软件工程-外文翻译
- 格式:doc
- 大小:69.00 KB
- 文档页数:10
软件工程-名词解释软件工程(Software Engineering)指的是应用工程原理、方法和工具来开发、维护和管理软件的学科和实践。
它涵盖了软件开发全生命周期的各个阶段,包括需求分析、设计、编码、测试、部署和维护等。
1. 需求分析(Requirements Analysis)需求分析是软件工程中的第一步,旨在确定用户和系统对软件的功能和性能需求。
通过与用户沟通和研究用户需求,需求分析师将需求转化为软件规范,明确软件需要实现的功能和目标。
2. 设计(Design)设计阶段是将需求规范转化为软件架构和设计方案的过程。
设计时需要考虑软件的模块化、可重用性、可维护性和性能等要求。
常用的设计方法有结构化设计、面向对象设计和组件化设计等。
3. 编码(Coding)编码是将设计好的软件模块具体实现的过程。
开发人员使用编程语言将设计文档中的算法和逻辑转化为可执行的代码。
编码期间需要遵循编码规范和标准,确保代码的可读性和可维护性。
4. 测试(Testing)测试是确保软件质量的重要环节。
在测试阶段,软件工程师使用各种测试方法和工具,检查软件是否满足预期的功能和性能需求,并发现和修复潜在的错误和缺陷。
5. 部署(Deployment)部署是将软件交付给用户并在实际环境中运行的过程。
在部署阶段,软件工程师需要进行安装、配置和集成等操作,确保软件在用户系统中的正确运行。
6. 维护(Maintenance)软件维护是对软件进行修改、优化和调试的过程。
维护工作包括纠正错误、增加新功能、改善性能以及适应新的硬件和操作系统等。
7. 迭代开发(Iterative Development)迭代开发是一种软件开发方法,通过将整个软件开发过程划分为多个迭代周期,每个周期都包含需求分析、设计、编码、测试和部署等阶段。
每个迭代周期都能够产生一个可运行的软件产品,同时还可以根据用户的反馈和需求变化进行调整和优化。
8. 敏捷开发(Agile Development)敏捷开发是一种以人员协作、迭代和快速响应变化为核心的软件开发方法。
外文文献资料1、Software EngineeringSoftware is the sequences of instructions in one or more programming languages that comprise a computer application to automate some business function. Engineering is the use of tools and techniques in problem solving. Putting the two words together, software engineering is the systemtic application of tools and techniques in the development of computer-based applications.The software engineering process describes the steps it takes to deelop the system. We begin a development project with the notion that there is a problem to be solved via automation. The process is how you get from problem recognition to a working solution. A quality process is desirable because it is more likely to lead to a quality product. The process followed by a project team during the development life cycle of an application should be orderly, goal-oriented, enjoyable, and a learning experience.Object-oriented methodology is an approach to system lifecycle development that takes a top-down view of data objects, their allowable actions, and the underlying communication requirement to define a system architecture. The data and action components are encapsulated, that is , they are combined together, to form abstract data types Encapsulation means that if I know what data I want ,I also know the allowable processes against that data. Data are designed as lattice hierarchies of relationships to ensure that top-down, hierarchic inheritance and side ways relationships are accommodated. Encapsulated objects are constrained only to communicate via messages. At a minimum, messages indicate the receiver and action requested. Messages may be more elaborate, including the sender and data to be acted upon.That we try to apply engineering discipline to software development does not mean that we have all the answers about how to build applications. On the contrary, we still build systems that are not useful and thus are not used. Part of the reason for continuing problems in application development, is that we are constantly trying to hita moving target. Both the technology and the type of applications needed by businesses are constantly changing and becoming more complex. Our ability to develop and disseminate knowledge about how to successfully build systems for new technologies and new application types seriously lags behind technological and business changes.Another reason for continuing problems in application development is that we aren’t always free to do what we like and it is hard to change habits and cultures from the old way of doing things, as well as get users to agree with a new sequence of events or an unfamiliar format for documentation.You might ask then, if many organizations don’t use good software engineering practices, why should I bother learning them? There are two good answers to this question. First, if you never know the right thing to do, you have no chance of ever using it. Second, organizations will frequently accept evolutionary, small steps of change instead of revolutionary, massive change. You can learn individual techniques that can be applied without complete devotion to one way of developing systems. In this way, software engineering can speed changee in their organizations by demonstrating how the tools and techniques enhance th quality of both the product and the process of building a system.2、Data Base System1、IntroductionThe development of corporate databases will be one of the most important data-processing activities for the rest of the 1970s. Date will be increasingly regarded as a vital corporate resource, which must be organized so as to maximize their value. In addition to the databases within an organization, a vast new demand is growing for database services, which will collect, organize, and sell data.The files of data which computers can use are growing at a staggering rate. The growth rate in the size of computer storage is greater than the growth in the size or power of any other component in the exploding data processing industry. The more data the computers have access to, the greater is their potential power. In all walks of life and in all areas of industry, data banks will change the areas of what it is possiblefor man to do. In the end of this century, historians will look back to the coming of computer data banks and their associated facilities as a step which changed the nature of the evolution of society, perhaps eventually having a greater effect on the human condition than even the invention of the printing press.Some most impressive corporate growth stories of the generation are largely attributable to the explosive growth in the need of information.The vast majority of this information is not yet computerized. However, the cost of data storage hardware is dropping more rapidly than other costs in data processing. It will become cheaper to store data on computer files than to store them on paper. Not only printed information will be stored. The computer industry is improving its capability to store line drawing, data in facsimile form, photo-graphs, human speech, etc. In fact, any form of information other than the most intimate communications between humans can be transmitted and stored digitally.There are two main technology developments likely to become available in the near future. First, there are electromagnetic devices that will hold much more data than disks but have much longer access time. Second, there are solid-state technologies that will give microsecond access time but capacities are smaller than disks.Disks themselves may be increased in capacity somewhat. For the longer term future there are a number of new technologies which are currently working in research labs which may replace disks and may provide very large microsecond-access-time devices. A steady stream of new storage devices is thus likely to reach the marketplace over the next 5 years, rapidly lowering the cost of storing data.Given the available technologies, it is likely that on-line data bases will use two or three levels of storage. One solid-state with microsecond access time, one electromagnetic with access time of a fraction of a second. If two ,three ,or four levels of storage are used, physical storage organization will become more complex ,probably with paging mechanisms to move data between the levels; solid-state storage offers the possibility of parallel search operation and associativememory.Both the quantity of data stored and the complexity of their organization are going up by leaps and bounds. The first trillion bit on-line stores are now in use . in a few year’s time ,stores of this size may be common.A particularly important consideration in data base design is to store the data so that the can be used for a wide variety of applications and so that the way they can be changed quickly and easily. On computer installation prior to the data base era it has been remarkably difficult to change the way data are used. Different programmers view the data in different ways and constantly want to modify them as new needs arise modification , however ,can set off a chain reaction of changes to existing programs and hence can be exceedingly expensive to accomplish .Consequently , data processing has tended to become frozen into its old data structures .To achieve flexibility of data usage that is essential in most commercial situations . Two aspects of data base design are important. First, it should be possible to interrogate and search the data base without the lengthy operation of writing programs in conventional programming languages. Second ,the data should be independent of the programs which use them so that they can be added to or restructured without the programs being changed .The work of designing a data base is becoming increasing difficult , especially if it is to perform in an optimal fashion . There are many different ways in which data can be structured ,and they have different types of data need to be organized in different ways. Different data have different characteristics , which ought to effect the data organization ,and different users have fundamentally different requirements. So we need a kind of data base management system(DBMS)to manage data.Data base design using the entity-relationship model begins with a list of the entity types involved and the relationships among them. The philosophy of assuming that the designer knows what the entity types are at the outset is significantly different from the philosophy behind the normalization-based approach.The entity-relationship(E-R)approach uses entity-relationship diagrams. The E-Rapproach requires several steps to produre a structure that is acceptable by the particular DBMS. These steps are:(1) Data analysis(2) Producing and optimizing the entity model.(3) Logical schema development(4) Physical data base design process.Developing a data base structure from user requirements is called data bases design. Most practitioners agree that there are two separate phases to the data base design process. The design of a logical database structure that is processable by the data base management system(DBMS)d escribes the user’s view of data, and is the selection of a physical structure such as the indexed sequential or direct access method of the intended DBMS.Current data base design technology shows many residual effects of its outgrowth from single-record file design methods. File design is primarily application program dependent since the data has been defined and structured in terms of individual applications to use them. The advent of DBMS revised the emphasis in data and program design approaches.There are many interlocking questions in the design of data-base systems and many types of technique that one can use is answer to the question so many; in fact, that one often sees valuable approaches being overlooked in the design and vital questions not being asked.There will soon be new storage devices, new software techniques, and new types of data bases. The details will change, but most of the principles will remain. Therefore, the reader should concentrate on the principles.2、Data base systemThe conception used for describing files and data bases has varied substantially in the same organization.A data base may be defined as a collection of interrelated data stored together with as little redundancy as possible to serve on or more applications in an optimal fashion; the data are stored so that they are independent of programs which use thedata; a common and controlled approach is used in adding new data and in modifying and retrieving existing data within the data base. One system is said to contain a collection of data bases if they are entirely separate in structure.A data base may be designed for batch processing, real-time processing, or in-line processing. A data base system involve application program, DBMS, and data base.One of the most important characteristics of most data bases is that they will constantly need to change and grow. Easy restructuring of the data base must be possible as new data types and new applications are added. The restructuring should be possible without having to rewrite the application program and in general should cause as little upheaval as possible. The ease with which a data base can be changed will have a major effect on the rate at which data-processing application can be developed in a corporation.The term data independence is often quoted as being one of the main attributes of a data base. It implies that the data and the application programs which use them are independent so that either may be changed without changing the other. When a single set of data items serves a variety of applications, different application programs perceive different relationships between the data items. To a large extent, data-base organization is concerned with the representation of relationship between data items and records as well as how and where the data are stored. A data base used for many applications can have multiple interconnections between the data item about which we may wish to record. It can describes the real world. The data item represents an attribute, and the attribute must be associated with the relevant entity. We design values to the attributes, one attribute has a special significance in that it identifies the entity.An attribute or set of attribute which the computer uses to identify a record or tuple is referred to as a key. The primary key is defined as that key used to uniquely identify one record or tuple. The primary key is of great importance because it is used by the computer in locating the record or tuple by means of an index or addressing algorithm.If the function of a data base were merely to store data, its organization would be simple. Most of the complexities arise from the fact that is must also show the relationships between the various items of data that are stored. It is different to describe the data in logical or physical.The logical data base description is referred to as a schema .A schema is a chart of the types of data that one used. It gives the names of the entities and attributes, and specifics the relations between them. It is a framework into which the values of the data-items can be fitted.We must distinguish between a record type and a instance of the record. When we talk about a “personnel record”,this is really a record type.There are no data values associated with it.The term schema is used to mean an overall chart of all of the dataitem types and record types stored in a data he uses. Many different subschema can be derived from one schema.The schema and the subschema are both used by the data-base management system, the primary function of which is to serve the application programs by executing their data operations.A DBMS will usually be handing multiple data calls concurrently. It must organize its system buffers so that different data operations can be in process together. It provides a data definition language to specify the conceptual schema and most likely, some of the details regarding the implementation of the conceptual schema by the physical schema. The data definition language is a high-level language, enabling one to describe the conceptual schema in terms of a “data model” .The choice of a data model is a difficult one, since it must be rich enough in structure to describe significant aspects of the real world, yet it must be possible to determine fairly automatically an efficient implementation of the conceptual schema by a physical schema. It should be emphasized that while a DBMS might be used to build small data bases, many data bases involve millions of bytes, and an inefficient implementation can be disastrous.We will discuss the data model in the following.3、Three Data ModelsLogical schemas are defined as data models with the underlying structure of particular database management systems superimposed on them. At the present time, there are three main underlying structures for database management systems. These are :RelationalHierarchicalNetworkThe hierarchical and network structures have been used for DBMS since the 1960s. The relational structure was introduced in the early 1970s.In the relational model, the entities and their relationships are represented by two-dimensional tables. Every table represents an entity and is made up of rows and columns. Relationships between entities are represented by common columns containing identical values from a domain or range of possible values.The last user is presented with a simple data model. His and her request are formulated in terms of the information content and do not reflect any complexities due to system-oriented aspects. A relational data model is what the user sees, but it is not necessarily what will be implemented physically.The relational data model removes the details of storage structure and access strategy from the user interface. The model provides a relatively higher degree of data. To be able to make use of this property of the relational data model however, the design of the relations must be complete and accurate.Although some DBMS based on the relational data model are commercially available today, it is difficult to provide a complete set of operational capabilities with required efficiency on a large scale. It appears today that technological improvements in providing faster and more reliable hardware may answer the question positively.The hierarchical data model is based on a tree-like structure made up of nodes and branches. A node is a collection of data attributes describing the entity at that point.The highest node of the hierarchical tree structure is called a root. The nodes at succeeding lower levels are called children .A hierarchical data model always starts with a root node. Every node consists of one or more attributes describing the entity at that node. Dependent nodes can follow the succeeding levels. The node in the preceding level becomes the parent node of the new dependent nodes. A parent node can have one child node as a dependent or many children nodes. The major advantage of the hierarchical data model is the existence of proven database management systems that use the hierarchical data model as the basic structure. There is a reduction of data dependency but any child node is accessible only through its parent node, the many-to –many relationship can be implemented only in a clumsy way. This often results in a redundancy in stored data.The network data model interconnects the entities of an enterprise into a network. In the network data model a data base consists of a number of areas. An area contains records. In turn, a record may consist of fields. A set which is a grouping of records, may reside in an area or span a number of areas. A set type is based on the owner record type and the member record type. The many-to many relation-ship, which occurs quite frequently in real life can be implemented easily. The network data model is very complex, the application programmer must be familiar with the logical structure of the data base.4、Logical Design and Physical DesignLogical design of databases is mainly concerned with superimposing the constructs of the data base management system on the logical data model. There are three mainly models: hierarchical, relational, network we have mentioned above.The physical model is a framework of the database to be stored on physical devices. The model must be constructed with every regard given to the performance of the resulting database. One should carry out an analysis of the physical model with average frequencies of occurrences of the grou pings of the data elements, with expected space estimates, and with respect to time estimates for retrieving and maintaining the data.The database designer may find it necessary to have multiple entry points into a database, or to access a particular segment type with more than one key. To provide this type of access; it may be necessary to invert the segment on the keys. Thephysical designer must have expertise in knowledge of the DBMS functions and understanding of the characteristics of direct access devices and knowledge of the applications.Many data bases have links between one record and another, called pointers. A pointer is a field in one record which indicates where a second record is located on the storage devices.Records that exist on storage devices is a given physical sequence. This sequencing may be employed for some purpose. The most common pupose is that records are needed in a given sequence by certain data-processing operations and so they are stored in that sequences.Different applications may need records in different sequences.The most common method of ordering records is to have them in sequence by a key —that key which is most commonly used for addressing them. An index is required to find any record without a lengthy search of the file.If the data records are laid out sequentially by key, the index for that key can be much smaller than they are nonsequential.Hashing has been used for addressing random-access storages since they first came into existence in the mid-1950s. But nobody had the temerity to use the word hashing until 1968.Many systems analysis has avoided the use of hashing in the suspicion that it is complicated. In fact, it is simple to use and has two important advantages over indexing. First, it finds most records with only one seek and second, insertion and deletions can be handled without added complexity. Indexing, however, can be used with a file which is sequential by prime key and this is an overriding advantage, for some batch-pro-cessing applications.Many data-base systems use chains to interconnect records also. A chain refers to a group of records scatters within the files and interconnected by a sequence of pointers. The software that is used to retrive the chained records will make them appear to the application programmer as a contiguous logical file.The primary disadvantage of chained records is that many read operations areneeded in order to follow lengthy chains. Sometimes this does not matter because the records have to be read anyway. In most search operations, however, the chains have to be followed through records which would not otherwise to read. In some file organizations the chains can be contained within blocked physical records so that excessive reads do not occur.Rings have been used in many file organizations. They are used to eliminate redundancy. When a ring or a chain is entered at a point some distance from its head, it may be desirable to obtain the information at the head quickly without stepping through all the intervening links.5、Data Description LanguagesIt is necessary for both the programmers and the data administrator to be able to describe their data precisely; they do so by means of data description languages. A data description language is the means of declaring to data-base management system what data structures will be used.A data description languages giving a logical data description should perform the folloeing functions:It should give a unique name to each data-item type, file type, data base and other data subdivision.It should identify the types of data subdivision such as data item segment , record and base file.It may define the type of encoding the program uses in the data items (binary , character ,bit string , etc.)It may define the length of the data items and the range of the values that a data item can assume .It may specify the sequence of records in a file or the sequence of groups of record in the data base .It may specify means of checking for errors in the data .It may specify privacy locks for preventing unauthorized reading or modification of the data .These may operate at the data-item ,segment ,record, file or data-base level and if necessary may be extended to the contents(value) of individual data items .The authorization may , on the other hand, be separate defined .It is more subject to change than the data structures, and changes in authorization proceduresshould not force changes in application programs.A logical data description should not specify addressing ,indexing ,or searching techniques or specify the placement of data on the storage units ,because these topics are in the domain of physical ,not logical organization .It may give an indication of how the data will be used or of searching requirement .So that the physical technique can be selected optimally but such indications should not be logically limiting.Most DBMS have their own languages for defining the schemas that are used . In most cases these data description languages are different to other programmer language, because other programmer do not have the capability to define to variety of relationship that may exit in the schemas.附录 B 外文译文1、软件工程软件是指令的序列,该指令序列由一种或者多种程序语言编写,它能使计算机应用于某些事物的运用自动化。
软件工程毕业论文文献翻译中英文对照学生毕业设计(论文)外文译文学生姓名: 学号专业名称:软件工程译文标题(中英文):Qt Creator白皮书(Qt Creator Whitepaper)译文出处:Qt network 指导教师审阅签名: 外文译文正文:Qt Creator白皮书Qt Creator是一个完整的集成开发环境(IDE),用于创建Qt应用程序框架的应用。
Qt是专为应用程序和用户界面,一次开发和部署跨多个桌面和移动操作系统。
本文提供了一个推出的Qt Creator和提供Qt开发人员在应用开发生命周期的特点。
Qt Creator的简介Qt Creator的主要优点之一是它允许一个开发团队共享一个项目不同的开发平台(微软Windows?的Mac OS X?和Linux?)共同为开发和调试工具。
Qt Creator的主要目标是满足Qt开发人员正在寻找简单,易用性,生产力,可扩展性和开放的发展需要,而旨在降低进入新来乍到Qt的屏障。
Qt Creator 的主要功能,让开发商完成以下任务: , 快速,轻松地开始使用Qt应用开发项目向导,快速访问最近的项目和会议。
, 设计Qt物件为基础的应用与集成的编辑器的用户界面,Qt Designer中。
, 开发与应用的先进的C + +代码编辑器,提供新的强大的功能完成的代码片段,重构代码,查看文件的轮廓(即,象征着一个文件层次)。
, 建立,运行和部署Qt项目,目标多个桌面和移动平台,如微软Windows,Mac OS X中,Linux的,诺基亚的MeeGo,和Maemo。
, GNU和CDB使用Qt类结构的认识,增加了图形用户界面的调试器的调试。
, 使用代码分析工具,以检查你的应用程序中的内存管理问题。
, 应用程序部署到移动设备的MeeGo,为Symbian和Maemo设备创建应用程序安装包,可以在Ovi商店和其他渠道发布的。
, 轻松地访问信息集成的上下文敏感的Qt帮助系统。
软件工程常用英文词汇缩写汇总A-GABM Activity Based Management 基于活动的管理ACWP Actual Cost of Work Performed 已完成工作实际成本ADM Arrow Diagram Method 箭线图方法ADP Automated Data Processing 自动化数据处理ADR Alternative Dispute Resolution 替代争议解决方案AF Actual Finish Date 实际完成日期AFE Application for Expenditure 支出申请AFE Authority for Expenditure 开支权ALAP As-Late-As-Possible 尽可能晚AMR Advanced Material Release 材料提前发布AOA Activity on Arc 弧线表示活动双代号网络AOA Activity on Arrow 箭线表示活动双代号网络AON Activity on Node 节点表示活动单代号网络AOQ Average Outgoing Quality 平均出厂质量AOQL Average Outgoing Quality Limit 平均出厂质量限度APMA Area of Project Management Application 项目管理的应用领域APR Acquisition Plan Review 采购计划评审AQL Acceptable Quality Level 可接受质量水平AS Actual Start Date 实际开始日期ASAP As-Soon-As-Possible 尽快ATP Acceptance Test Procedure 验收测试过程AUW Authorized Unpriced Work 批准的未定价工作BAC Budget at Completion 完工预算BAC Baseline at Completion 完成/完工基线BATNA Best Alternative to Negotiated Agreement 协议外最佳方案BCM Business Change Manager 商业变更经理BCWP Budgeted Cost of Work Performed 已完工作预算成本BCWS Budgeted Cost of Work Scheduled 计划工作的预算成本BEC Elapsed Cost 计划工作的预算成本BOOT Build, Own, Operate, Transfer 建造拥有经营转让BPA Blanket Purchase Agreement 一揽子采购协议BSA Balanced Scorecard Approach 平衡记分卡方法C/SCSC Cost/Schedule Control System Criteria 成本控制系统标准C/SSR Cost/Schedule Status Report 成本/进度状态报告CA Control Account 控制帐目CAD Computer Aided Drafting/Design 计算机辅助制图/设计CAM Cost Account Manager 成本帐目经理CAM Computer Aided Manufacturing 计算机辅助制造CAM Control Account Manager 控制帐目经理CAP Cost Account Plan 成本帐目计划CAP Control Account Plan 控制帐目计划CAR Capital Appropriation Request 资本划拨请求CBD Component-Based Development 基于构件的开发CBS Cost Breakdown Structure 成本分解结构CCB Change Control Board 变更管理委员会CCDR Contractor Cost Data Report 承包商成本数据报告CDR Critical Design Review 关键设计评审CI Configuration Item 配置项CM Configuration Management/Construction Management 配置管理/施工管理CPFFC Cost Plus Fixed Fee Contract 成本加固定费用合同CPI Cost Performance Index 成本绩效指数CPI Cost Performance Indicator 成本绩效指数CPIFC Cost Plus Incentive Fee Contract 成本加奖励费用合同CPM Critical Path Method 关键路径法CPN Critical Path Network 关键路径网络图CPPC Cost Plus Percentage of Cost Contract 成本加成本百分比合同CPR Cost Performance Ratio 成本绩效比率CPR Cost Performance Report 成本绩效报告CPU Central Processing Unit 中央处理单元CR Change Request 变更请求CSCI Computer Software Configuration Item 计算机软件配置CSF Critical Success Factors 关键的成功因素CTC Contract Target Cost 合同目标成本CTP Contract Target Price 合同目标价格CTR Cost-Time Resource Sheet 成本时间资源表CV Cost Variance 成本偏差CWBS Contract Work Breakdown Structure 合同工作分解结构DBA Database Administrator 数据库管理员DBM Dynamic Baseline Model 动态基线模型DBMS Database Management System 数据库管理系统DCE Distributed Computing Environment 分布式计算环境DCF Discounted Cash Flow 折现现金流DD Data Date 数据日期DID Data Item Description 工作项描述DRD documentation Requirements Description 文档要求说明DU Duration 工期持续时间EAC Estimated Actual at Completion 实际完工估算ECC Estimated Cost to Complete 尚未完成的成本估算ECP Engineering Change Proposal 工程变更建议书EF Early Finish Date 最早完成日期EFC Estimated Final Cost 估算的最终成本EMR Expenditure Management Report 支出管理报告EPS Enterprise Project Structure 企业项目结构ERP Enterprise Resource Planning 企业资源规划ERPS Enterprise Resource Planning Systems 企业资源规划系统ES Early Start Date 最早开始日期ESAR Extended Subsequent Applications Review 扩展后续应用评审ETC Estimate To Complete 尚未完成/完工的估算EV Expected value 期望值EVMS Earned value Management System 挣值管理系统FAC Forecast At Completion 完工预测FF Free Float 自由浮动时间FFP Firm Fixed Price Contract 严格固定价格合同FIFO First In, First Out 先进先出FM Functional Manager 职能经理FP Fixed Price Contract 固定价格合同FPPIF Fixed Price Plus Incentive Fee Contract 固定价格加激励酬FTC Forecast to Completion 完工尚需预测FTP File Transfer Protocol 文件传输协议G&A General and Administrative Costs 综合行政管理成本G&A General and Administrative 综合行政管理费GAAP Generally Accepted Accounting Principles 公认会计原则GERT Graphical Evaluation and Review Technique 图形评审技术GUI Graphical User Interface 图形用户界面H-NHQ Headquarters 总部HRM Human Resources Management 人力资源管理HTML Hyper Text Markup Language 超文本标记语言HTTP Hyper Text Transport Protocol 超文本传输协议IAW In Accordance With 依照IBR Integrated Baseline Review 集成基线的评审IDC Interest-During-Construction 项目建造期间利息IFB Invitation for Bid 投标邀请函IFB Intention for Bid 投标意向书ILS Integrated Logistics Support 集成物流支持IP Internet Protocol 国际互联网协议IPDT Integrated Product Development Team 集成产品开发团队IRR Internal Rate of Return 内部收益率ISP Internet Service Provider 互联网服务提供商IT Information Technology 信息技术JIT Just In Time 适时存货管理准时制造/库存管理KPI Key Performance Indicators 关键绩效指标KSI Key Success Indicators 关键成功指标LAN Local Area Network 局域网LCC Life Cycle Cost 生命期成本LF Late Finish 最晚完成时间LFD Late Finish Date 最晚完成日期LIFO Last In, First Out 后进先出法LML Lowest Management Level 最低管理级别LOA Limits of Authority 授权范围LOB Line of Balance 平衡线LOE Level of Effort 投入水平LQ Limiting Quality 质量限制LS Late Start 最晚开始时间LSB Lowest Static Baseline 最低静态基线LSD Late Start Date 最晚开始日期MBM Management by Methods 方法管理MBO Management by Objectives 目标管理MBP Management by Politics 政策管理MBR Management by Rules 规则管理MBV Management by Values 价值管理MBWA Management by Walking Around 走动管理MIME Multipurpose Internet Mail Extension 多用Inter net 邮件扩充协议MIS Management Information System 管理信息系统MOA Memorandum of Agreement 协议备忘录MOBP Managing Organizations by Projects 按项目管理组织MOF Published Model 已发布的模型MOU Memorandum of Understanding 谅解备忘录MPM Modern Project Management 现代项目管理MR Management Reserve 管理储备MRP Material Requirements Planning 材料需求计划编制MSA Mid-Stage Assessment 中期评估MTBF Mean Time Between Failures 平均故障间隔时间N/A Not Applicable 不适用NIH Not Invented Here 禁止意见发表NPV Net Present value 净现值NTE Not to Exceed 不得超过后面的两段O-ZO&M Operations and Maintenance 运营和维护OBS Organizational Breakdown Structure 组织分解结构ODC Other Direct Costs 其它直接成本OJT On-the-job Training 在职培训OTB Over Target Baseline 超目标基线计划PAR Problem Analysis Report 问题分析报告PAT Project Assurance Team 项目保证团队PBR Program Benefits Review 项目群收益评审PBS Product Breakdown Structure 产品分解结构PC Percent Complete 完成比PCA Physical Configuration Audit 物理配置审核PDLC Project Development Life Cycle 项目开发生命周期PDM Precedence Diagram Method 前导图法优先图法PDS Program Definition Statement 项目群定义说明书PERT Program Evaluation and Review Technique 计划评审技术PF Planned Finish Date 计划完成日期PGP Pretty Good Privacy 优秀密钥PLS Project Life Span 项目生命跨度PM Project Manager 项目经理PM Project Management 项目管理PMB Performance Measurement Baseline 绩效测量基线PMBOK Project Management Body of Knowledge 项目管理知识体系PMIS Project Management Information System 项目管理信息系统PMO Project Management Office 项目管理办公室PMP Project Management Professional 项目管理专业人员PMS Portfolio Management System 项目组合管理系统PMT Performance Measurement Techniques 绩效测量技术PMT Performance Measurement Techniques 绩效测量技术POC Point of Contact 联络点PPL Project Products List 项目产品列表PRD Product Requirements document 产品需求说明书PRT Product Realization Team 产品实现团队PS Planned Start Date 计划开始日期PSA Professional Services Agreement 专业服务协议PSO Program Support Office 项目群支持办公室PSP Professional Services Provider 专业服务提供者PV Price Variance 价格偏差PVWA Planned value for Work Accomplished 已完成工作的计划价值PVWS Planned value for Work Scheduled 计划工作的计划价值QA Quality Assurance 质量保证QAR Quality Assurance Representative 质量保证代表QC Quality Control 质量控制QPL Qualified Product List 合格产品清单RAM Responsibility Assignment Matrix 责任分配矩阵RAM Responsibility/Accountability Matrix 责任矩阵RAMP Risk Analysis and Management for Projects 项目的风险分析和管理RBS Resource Breakdown Structure 资源分解结构RF Remaining Float 剩余浮动时间RFA Request for Appropriation 经费申请RFC Request for Change 变更申请RFP Request for Proposal 建议书邀请函RFQ Request for Quotation 报价邀请函RMB Risk Management Budget 风险管理预算ROI Return on Investment 投资回报ROM Rough Order of Magnitude Estimate 粗数量级估计RPWM Ranked Positional Weight Method 重要位置排序法SAR Subsequent Application Review 跟踪应用评审SC Scheduled Cost 计划成本SCR System Concept Review 系统概念评审SDL Software Development Library 软件开发库SDR System Design Review 系统设计评审SDWT Self Directed Work Teams 自我指导工作团队SF Level Finish/Schedule 经平衡的结束时间/进度表SF Scheduled Finish 计划完成点SF Scheduled Finish Date 计划完成日期SF Secondary Float 次要浮动时间SLVAR Summary Level Variance Analysis Reporting 差异分析报告汇总SOW Statement of Work 工作说明书SPI Schedule Performance Index 进度绩效指数SPR Scheduled Performance Ratio 进度绩效比SRR System Requirements Review 系统需求评审SS Scheduled Start 计划开始点SSD Scheduled Start Date 计划开始日期SV Schedule Variance 进度偏差SWAG Scientific Wild Anatomical Guess 科学粗略剖析性猜测T&E Test and Evaluation 测试和评估T&M Time and Material Contract 时间和材料合同TAB Total Allocated Budget 全部分配预算TAE Total Anticipated Expenditures 全部预测支出TBA To Be Advised 有待完善TBD To Be Determined 有待确定TC Target Completion Date 目标完成日期TCCC Transfer of Care, Custody and Control 权责移交TCPI To Complete Performance Index 待完成绩效指数TF Total Float 总浮动时间TOC Theory of Constraints 约束理论ToR Terms of Reference 职责范围TQM Total Quality Management 全面质量管理TRR Test Readiness Review 测试准备情况评审UB Undistributed Budget 未分配预算UI User Interface 用户界面UML Unified Modeling Language 统一建模语言UP Unit Price Contract 单价合同URL Uniform Resource Locator 统一资源定位符VAC Variance at Completio 完成时的偏差VE Value Engineering 价值工程VM Value Management 价值管理WBS Work Breakdown Structure 工作分解结构WP Work Package 工作包WYSIWYG What You See Is What You Get 所见即所得。
PC personal computer 个人计算机⏹IBM International Business Machine 美国国际商用机器公司的公司简称,是最早推出的个人计算机品牌。
⏹Intel 美国英特尔公司,以生产CPU芯片著称。
⏹Pentium Intel公司生产的586 CPU芯片,中文译名为“奔腾”。
⏹Address地址⏹Agents代理⏹Analog signals模拟信号⏹Applets程序⏹Asynchronous communications port异步通信端口⏹Attachment附件⏹Access time存取时间⏹access存取⏹accuracy准确性⏹ad network cookies广告网络信息记录软件⏹Add-ons 插件⏹Active-matrix主动矩阵⏹Adapter cards适配卡⏹Advanced application高级应用⏹Analytical graph分析图表⏹Analyze分析⏹Animations动画⏹Application software 应用软件⏹Arithmetic operations算术运算⏹Audio-output device音频输出设备⏹Basic application基础程序⏹Binary coding schemes二进制译码方案⏹Binary system二进制系统⏹Bit比特⏹Browser浏览器⏹Bus line总线⏹Backup tape cartridge units备份磁带盒单元⏹Business-to-consumer企业对消费者⏹Bar code条形码⏹Bar code reader条形码读卡器⏹Bus总线⏹Bandwidth带宽⏹Bluetooth蓝牙⏹Broadband宽带⏹Business-to-business企业对企业电子商务⏹cookies-cutter programs信息记录截取程序⏹cookies信息记录程序⏹cracker解密高手⏹cumulative trauma disorder积累性损伤错乱⏹Cybercash电子现金⏹Cyberspace计算机空间⏹cynic愤世嫉俗者⏹Cables连线⏹Cell单元箱⏹Chain printer链式打印机⏹Character and recognition device字符标识识别设备⏹Chart图表⏹Chassis支架⏹Chip芯片⏹Clarity清晰度⏹Closed architecture封闭式体系结构⏹Column列⏹Combination key结合键⏹computer competency计算机能力⏹connectivity连接,结点⏹Continuous-speech recognition system连续语言识别系统⏹Channel信道⏹Chat group谈话群组⏹chlorofluorocarbons(CFCs) ]氯氟甲烷⏹Client客户端⏹Coaxial cable同轴电缆⏹cold site冷网站⏹Commerce servers商业服务器⏹Communication channel信道⏹Communication systems信息系统⏹Compact disc rewritable⏹Compact disc光盘⏹computer abuse amendments act of 19941994计算机滥用法案⏹computer crime计算机犯罪⏹computer ethics计算机道德⏹computer fraud and abuse act of 1986计算机欺诈和滥用法案⏹computer matching and privacy protection actof 1988计算机查找和隐私保护法案⏹Computer network计算机网络⏹computer support specialist计算机支持专家⏹computer technician计算机技术人员⏹computer trainer计算机教师⏹Connection device连接设备⏹Connectivity连接⏹Consumer-to-consumer个人对个人⏹Control unit操纵单元⏹Cordless or wireless mouse无线鼠标⏹Cable modems有线调制解调器⏹carpal tunnel syndrome腕骨神经综合症⏹CD-ROM可记录光盘⏹CD-RW可重写光盘⏹CD-R可记录压缩光盘⏹Disk磁碟⏹Distributed data processing system分部数据处理系统⏹Distributed processing分布处理⏹Domain code域代码⏹Downloading下载⏹DVD 数字化通用磁盘⏹DVD-R 可写DVD⏹DVD-RAM DVD随机存取器⏹DVD-ROM 只读DVD⏹Database数据库⏹database files数据库文件⏹Database manager数据库管理⏹Data bus数据总线⏹Data projector数码放映机⏹Desktop system unit台式电脑系统单元⏹Destination file目标文件⏹Dumb terminal非智能终端⏹data security数据安全⏹Data transmission specifications数据传输说明⏹database administrator数据库管理员⏹Dataplay数字播放器⏹Demodulation解调⏹denial of service attack拒绝服务攻击⏹Dial-up service拨号服务⏹Digital cash数字现金⏹Digital signals数字信号⏹Digital subscriber line数字用户线路⏹Digital versatile disc数字化通用磁盘⏹Digital video disc数字化视频光盘⏹Direct access直接存取⏹Directory search目录搜索⏹disaster recovery plan灾难恢复计划⏹Disk caching磁盘驱动器高速缓存⏹Diskette磁盘⏹Digital cameras数码照相机⏹Digital notebooks数字笔记本⏹Digital bideo camera数码摄影机⏹Discrete-speech recognition system不连续语言识别系统⏹Document文档⏹document files文档文件⏹Dot-matrix printer点矩阵式打印机⏹Dual-scan monitor双向扫描显示器⏹environment环境⏹Erasable optical disks可擦除式光盘⏹ergonomics人类工程学⏹ethics道德规范⏹External modem外置调制解调器⏹extranet企业外部网⏹e-book电子阅读器⏹Expansion cards扩展卡⏹electronic commerce电子商务⏹electronic communications privacy act of1986电子通信隐私法案⏹encrypting加密术⏹energy star能源之星⏹Enterprise computing企业计算化⏹end user终端用户⏹e-cash电子现金⏹e-commerce电子商务⏹electronic cash电子现金⏹Floppy-disk cartridge磁盘盒⏹Formatting格式化⏹freedom of information act of 1970信息自由法案⏹frequency频率⏹frustrated受挫折⏹Full-duplex communication全双通通信⏹Fax machine传真机⏹Field域⏹Find搜索⏹FireWire port火线端口⏹Firmware固件⏹Flash RAM闪存⏹Flatbed scanner台式扫描器⏹Flat-panel monitor纯平显示器⏹floppy disk软盘⏹filter过滤⏹firewall防火墙⏹firewall防火墙⏹Fixed disk固定硬盘⏹Flash memory闪存⏹Flexible disk可折叠磁盘⏹Floppies磁盘⏹Formatting toolbar格式化工具条⏹Formula公式⏹Function函数⏹fair credit reporting act of 1970公平信用报告法案⏹Fiber-optic cable光纤电缆⏹File compression文件压缩⏹File decompression文件解压缩⏹green pc绿色个人计算机⏹Grop by 排序⏹General-purpose application通用运用程序⏹Gigahertz千兆赫⏹Graphic tablet绘图板⏹Hard-disk pack硬盘组⏹Head crash磁头碰撞⏹header标题⏹help desk specialist帮助办公专家⏹helper applications帮助软件⏹Hierarchical network层次型网络⏹history file历史文件⏹handheld computer手提电脑⏹Hard copy硬拷贝⏹hard disk硬盘⏹hardware硬件⏹Help帮助⏹hits匹配记录⏹horizontal portal横向用户⏹hot site热网站⏹Hybrid network混合网络⏹Host computer主机⏹Home page主页⏹Hyperlink超链接⏹hacker黑客⏹Half-duplex communication半双通通信⏹Hard-disk cartridge硬盘盒⏹information pushers信息推送器⏹initializing 初始化⏹instant messaging计时信息⏹internal hard disk内置硬盘⏹Internet hard drive 网络硬盘驱动器⏹intranet企业内部网⏹Image capturing device图像获取设备⏹information technology信息技术⏹Ink-jet printer墨水喷射印刷机⏹Integrated package综合性组件⏹Intelligent terminal智能终端设备⏹Intergrated circuit集成电路⏹Interface cards接口卡⏹illusion of anonymity匿名幻想⏹index search索引搜索⏹Internal modem内部调制解调器⏹internet telephony网络电话⏹internet terminal互联网终端⏹Identification识别⏹drive网络硬盘驱动器⏹joystick操纵杆⏹keyword search关键字搜索⏹laser printer激光打印机⏹Layout files版式文件⏹Light pen光笔⏹Locate定位⏹lurking潜伏⏹Logical operations逻辑运算⏹Lands凸面⏹Line of sight communication视影通信⏹Low bandwidth低带宽计算机英语名词解释⏹ADIMM(Advanced Dual In-line Memory Modules,高级双重内嵌式内存模块)⏹AMR(Audio/Modem Riser,音效/调制解调器主机板附加直立插卡)⏹AHA(Accelerated Hub Architecture,加速中心架构)⏹ASK IR(Amplitude Shift Keyed Infra-Red,长波形可移动输入红外线)⏹ATX(AT Extend,扩展型AT)⏹BIOS(Basic Input/Output System,基本输入/输出系统)⏹CSE(Configuration Space Enable,可分配空间)⏹DB(Device Bay,设备插架)⏹DMI(Desktop Management Interface,桌面管理接口)⏹EB(Expansion Bus,扩展总线)⏹EISA(Enhanced Industry Standard Architecture,增强形工业标准架构)⏹EMI(Electromagnetic Interference,电磁干扰)⏹ESCD(Extended System Configuration Data,可扩展系统配置数据)⏹FBC(Frame Buffer Cache,帧缓冲缓存)⏹FireWire(火线,即IEEE1394标准)⏹FSB(Front Side Bus,前置总线,即外部总线)⏹FWH(Firmware Hub,固件中心)⏹GMCH(Graphics & Memory Controller Hub,图形和内存控制中心)⏹GPIs(General Purpose Inputs,普通操作输入)⏹ICH(Input/Output Controller Hub,输入/输出控制中心)⏹IR(Infrared Ray,红外线)⏹IrDA(Infrared Ray,红外线通信接口可进行局域网存取和文件共享)⏹ISA(Industry Standard Architecture,工业标准架构)⏹ISA(Instruction Set Architecture,工业设置架构)⏹MDC(Mobile Daughter Card,移动式子卡)⏹MRH-R(Memory Repeater Hub,内存数据处理中心)⏹MRH-S(SDRAM Repeater Hub,SDRAM数据处理中心)⏹MTH(Memory Transfer Hub,内存转换中心)⏹NGIO(Next Generation Input/Output,新一代输入/输出标准)⏹P64H(64-bit PCI Controller Hub,64位PCI控制中心)⏹PCB(Printed Circuit Board,印刷电路板)⏹PCBA(Printed Circuit Board Assembly,印刷电路板装配)⏹PCI(Peripheral Component Interconnect,互连外围设备)⏹PCI SIG(Peripheral Component Interconnect Special Interest Group,互连外围设备专业组)⏹POST(Power On Self Test,加电自测试)⏹RNG(Random number Generator,随机数字发生器)⏹RTC(Real Time Clock,实时时钟)⏹KBC(KeyBroad Control,键盘控制器)⏹SAP(Sideband Address Port,边带寻址端口)⏹SBA(Side Band Addressing,边带寻址)⏹SMA(Share Memory Architecture,共享内存结构)⏹STD(Suspend To Disk,磁盘唤醒)⏹STR(Suspend To RAM,内存唤醒)⏹SVR(Switching V oltage Regulator,交换式电压调节)⏹USB(Universal Serial Bus,通用串行总线)⏹USDM(Unified System Diagnostic Manager,统一系统监测管理器)⏹VID(Voltage Identification Definition,电压识别认证)⏹VRM (V oltage Regulator Module,电压调整模块)⏹ZIF(Zero Insertion Force ,零插力)⏹主板技术⏹ACOPS(Automatic CPU OverHeat Prevention System,CPU过热预防系统)⏹SIV(System Information Viewer,系统信息观察)⏹ESDJ(Easy Setting Dual Jumper,简化CPU双重跳线法)⏹UPT(USB、PANEL、LINK、TV-OUT四重接口)⏹芯片组⏹ACPI(Advanced Configuration and Power Interface,先进设置和电源管理)⏹AGP(Accelerated Graphics Port,图形加速接口)⏹I/O(Input/Output,输入/输出)⏹MIOC(Memory and I/O Bridge Controller,内存和I/O桥控制器)⏹NBC(North Bridge Chip,北桥芯片)⏹PIIX(PCI ISA/IDE Accelerator,加速器)⏹PSE36(Page Size Extension 36-bit,36位页面尺寸扩展模式)⏹PXB(PCI Expander Bridge,PCI增强桥)⏹RCG(RAS/CAS Generator,RAS/CAS发生器)⏹SBC(South Bridge Chip,南桥芯片)⏹SMB(System Management Bus,全系统管理总线)⏹SPD(Serial Presence Detect,内存内部序号检测装置)⏹SSB(Super South Bridge,超级南桥芯片)⏹TDP(Triton Data Path,数据路径)⏹TSC(Triton System Controller,系统控制器)⏹QPA(Quad Port Acceleration,四接口加速)⏹ASIC(Application Specific Integrated Circuit,特殊应用积体电路)⏹ASC(Auto-Sizing and Centering,自动调效屏幕尺寸和中心位置)⏹ASC(Anti Static Coatings,防静电涂层)⏹AGAS(Anti Glare Anti Static Coatings,防强光、防静电涂层)⏹BLA(Bearn Landing Area,电子束落区)⏹BMC(Black Matrix Screen,超黑矩阵屏幕)⏹CRC(Cyclical Redundancy Check,循环冗余检查)⏹CRT(Cathode Ray Tube,阴极射线管)⏹DDC(Display Data Channel,显示数据通道)⏹DEC(Direct Etching Coatings,表面蚀刻涂层)⏹DFL(Dynamic Focus Lens,动态聚焦)⏹DFS(Digital Flex Scan,数字伸缩扫描)⏹DIC(Digital Image Control,数字图像控制)⏹Digital Multiscan II(数字式智能多频追踪)⏹DLP(Digital Light Processing,数字光处理)⏹DOSD(Digital On Screen Display,同屏数字化显示)⏹DPMS(Display Power Management Signalling,显示能源管理信号)⏹Dot Pitch(点距)⏹DQL(Dynamic Quadrapole Lens,动态四极镜)⏹DSP(Digital Signal Processing,数字信号处理)⏹EFEAL(Extended Field Elliptical Aperture Lens,可扩展扫描椭圆孔镜头)⏹FRC(Frame Rate Control,帧比率控制)⏹HVD(High Voltage Differential,高分差动)⏹LCD(liquid crystal display,液晶显示屏)⏹LCOS(Liquid Crystal On Silicon,硅上液晶)⏹LED(light emitting diode,光学二级管)⏹L-SAGIC(Low Power-Small Aperture G1 wiht Impregnated Cathode,低电压光圈阴极管)⏹LVD(Low Voltage Differential,低分差动)⏹LVDS(Low V oltage Differential Signal,低电压差动信号)⏹MALS(Multi Astigmatism Lens System,多重散光聚焦系统)⏹MDA(Monochrome Adapter,单色设备)⏹MS(Magnetic Sensors,磁场感应器)⏹Porous Tungsten(活性钨)⏹RSDS(Reduced Swing Differential Signal,小幅度摆动差动信号)⏹SC(Screen Coatings,屏幕涂层)⏹Single Ended(单终结)⏹Shadow Mask(阴罩式)⏹TDT(Timeing Detection Table,数据测定表)⏹TICRG(Tungsten Impregnated Cathode Ray Gun,钨传输阴级射线枪)⏹TFT(Thin Film Transistor,薄膜晶体管)⏹UCC(Ultra Clear Coatings,超清晰涂层)⏹V AGP(Variable Aperature Grille Pitch,可变间距光栅)⏹VBI(Vertical Blanking Interval,垂直空白间隙)⏹VDT(Video Display Terminals,视频显示终端)⏹VRR(Vertical Refresh Rate,垂直扫描频率)计算机函数数据库#include <iostream.h>class Myclas{private:int m-number;publicvoid setNumber(int number){m-number = number;}int getNumber(){return m-number}};void showMe(){cout<<"我是一个类"<<endl;}};void main (){Myclass mc;//mc.m_number=10;mc.setNumber(10);cout<<mc.showMe()<<endl;}⏹AGP(Accelerated Graphics Port) -图形加速接口⏹Access Time-存取时间⏹Address-地址⏹ANSI (American National Standards Institute) 美国国家标准协会⏹ASCII (American Standard Code for Information Interchange)⏹Async SRAM-异步静态内存⏹BSB (Backside Bus)⏹Bandwidth-带宽⏹Bank -内存库⏹Bank Schema -存储体规划⏹Base Rambus -初级的Rambus内存⏹Baud -波特⏹BGA (Ball Grid Array)-球状引脚栅格阵列封装技术⏹Binary -二进制⏹BIOS (Basic Input-Output System) -基本输入/输出系统⏹Bit-位、比特⏹BLP-底部引出塑封技术⏹Buffer-缓冲区⏹Buffered Memory-带缓冲的内存⏹BEDO (Burst EDO RAM) -突发模式EDO随机存储器⏹Burst Mode-突发模式⏹Bus-总线⏹Bus Cycle-总线周期⏹Byte-字节⏹Cacheability-高速缓存能力⏹Cache Memory-高速缓存存储器⏹CAS (Column Address Strobe)-列地址选通脉冲⏹CL(CAS Latency )-列地址选通脉冲时间延迟⏹CDRAM (Cache DRAM)-快取动态随机存储器⏹Checksum-检验和,校验和⏹Chipset-芯片组⏹Chip-Scale Package (CSP)-芯片级封装⏹Compact Flash-紧凑式闪存⏹Concurrent Rambus-并发式总线式内存⏹Continuity RIMM (C-RIMM)-连续性总线式内存模组⏹CMOS(Complementary Metal-Oxide-Semicomductor)-互补金属氧化物半导体用于晶体管⏹CPU (Central Processing Unit)-中央处理单元⏹Credit Card Memory -信用卡内存⏹DDR(Double Data Rate SDRAM)-双数据输出同步动态存储器。
abstract class 抽象类,提供一组子类共有行为的类,但它本身并不具有实例。
抽象类表示一个概念,从中派生的类代表对这一概念的实施。
Abstraction 抽象,对视图或模型的创建,其中忽略了不必要的细节,以便专注于一组特定的相关细节。
access modifier存取权限,对类、方法或属性进行访问控制的关键字。
Java 中的存取权限可以是公有、私有、保护和包装(默认)。
accessor methods存取器方法,由对象提供的、用于定义连接该对象实例变量的方法。
用来返回实例变量值的存取器方法被称为获取方法;用来为实例变量指定值的存取器方法被称为设置方法。
acceptance验收,客户接受软件产品(作为部分或完整履行合同的结果)所有权的操作。
action动作,对构成计算过程抽象的可执行语句的规范。
动作通常会导致系统状态发生变化,这是通过向一个对象发送消息或是更改链接或属性值来实现。
action sequence动作序列,解析为一系列先后发生的动作的表达式。
action state动作状态,表示不可分动作的执行状态,通常指的是调用一个操作。
activation激活,动作的执行active class主动类,表示系统中控制线程的类。
请参见主动对象。
activity活动,要求角色执行的工作单元。
active object主动对象,拥有线程并可发起控制活动的对象。
主动类的实例。
activity graph活动图,状态机的特例,用于对涉及一个或多个分类器的进程建模。
对比:状态图(statechart diagram)。
同义词:活动图(activity diagram)。
actor主角,系统之外与系统交互的某人或某事物。
actor class主角类,定义一组主角实例,其中每个主角实例相对于系统而言都担任着同样的角色。
在与用例交互时这些用例的用户所担任的一组紧密相关的角色。
主角为每个要与其通信的用例都准备了一个角色。
软工学习资料推荐软件工程(Software Engineering)是一门研究和应用如何以系统化和规范化的方法去构建、运行、维护和管理软件的学科。
对于软件工程学习者来说,掌握优质的学习资料是非常重要的,它们可以帮助我们深入了解软件工程的理论和实践,提升我们的编程能力和项目管理技巧。
本文将向广大软工学习者推荐一些值得阅读的软工学习资料。
一、软件工程导论1. 《软件工程导论》(Introduction to Software Engineering)- Ian Sommerville这本书是软件工程学习的经典教材,已经成为了许多大学软工专业的教材之一。
作者通过清晰简洁的语言,详细介绍了软件工程的各个方面,包括软件开发过程、需求分析、软件设计、软件测试等。
它不仅适合软件工程专业的学生,也适合其他对软工感兴趣的读者。
2. 《软件工程:实践者的研究方法》(Software Engineering: A Practitioner's Approach)- Roger S. PressmanPressman的这本书是软件工程领域的经典著作之一,对软件开发的整个过程进行了深入的介绍和剖析。
书中包含丰富的案例和实践经验,让读者能够更好地理解软件工程中的实际问题和解决方法。
二、软件需求工程1. 《软件需求工程》(Software Requirements Engineering)- Karl Wiegers、Joy Beatty这本书主要介绍了软件需求工程的理论和实践。
作者通过大量的示例和案例,详细讲解了如何正确地进行需求分析和需求管理,以及如何定义和验证软件需求。
对于从事软件需求工程的工程师和项目经理而言,这本书是一本不可或缺的好资料。
2. 《需求工程:基础》(Requirements Engineering: Fundamentals)- Klaus Pohl、Chris Rupp本书系统地介绍了需求工程的基本概念和方法,帮助读者全面理解需求工程的整个过程。
软件工程英语文档:Documents软件工具:Software Tools工具箱:Tool Box集成工具:Integrated Tool软件工程环境:Software Engineering Environment传统:Conventional经典:Classical解空间:Solution Domain问题空间:Problem Domain清晰第一,效率第二Clarity the first,Efficiency the next。
设计先于编码Design before coding使程序的结构适合于问题的结构Make the program fit the problem开发伴随复用,开发为了复用Development with reuse, Development for reuse。
靠度量来管理:Management by Measurement软件度量学:Software Metrics软件经济学:Software Economics软件计划WHY软件分析WHAT软件实现HOW软件生存周期过程的开发标准Standard for Developing Software Life Cycle Process软件开发模型:Software Development Model编码员:Coder瀑布模型:Waterfall Model快速原型模型:Rapid Prototype Model 增量模型:Incremental Model线性思维:Linear Thinking演化模型:Evolutionary Model螺旋模型:Spiral Model对象:Object类:Class继承:Inheritance聚集:Aggregation消息:Message面向对象=对象Object+分类Classification+继承Inheritance+消息通信Communication with Messages 构件集成模型:Component Integration Model转换模型:Transformational Model净室软件工程:Cleanroom Software Engineering净室模型:Cleanroom Model软件需求规格说明书:Software Requirement Specification ,SRS分析模型:Analysis Model便利的应用规约技术:Facilitated Application Specification Techniques ,FAST结构化语言:Structured Language判定树:Decision Tree基数:Cardinality事件轨迹:Event Trace对象-关系Object—Relationsship结构化分析:SA(Structured Analysis)由顶向下,逐步细化Top-Down Stepwise Refinement面向对象分析:Object-Oriented Analysis包含:Contains临近:Is Next To传到:Transmits to来自:Acquires from管理:Manages 控制:Controls组成:Is Composed of细化:Refinement抽象:Abstraction模块:Module策略:Strategy信息隐藏:Information Hiding数据封装:Data Encapsulation抽象数据类型:Abstract Data type模块化设计:Modular Design分解:Decomposition模块性:Modularity单模块软件:Monolithic Software模块独立性:Module Independence内聚:Cohesion偶然性内聚:Coincidental Cohesion逻辑性内聚:Logical Cohesion时间性内聚:Temporal Cohesion过程性内聚: Procedural Cohesion通信性内聚:Communicational Cohesion顺序性内聚:Sequential Cohesion功能性内聚:Functional Cohesion非直接偶合:No Direct Coupling数据偶合:Data Coupling特征偶合:Stamp Coupling控制偶合:Control Coupling外部偶合:External Coupling公共偶合:Common Coupling内容偶合: Content Coupling由底向上设计:Bottom-Up Design自顶向下设计:Top-Down Design正式复审:Formal Review非正式复审:Informal Review走查,排练:Walk-Through会审:Inspection映射:Mapping传入路径:Afferent path传出路径:Efferent path变换中心:Transform Center接受路径:Reception path动作路径:Action path事务中心:Transaction Center分支分解:Factoring of Brandches瓮形:oval-shaped一个模块的控制域:Scope of Control 一个模块的作用域:Scope of Effect 结构化程序设计:Structured Programming通心面程序:Bowl of Spaghetti流程图:Flow Diagram编码:Coding方框图:Block DiagramPDL (Pidgin):Program Design Language伪代码:Pseudo CodeJSD:Jackson System Development对象建模技术:Object Modeling Technique基础设施:Infrastructure控制线程:Thread of Control保护者对象:Guardian Object协议:protocolUML:Unified Modeling Language OMG:Object Management Group统一方法:Unified Method关联:Association泛化:Generalization依赖:Dependency结点:Node接口:Interface包:Package注释: Note特化:Specialization元元模型:Meta—Meta Model用户模型:User Model静态图:Static Diagram动态图:Dynamic Diagram用例视图:Use Case View逻辑视图:Logical View并发视图:Concurrent View构件视图:Component View实现模型视图:Implementation Model View部署视图:Deployment View航向:Navigability重数:Multiplicity共享聚集:Shared Aggregation组合:Composition泛化:Generalization简单消息:Simple Message同步消息:Synchronous Message异步消息:Asynchronous Message事件说明:Event_Signature守卫条件:Guard_Condition动作表达式:Action_Expression 发送子句:Send_Clause时序图:Sequence Diagram协作图:Collaboration Diagram前缀:Predecessor循环子句:Iteration-Clause活动图:Activity Diagram构件图:Component Diagram配置图:Deployment Diagram建模过程指导(RUP):Rational Unified Process可执行代码:Executalbe Codes实现:Implementation编码风格:Coding Style标准:Classical控制流的直线性:Linearity of Control Flow程序风格设计要素:先求正确后求快 Make it right before you make it faster.先求清楚后求快 Make it clear before you make it faster.求快不忘保持程序正确 Keep it right when you make it faster.保持程序简单以求快 Keep it simpleto make it faster。
软件工程专业毕业设计外文文献翻译1000字本文将就软件工程专业毕业设计的外文文献进行翻译,能够为相关考生提供一定的参考。
外文文献1: Software Engineering Practices in Industry: A Case StudyAbstractThis paper reports a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The study investigated the company’s software development process, practices, and techniques that lead to the production of quality software. The software engineering practices were identified through a survey questionnaire and a series of interviews with the company’s software development managers, software engineers, and testers. The research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company follows a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The findings of this study provide a valuable insight into the software engineering practices used in industry and can be used to guide software engineering education and practice in academia.IntroductionSoftware engineering is the discipline of designing, developing, testing, and maintaining software products. There are a number of software engineering practices that are used in industry to ensure that software products are of high quality, reliable, and maintainable. These practices include software development processes, software configuration management, software testing, requirements engineering, and project management. Software engineeringpractices have evolved over the years as a result of the growth of the software industry and the increasing demands for high-quality software products. The software industry has developed a number of software development models, such as the Capability Maturity Model Integration (CMMI), which provides a framework for software development organizations to improve their software development processes and practices.This paper reports a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The objective of the study was to identify the software engineering practices used by the company and to investigate how these practices contribute to the production of quality software.Research MethodologyThe case study was conducted with a large US software development company that produces software for aerospace and medical applications. The study was conducted over a period of six months, during which a survey questionnaire was administered to the company’s software development managers, software engineers, and testers. In addition, a series of interviews were conducted with the company’s software development managers, software engineers, and testers to gain a deeper understanding of the software engineering practices used by the company. The survey questionnaire and the interview questions were designed to investigate the software engineering practices used by the company in relation to software development processes, software configuration management, software testing, requirements engineering, and project management.FindingsThe research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company’s software development process consists of five levels of maturity, starting with an ad hoc process (Level 1) and progressing to a fully defined and optimized process (Level 5). The company has achieved Level 3 maturity in its software development process. The company follows a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The software engineering practices used by the company include:Software Configuration Management (SCM): The company uses SCM tools to manage software code, documentation, and other artifacts. The company follows a branching and merging strategy to manage changes to the software code.Software Testing: The company has adopted a formal testing approach that includes unit testing, integration testing, system testing, and acceptance testing. The testing process is automated where possible, and the company uses a range of testing tools.Requirements Engineering: The company has a well-defined requirements engineering process, which includes requirements capture, analysis, specification, and validation. The company uses a range of tools, including use case modeling, to capture and analyze requirements.Project Management: The company has a well-defined project management process that includes project planning, scheduling, monitoring, and control. The company uses a range of tools to support project management, including project management software, which is used to track project progress.ConclusionThis paper has reported a case study of software engineering practices in industry. The study was conducted with a large US software development company that produces software for aerospace and medical applications. The study investigated the company’s software development process,practices, and techniques that lead to the production of quality software. The research found that the company has a well-defined software development process, which is based on the Capability Maturity Model Integration (CMMI). The company uses a set of software engineering practices that ensure quality, reliability, and maintainability of the software products. The findings of this study provide a valuable insight into the software engineering practices used in industry and can be used to guide software engineering education and practice in academia.外文文献2: Agile Software Development: Principles, Patterns, and PracticesAbstractAgile software development is a set of values, principles, and practices for developing software. The Agile Manifesto represents the values and principles of the agile approach. The manifesto emphasizes the importance of individuals and interactions, working software, customer collaboration, and responding to change. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases. This paper presents an overview of agile software development, including its principles, patterns, and practices. The paper also discusses the benefits and challenges of agile software development.IntroductionAgile software development is a set of values, principles, and practices for developing software. Agile software development is based on the Agile Manifesto, which represents the values and principles of the agile approach. The manifesto emphasizes the importance of individuals and interactions, working software, customer collaboration, and responding to change. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases.Agile Software Development PrinciplesAgile software development is based on a set of principles. These principles are:Customer satisfaction through early and continuous delivery of useful software.Welcome changing requirements, even late in development. Agile processes harness change for the customer's competitive advantage.Deliver working software frequently, with a preference for the shorter timescale.Collaboration between the business stakeholders and developers throughout the project.Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.Working software is the primary measure of progress.Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely.Continuous attention to technical excellence and good design enhances agility.Simplicity – the art of maximizing the amount of work not done – is essential.The best architectures, requirements, and designs emerge from self-organizing teams.Agile Software Development PatternsAgile software development patterns are reusable solutions to common software development problems. The following are some typical agile software development patterns:The Single Responsibility Principle (SRP)The Open/Closed Principle (OCP)The Liskov Substitution Principle (LSP)The Dependency Inversion Principle (DIP)The Interface Segregation Principle (ISP)The Model-View-Controller (MVC) PatternThe Observer PatternThe Strategy PatternThe Factory Method PatternAgile Software Development PracticesAgile software development practices are a set ofactivities and techniques used in agile software development. The following are some typical agile software development practices:Iterative DevelopmentTest-Driven Development (TDD)Continuous IntegrationRefactoringPair ProgrammingAgile Software Development Benefits and ChallengesAgile software development has many benefits, including:Increased customer satisfactionIncreased qualityIncreased productivityIncreased flexibilityIncreased visibilityReduced riskAgile software development also has some challenges, including:Requires discipline and trainingRequires an experienced teamRequires good communicationRequires a supportive management cultureConclusionAgile software development is a set of values, principles, and practices for developing software. Agile software development is based on the Agile Manifesto, which represents the values and principles of the agile approach. Agile software development practices include iterative development, test-driven development, continuous integration, and frequent releases. Agile software development has many benefits, including increased customer satisfaction, increased quality, increased productivity, increased flexibility, increased visibility, and reduced risk. Agile software development also has some challenges, including the requirement for discipline and training, the requirement for an experienced team, the requirement for good communication, and the requirement for a supportive management culture.。
英文文献原文及译文学生姓名:赵凡学号:1021010639学院:软件学院专业:软件工程指导教师:武敏顾晨昕2014年 6月英文文献原文The use of skinWhat is a skin? In the role of setting, the preparations made for the animation in the final process is skinning. The so-called skinning skinning tool is to use role-model role do with our skeletal system to help set the course together. After this procedure, fine role model can be rendered on real numbers can be made into animation. Bones in skinning process, in which the position is called Bind Pose. After the skin, bone deformation of the skin caused by the Games. However, sometimes inappropriate distortion, which requires bone or skin to make the appropriate changes, then you can make use of relevant command to restore the bone binding position, and then disconnect the association between bone and skin. In Maya, you can always put the bones and skin disconnected or reconnected. There is a direct way to skin the skin (skin flexible rigid skinning) and indirect skin (or wrap the lattice deformation of flexible or rigid skinning skinning joint use).In recent years, more and more 3D animation software, a great competition in the market, software companies are constantly developing and updating the relevant software only more humane, but in three-dimensional animation maya mainstream animation software. Able to create bone, meat, God's role is that each CG digital artists dream. Whether the digital characters charm, the test is the animator of life, understanding of life. Digital character to have bone and meat producers are required for the role of the body and has a full grasp of motor function. In addition, the roles of whether there is realism, the key lies in the design and production of the skin, which is skinning animation software for skilled technical and creative mastery is essential. Skin is ready to work in animation final steps, after this procedure, you can do the movements designed, if the skin did not do the work, after the animation trouble, so the skin is very important.As the three-dimensional animation with accuracy and authenticity, the current three-dimensional animation is rapidly developing country, nowadays the use ofthree-dimensional animation everywhere, the field of architecture, planning areas, landscape areas, product demonstrations, simulated animation, film animation, advertising, animation, character animation, virtual reality and other aspects of three-dimensional animation fully reflects the current importance. If compared to the three-dimensional animation puppet animation in real life, then the doll puppet animation equivalent of Maya modeling, puppet performers equivalent Maya animators and puppet steel joints in the body is the skeletal system. Bones in the animation will not be the final rendering, its role is only equivalent to a bracket that can simulate real bones set of major joints to move, rotate, etc.. When the bones are set, we will be bound to the skeleton model, this step is like a robot mounted to a variety of external parts, like hanging, and then through the various settings, add a keyframe animation on bone, and then drive to be bound by the bones corresponding to the model on the joints. Thus, in the final animation, you can see the stiffness of a stationary model with vitality. The whole process from the rigging point of view, may not compare more tedious keyframe animation, rigging, but it is the core of the whole three-dimensional animation, and soul.Rigging plays a vital role in a three-dimensional animation. Good rigging easy animation production, faster and more convenient allows designers to adjust the action figures. Each step are bound to affect the skeleton final animation, binding is based on the premise of doing animation, animators animate convenient, good binding can make animation more fluid, allowing the characters to life even more performance sex. In addition to rigging as well as expression of the binding character, but also to let people be able to speak or behave different facial expressions. Everything is done in order to bind the animation is set, it is bound to set a good animation is mainly based on the entire set of styles and processes. Rigging is an indispensable part in the three-dimensional animation.Three-dimensional animation production process: model, texture, binding, animation, rendering, special effects, synthesis. Each link is associated. Model and material determines the style of animation, binding, and animation determine fluency animation, rendering, animation effects, and synthetic colors and determine the finalresult.Three-dimensional animation, also known as 3D animation, is an emerging technology. Three-dimensional animation gives a three-dimensional realism, even subtle animal hair, this effect has been widely applied to the production of film and television in many areas, education, and medicine. Movie Crash, deformed or fantasy scenes are all three-dimensional animation in real life. Designers in the first three-dimensional animation software to create a virtual scene, and then create the model according to the proportion, according to the requirements set trajectory models, sports, and other parameters of the virtual camera animation, and finally as a model assigned a specific material, and marked the lights , the final output rendering, generating the final screen. DreamWorks' "Shrek" and Pixar's "Finding Nemo" is so accomplished visual impact than the two-dimensional animation has.Animated film "Finding Nemo" extensive use of maya scene technology. Produced 77,000 jellyfish animation regardless of the technical staff or artist is one of the most formidable challenge. This pink translucent jellyfish is most needed is patience and skill, you can say, jellyfish appeared animated sea creatures taken a big step. His skin technology can be very good. The use of film roles skinning techniques is very good, so that each character is vivid, is not related to expression, or action is so smooth, these underwater underwater world is so beautiful. Maya maya technology for the creation of the first to have a full understanding and knowledge. He first thought of creative freedom virtual capacity, but the use of technology has limitations. When the flexible skinning animation technique many roles in the smooth bound for editing, re-allocation tools needed to adjust the skeletal model for the control of the weight through the right point, every detail clownfish are very realistic soft. In the joint on the affected area should smear, let joints from other effects, this movement was not wearing a tie. Used less rigid, rigid lattice bound objects must be created in a position to help the bones of the joint motion. Animated film "Finding Nemo," the whole movie a lot of facial animation, facial skin but also a good technique to make facial expressions, the facial animation is also animated, and now more and more animated facial animationtechnology increasingly possible, these should be good early skin behind it will not affect the expression, there is therefore the creation of the film how maya digital technology, play his video works styling advantages and industrial processes are needed to explore creative personnel, all and three-dimensional figures on the production of content, from maya part. Two-dimensional hand-painted parts, post-synthesis of several parts, from a technical production, artistic pursuit. Several angles to capture the entire production cycle of creation. Maya techniques used in the animated film "Finding Nemo", the flexible skinning performance of many, clown face on with a lot of smooth binding, so more people-oriented, maya application of technical advantages in certain limited extent. Realistic three-dimensional imaging technology in the animation depth spatial density, the sense of space, mysterious underwater world to play the most. Because lifelike action, it also brings the inevitable footage and outdoor sports realistic density, but also to explore this movie maya main goal of the three-dimensional animation.英文文献译文蒙皮的运用什么是蒙皮?在角色设定中,为动画所作的准备工作里的最后一道工序就是蒙皮。
The strategic role of management information systemsAfter studying this chapter, you will be able to:1。
Analyze six major information systems in the organizations。
2。
Describe the relationship among various types of information systems。
3。
Understand the characteristics of a strategic information system.4。
Describe how information systems in business strategy to be used for three layers.5。
Explain the problem of the establishment and maintenance of strategic information systems.Orchids Paper Company ----- return to the right directionOrchids Paper Co.Ltd. has been a lower cost paper manufacturer which produces napkin,handkerchief paper, tissues and toilet paper for fifty years. However, in the middle of 1990s, the company lost its developmental way. To take good advantage of the prosperous economic situation in the late twentieth century in the 80's, employers began to squeeze into the ascendant private-label paper market in California (the company headquarters at that time). Unfortunately, Orchids nearly went bankrupt because of the dual pressure from the high cost strategy and the debt from leveraged buyout. At the moment, its raw material and production costs exceeded its profits from customers. Orchids were forced to file for bankruptcy in 1992 and 1995.Orchids' new management organization lead by the general manager, Mike Safe and chief financial officer Jim Swagerty decided to focus on core markets, where had value-seeking customers. They moved the company from California to Pryor, Oklahoma, where the utility costs were low (paper is a resource-intensive industries) and the company's recycled papers were salable. They used a low-cost strategy so that the firm's production capacity will be maximized when companies emphasize timely delivery and allow customers to clearly understand the implementation of their orders. Orchids target market is the span from Oklahoma to Atlanta.Before the reorganization,Orchids is well known for poor service and late delivery. The company did not implement the operating and reporting practices and the financial department can not provide timely and accurate information.Orchids installed a new manufacturing resource planning systems (MRP-Ⅱ) and a financial system. The two software management systems from the Marion Ohio can monitor and coordinate sales, Inventory and financial data. They can also provide the charts based daily operations for the company. Workers and all departments can directly access to the products and order information through a central server linked with the stored data through 25personal computers. Finance Department staff can also use this system to provide timely and accurate information about the operating capacity, transportation and the product usability. They can also answer the customers’ questions. Therefore, finance department staffs make use of the financial capabilities to do more about controlling and customer service. Because employees can easily access to ensure immediate and accurate information needed to order delivery. Orchids Company can keep operating costs low. This system also makes the management of Orchids in the absence of bloated bodies and the sharp reduction in the total number of case workers to run properly. Orchids started to make profit again and its organizational and technological changes made it win a place in the industry which has traditionally been monopolized by large companies.Orchids Paper used the information systems to get the lead in the competitive advantage by providing low-cost high service products. However, compared to the simply the technological leap, it is more important to maintain this competitive edge. Managers need to find ways to maintain this competitive advantage for many years. Specifically, managers need to face the following challenges:1. Comprehensive integration: although in the company different systems are designed to serve different levels and different departments, more and more companies discovery the benefits of integrated systems. Many companies are pursuing enterprise resource planning (ERP). However, the integrated system is difficult and costly for the different organizational levels and functions to exchange of information through the technology. Managers need to determine which level of information system needs to integrate and how much it costs.2. The ability to maintain the competitive advantage: the competitive advantage brought by the strategic information systems cannot sustain long enough to ensure long-term profitability. Competitors can also install the strategic information systems. Competitive advantage is not always maintained as the market is changing rapidly. Business and economic environment is changing also. Internet can make some of the company's competitive advantage disappear soon. Technology and customer expectations are changing as well. Classic strategic information systems, such as American Airlines SABRE computer reservation systems, ATM systems and City Bank Federal Express package tracking system are benefiting users because they are the first in their respective industries. But the competitors apply the corresponding systems later. Relying on information systems solely can not get lasting business advantage. Information system originally used in decision-making often becomes a survival tool (for each company in order to survive in the industry to take some measures), or information system or even inhibit the future success of organizations to make the necessary decisions.ORCHIDS Paper Company's experience shows that information systems are very important in support of the organization's goals and making the company in the leading role in competition. In this chapter, we introduce the functions of various information systems in the organization. Then,we present the issues of the company in the competition and the methods that the Information System provides a competitive advantage in three different commercial levels.2.1 The function of the major Information System in the organizationBecause of the different attention to different targets, different characteristics and different levels in the various departments in an organization, there are different kinds of information systems. Single system cannot provide organizations with all the required information. Figure 2-1 is a description of the methods of all kinds of information systems in the organization. In the chart, the organization is divided into strategic layer, management layer, knowledge layer and business layer. And then it is further translated into the various functions into areas such as sales, marketing, production, finance, accounting and human resources. Information System is set up to meet the requirements of different organizations.2.2.1 Four different information systemsThere are four different information systems which are used for different levels of the organization. They are business layer systems, knowledge-tier system, management system and strategic level system.Business layer supports managers’work through tracking the basic business activities and things of the organization. Basic operations are such as sales progress, cash store, payroll, customer credibility determination and plant logistics. On this level,the main purpose of the system is to answer normal questions, analyze the problem of the logistics and inventory number of the organization. What is Mr. William payment and what is the problem? To answer these questions, the information must be available and the information should be current and accurate. The examples of business layer of the information system: the system using ATM data to record the bank deposit, the system to record daily time that employees work in factories, etc.Knowledge level information systems support the employees who are working for the knowledge and data in the organization. Knowledge level information system is intended to help businesses find new knowledge. New knowledge will be integrated into enterprises and help companies control document things。