上看的视线与水平线的夹角,关键是作出辅助线构造直角三角形求出∠OAC的度数.15.(4分)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是(32,4800).【分析】根据题意可以得到关于t的方程,从而可以求得点P的坐标,本题得以解决.【解答】解:令150t=240(t﹣12),解得,t=32,则150t=150×32=4800,∴点P的坐标为(32,4800),故答案为:(32,4800).【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.16.(4分)图2,图3是某公共汽车双开门的俯视示意图,ME、EF、FN是门轴的滑动轨道,∠E=∠F=90°,两门AB、CD的门轴A、B、C、D都在滑动轨道上,两门关闭时(图2),A、D分别在E、F处,门缝忽略不计(即B、C重合);两门同时开启,A、D分别沿E→M,F→N的方向匀速滑动,带动B、C滑动:B到达E时,C恰好到达F,此时两门完全开启,已知AB=50cm,CD =40cm.(1)如图3,当∠ABE=30°时,BC=90﹣45cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为2256cm2.【分析】(1)先由已知可得B、C两点的路程之比为5:4,再结合B运动的路程即可求出C运动的路程,相加即可求出BC的长;(2)当A向M方向继续滑动15cm时,AA'=15cm,由勾股定理和题目条件得出△A'EB'、△D'FC'和梯形A'EFD'边长,即可利用割补法求出四边形四边形ABCD的面积.【解答】解:∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.∴EF=50+40=90cm∵B到达E时,C恰好到达F,此时两门完全开启,∴B、C两点的路程之比为5:4(1)当∠ABE=30°时,在Rt△ABE中,BE=AB=25cm,∴B运动的路程为(50﹣25)cm∵B、C两点的路程之比为5:4∴此时点C运动的路程为(50﹣25)×=(40﹣20)cm∴BC=(50﹣25)+(40﹣20)=(90﹣45)cm故答案为:90﹣45;(2)当A向M方向继续滑动15cm时,设此时点A运动到了点A'处,点B、C、D分别运动到了点B'、C'、D'处,连接A'D',如图:则此时AA'=15cm∴A'E=15+25=40cm由勾股定理得:EB'=30cm,∴B运动的路程为50﹣30=20cm∴C运动的路程为16cm∴C'F=40﹣16=24cm由勾股定理得:D'F=32cm,∴四边形A'B'C'D'的面积=梯形A'EFD'的面积﹣△A'EB'的面积﹣△D'FC'的面积=﹣30×40﹣24×32=2256cm2.∴四边形ABCD的面积为2256cm2.故答案为:2256.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程。