第1讲绝对值 (含绝对值的方程)
- 格式:doc
- 大小:57.00 KB
- 文档页数:2
含绝对值的方程组知识定位绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程,本讲主要介绍解含有绝对值的方程四种方法:定义法、平方法、零点分区法、数轴、取这几个方程的公共解。
知识梳理从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,任一个绝对值都是表示两个不同数的绝对值.即一个数与它相反数的绝对值是一样的。
由于这个性质,所以含有绝对值的方程与不等式的求解过程又出现了一些新特点。
一个实数a的绝对值记作|a|,指的是由a所唯一确定的非负实数:含绝对值的不等式的性质:(2)|a|-|b|≤|a+b|≤|a|+|b|;(3)|a|-|b|≤|a-b|≤|a|+|b|.注意:由于绝对值的定义,所以含有绝对值的代数式无法进行统一的代数运算.通常的手法是分别按照绝对值符号内的代数式取值的正、负情况,脱去绝时值符号,转化为不含绝对值的代数式进行运算,即含有绝对值的方程与不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.例题精讲【试题来源】【题目】设|﹣|≥0,||≥0,求x+y【答案】1【解析】解:分析从绝对值的意义知≥0,≥0,两个非负实数和为零时,这两个实数必须都为零,可得:,解得x=﹣y,把③代入①得﹣﹣=0,解之得y=﹣3,所以x=4,故有x+y=4﹣3=1.【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】4【试题来源】【题目】解方程组【答案】,,或.【解析】解:由①得x﹣y=1或x﹣y=﹣1,即x=y+1或x=y﹣1.与②结合有下面两个方程组,(1),把x=y+1代入|x|+2|y|=3得,|y+1|+2|y|=3.去绝对值符号,可得y=﹣或y=﹣,再将其代入x=y+1可求出方程组(1)的解为:或,(2),把x=y﹣1代入|x|+2|y|=3得,|y﹣1|+2|y|=3.去绝对值符号,可得y=﹣或y=﹣,再将其代入x=y﹣1可求出方程组(1)的解为:或.故原方程组的解为:,,或.【知识点】含绝对值的方程组【适用场合】当堂练习【难度系数】4【试题来源】【题目】解方程组:【答案】、【解析】解:原方程,把②代入①得:4y﹣4+|y﹣1|=5③,当y﹣1≥0时,③式=4y﹣4+y﹣1=5,解得y=2;把y=2代入②得:x=3或﹣5;当y﹣1≤0时,③式=4y﹣4﹣y+1=5,解得无解.综上得原方程组的解为:、.【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】3【试题来源】【题目】解方程组【答案】、、、【解析】解:1.当x>0,y>0时,原方程组为,方程组无解;2.当x>0,y<0,且|x|>|y|,原方程组为,解得;3.当x>0,y<0,且|x|<|y|,原方程组为,解得;4.当x<0,y<0时,原方程组为,方程组无解;5.当x<0,y>0,且|x|>|y|,原方程组为,解得;6.当x<0,y>0,且|x|<|y|,原方程组为,解得.综上得原方程组的解为:、、、【知识点】含绝对值的方程组【适用场合】当堂练习题【难度系数】4【试题来源】【题目】要使关于x的方程||x﹣3|﹣2|=a有三个整数解,则a的值是多少?【答案】2【解析】解:∵||x﹣3|﹣2|=a,∴a≥0.∴|x﹣3|﹣2=a或|x﹣3|﹣2=﹣a.当|x﹣3|﹣2=a时,|x﹣3|=2+a,∴x﹣3=2+a或x﹣3=﹣2﹣a.∴x1=5+a,x2=1﹣a,当|x﹣3|﹣2=﹣a时,|x﹣3|=2﹣a,a≤2,∴x﹣3=2﹣a或x﹣3=﹣2+a,∴x3=5﹣a,x4=1+a,若方程有3个不同的整数解,则x1,x2,x3,x4中必有2个相同.当x1,x2=2时,a=﹣2,与a≥0矛盾;当x1=x3时,a=0,此时原方程有2个解;当x1=x4时,a无解;当x2=x3时,a无解;当x2=x4时,a=0,此方程有2个解;当x3=x4时,a=2.综上有:当a=2时,原方程有3个不同的解【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】5【试题来源】【题目】解方程|x-2|+|2x+1|=7【答案】x=8/3或x=-2【解析】解:(1) 当x≥2时,原方程化为(x-2)+(2x+1)=7,-(x-2)+(2x+1)=7.应舍去.-(x-2)-(2x+1)=7.【知识点】含绝对值的方程组【适用场合】当堂练习题【难度系数】4【试题来源】【题目】若|m|=m+1,则(4m+1)2011=【答案】-1【解析】解:根据题意,可得m的取值有三种,分别是:当m>0时,则|m|=m+1可转换为m=m+1,此种情况不成立.当m=0时,则|m|=m+1可转换为0=0+1,此种情况不成立.当m<0时,则|m|=m+1可转换为﹣m=m+1,解得,m=﹣.将m的值代入,则可得(4m+1)2011=[4×(﹣)+1]2011=﹣1.【知识点】含绝对值的方程组【适用场合】当堂例题【难度系数】3【试题来源】【题目】已知|x+1|=4,(y+2)2=0,则x﹣y的值【答案】5或-3【解析】解∵(y+2)2=0,∴|y+2|=0,∴y=﹣2;又∵|x+1|=4,∴x+1=±4,即x=3或﹣5.1.当x=3,y=﹣2时,x﹣y=5;2.当x=﹣5,y=﹣2时,x﹣y=﹣3;所以,x﹣y的值为5或﹣3;【知识点】含绝对值的方程组【适用场合】当堂练习题【难度系数】3习题演练【试题来源】【题目】解方程组【答案】【解析】解:由①得,x+y=|x﹣y|+2.∵|x﹣y|≥0,∴x+y>0,∴|x+y|=x+y.③把③代入②,有x+y=x+2,∴y=2.将y=2代入①,有|x﹣2|=x,∴x﹣2=x ④x﹣2=﹣x ⑤.方程④无解,解方程⑤,得x=1.故原方程组的解为.【知识点】含绝对值的方程组【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】使方程|x﹣1|﹣|x﹣2|+2|x﹣3|=c恰好有两个解的所有实数c范围【答案】c>3或1<c<3【解析】解:(1)当x<1时,原方程可化为:﹣x+1+x﹣2﹣2x+6=c,解得:x=,由<1,得:c>3;(2)当1≤x<2时,原方程可化为:x﹣1+x﹣2﹣2x+6=c,解得:c=3,有无数多解;(3)当2≤x<3时,原方程可化为:x﹣1﹣x+2﹣2x+6=c,解得:x=,由2≤<3,得:1<c≤3;(4)当x≥3时,原方程可化为:x﹣1﹣x+2+2x﹣6=c,解得:x=,由≥3,得:c≥1.故当c>3时,原方程恰有两解:,;当1<c<3时,原方程恰有两解:,【知识点】含绝对值的方程组【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】方程丨x+3丨+丨3﹣x丨=丨x丨+5的解【答案】x1=,x2=﹣【解析】解:①当x>3的时,原方程可化为:x+3+x﹣3=4.5 x+5整理得:2x=4.5x+5解出来显然x<0,(矛盾)②当0<x<3时,原方程可化为:x+3+3﹣x=4.5x+5解得:x=(满足条件);③当﹣3<x<0时原方程可化为:x+3+3﹣x=﹣4.5x+5解得:x=﹣(满足条件);④当x<﹣3时,原方程可化为:﹣x﹣3+3﹣x=﹣4.5x+5解得:x=2(不满足条件);∴x有两个解,为x1=,x2=﹣.【知识点】含绝对值的方程组【适用场合】随堂课后练习【难度系数】4。
第一讲绝对值绝对值是有理数中非常重要的组成部分,它其中相关的基本思想及数学方法是初中数学学习的基石,希望同学们通过学习、巩固对绝对值的相关知识能够掌握要领。
绝对值的定义及性质绝对值简单的绝对值方程化简绝对值式,分类讨论(零点分段法)绝对值几何意义的使用绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。
绝对值的性质:(1)绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质;a (a>0)(2)|a|= 0 (a=0)(代数意义)-a (a<0)(3)若|a|=a,则a≥0;若|a|=-a,则a≤0;(4)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a,且|a|≥-a;(5)若|a|=|b|,则a=b或a=-b;(几何意义)[例1](1) 绝对值大于2.1而小于4.2的整数有多少个?(2) 若ab<|ab|,则下列结论正确的是( )A.a <0,b <0B.a >0,b <0C.a <0,b >0D.ab <0(3) 下列各组判断中,正确的是( )A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >bC. 若|a|>b ,则一定有|a|>|b|D.若|a|=b ,则一定有a 2=(-b) 2(4) 设a ,b 是有理数,则|a+b|+9有最小值还是最大值?其值是多少?[巩固] 若|x-3|=3-x ,则x 的取值范围是____________[巩固] 有理数a 与b 满足|a|>|b|,则下面哪个答案正确( )A.a >bB.a=bC.a<bD.无法确定[巩固] 绝对值小于3.1的整数有哪些?它们的和为多少?[巩固] 若a >b ,且|a|<|b|,则下面判断正确的是( )A.a <0B.a >0C.b <0D.b >0[巩固] 设a ,b 是有理数,则-8-|a-b|是有最大值还是最小值?其值是多少?[例2](1)(竞赛题)若3|x-2|+|y+3|=0,则xy 的值是多少? (2)若|x+3|+(y-1)2=0,求n xy )4(--的值 【例3】 (1) 已知x 是有理数,且|x|=|-4|,那么x=____(2) 已知x 是有理数,且-|x|=-|2|,那么x=____(3) 已知x 是有理数,且-|-x|=-|2|,那么x=____(4) 如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y的值是多少?【巩固】|x|=4,|y|=6,求代数式|x+y|的值【例4】解方程:(1)05|5|23=-+x (2)|4x+8|=12(3)|3x+2|=-1(4)已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 4312--的值【例5】 若已知a 与b 互为相反数,且|a-b|=4,求12+++-ab a b ab a 的值【例6】有理数a ,b ,c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b|【巩固】已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|【巩固】数a ,b 在数轴上对应的点如图所示,是化简|a+b|+|b-a|+|b|-|a-|a||【例7】若abc ≠0,则||||||c c b b a a ++的所有可能值【巩固】有理数a ,b ,c ,d ,满足1||-=abcd abcd ,求dd c c b b a a ||||||||+++的值 【例8】化简|x+5|+|2x-3|【巩固】化简:|2x-1|C B 0A绝对值练习一一、填空题:1、││= ,│-│= 。
含绝对值的函数方程解法
对于含有绝对值的函数方程,求解的过程需要考虑绝对值的两种情况:正数和负数。
下面将介绍两种常见的解法。
1. 正数解法
当绝对值中的变量取正数时,可以将绝对值去除,直接求解函数方程。
例如,对于方程 $f(x) = |x - a| + b = c$,其中 $a,b,c$ 都是已知的实数常数,我们可以按照以下步骤求解:
1. 当 $x - a > 0$ 时,$|x - a| = x - a$,因此方程可转化为 $f(x) = x - a + b = c$;
2. 将方程整理为 $x = c - b + a$。
因此,当 $x - a > 0$ 时,方程的解为 $x = c - b + a$。
2. 负数解法
当绝对值中的变量取负数时,可以将绝对值去除,并加上负号,再求解函数方程。
例如,对于方程 $f(x) = |x - a| + b = c$,我们可以按照以下步骤
求解:
1. 当 $x - a < 0$ 时,$|x - a| = -(x - a)$,因此方程可转化为 $f(x) = -(x - a) + b = c$;
2. 将方程整理为 $x = a + c - b$。
因此,当 $x - a < 0$ 时,方程的解为 $x = a + c - b$。
需要注意的是,在求解含有绝对值的函数方程时,我们需要分
别考虑正数和负数的情况,并得到两组解。
最后,我们可以将两组
解合并为一个解集。
以上就是含绝对值的函数方程的解法。
希望以上内容能对你有
所帮助!。
《绝对值》讲义一、什么是绝对值在数学中,绝对值是一个非常重要的概念。
简单来说,绝对值表示一个数在数轴上离原点的距离。
例如,数字 5 在数轴上距离原点 5 个单位长度,所以 5 的绝对值是5;而-5 在数轴上同样距离原点 5 个单位长度,所以-5 的绝对值也是 5。
用数学符号表示,|5| = 5,|-5| = 5。
绝对值的定义可以表述为:对于任意实数 a,当a ≥ 0 时,|a| = a;当 a < 0 时,|a| = a 。
这意味着,绝对值总是非负的,即|a| ≥ 0 。
二、绝对值的性质1、非负性绝对值的最基本性质就是非负性,也就是说,任何数的绝对值都大于或等于零。
这是因为距离不能是负数。
2、对称性|a| =|a| ,即一个数和它的相反数的绝对值相等。
例如,|3|=|-3| 。
3、自反性|a| = 0 当且仅当 a = 0 。
4、三角不等式对于任意实数 a 和 b ,有|a +b| ≤ |a| +|b| 。
当且仅当ab ≥ 0 时,等号成立。
例如,当 a = 2 ,b = 3 时,|2 + 3| = 5 ,|2| +|3| = 5 ,此时等式成立。
但当 a =-2 ,b = 3 时,|-2 + 3| = 1 ,而|-2| +|3| =5 ,此时不等式成立。
三、绝对值的运算1、简单计算计算一个数的绝对值,只需要判断这个数是正数、负数还是零。
如果是正数或零,绝对值就是它本身;如果是负数,绝对值是它的相反数。
例如,|7| = 7 ,|-8| = 8 。
2、含有绝对值的加减法当进行含有绝对值的加减法运算时,需要先根据绝对值的定义去掉绝对值符号,然后再进行运算。
例如,计算|3 5| ,先计算 3 5 =-2 ,因为-2 < 0 ,所以|3 5| =|-2| = 2 。
3、含有绝对值的乘除法对于两个数的乘积或商的绝对值,有|ab| =|a| |b| ,|a / b| =|a| /|b| (b ≠ 0 )。
例如,|-2 × 3| =|-6| = 6 ,|-6 / 3| =|-2| = 2 。
第1讲 绝对值一、知识要点绝对值是是初中代数中的一个基本概念,是学习有理数运算及后续算术根的基础.绝对值又是初中代数中的一个重要概念,在解决代数式化简求值、解方程(组)、解不等式(组)等问题中有着广泛的应用,全面理解、掌握绝对值这一概念,应从以下方面入手:1.去绝对值的符号法则:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a2.绝对值基本性质①非负性:|a |≥0;②|a |=|-a |;③|ab |=|a |·|b |;④|ba |=b a (b ≠0);⑤|a |2=|a 2|=a 2. 3.绝对值的几何意义 (从数轴上看)|a |指的是数轴上表示数a 的点到原点的距离(长度,非负);|a -b |指的是表示数a 、数b 的两点间的距离.二、基础能力测试1.小明家去年收入为20 000元记作+20 000元,那么支出15 000元记作__________;如果向西100米记作-100米,那么400米表示__________,0米表示_________.2._____和____统称有理数;正整数、零、_________统称整数,_________和________统称分数.3.把-722,π,∙3.0,-21,+5,-6.3,0,-254,6.9,-7,210,0.031,-10%,填在相应的括号内. 正有理数集合:{ …};整数集合:{ …}; 非负有理数集合:{ …};负分数集合:{ …};4.规定了_______、________和________的直线叫做数轴.5.把-2,321,0,-421,1,-31,用“<”号连接起来:__________________. 6.有理数中,最大的负整数是________,最小的正整数是__________.7.-5.4的相反数是_________,________和3.5互为相反数;-(-2)=_______,-[+(-31)]=_______. 8.(1)若2x +1是-9的相反数,在x =_______.(2)已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b (a <b ),并且A 、B 两点间的距离是4.8,则a =_______,b =________.9.一般地,在数轴上表示数a 的点与原点的距离叫做a 的________,记作|a |.若a 是正数,则|a |=______,若a 是负数,则|a |=_______,|0|=________,若|x |=6,则x =______.10.若|a |=a ,则a ______0;若|a |=-a ,则a _______0.11.绝对值不大于3的整数有______________________.三、例题解析【例1】填空:(1)已知a ,b 互为相反数,c ,d 互为负倒数,x 的绝对值是2,则x 2-(a +b +cd )x +(a +b )99+(-cd )100=____________.(2)若a >0,b <0,且a <|b |,用“<”号连接比较a ,b ,-a ,-b _____________.(3)已知|a |=5,|b |=3,且|a -b |=b -a ,则a +b =__________.【例2】(1)计算:|20161-20151|+|20171-20161|-|20171-20151|=_________. (2)已知a -|a |=0,b +|b |=0,且|a |<|b |,则|a +b |+|-a +b |-|a -b |-|b -|b |=_________.(3)若a 、b 、c 均不为0,且a +b +c =0,求a a +b b +cb a =___________.〖练〗如图,有理数a <b <0<c ,化简|c -b |+|a -c |+|b +c |=_________.【例3】将1,2,3,…,100这100个自然数任意分成50组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式21(|a -b |+a +b )中进行计算,求出其结果,50组都代进后可求得50个值,求这50个值的和的最大值.【例4】(1)化简:|x +5|+|2x -3|.(2)化简:|3+|x -1||.(3)a ,b 为有理数,且|a |>0,方程||x -a |-b |=3有三个不相等的解,求b .〖练〗(1)①已知a=1,|b|=2,若a>b,求b的值;②已知a=2,|b|=1,若a>b,求b的值;(2)①已知|a|=1,|b|=2,若a>b,求a、b的值;②已知|a|=2,|b|=1,若a>b,求a、b的值;(3)①已知|a|=1,|b|=2,|c|=3,若a>b>c,求a、b、c的值;②已知|a|=3,|b|=2,|c|=1,若a>b>c,求a、b、c的值.【例5】(1)已知|ab+2|与|a+1|互为相反数,则a+b的值为___________.(2)已知(a+1)2+|b-2|=1-c,且c为正整数,求a+b-c.(3)已知有理数x、y满足(y-2)2+|x|=x,且|x-2y+5|=2,求xy.【例6】(1)当x=_____时,|x-2|有最小值;当x=_____时,3-|x-2|有最大值,最大值为_______.(2)|x+2|+|x-3|的最小值为___________,此时x需满足的条件为_____________.(3)已知|x+2|+|1-x|=10-|y-5|-|2+y|,求x+y的最大值和最小值.〖练〗(1)当x取什么值时,|x-1|+|x-2|+|x-3|+|x-4|有最小值,并求出这个最小值.(2)试求|x-1|+|x-2|+|x-3|+…+|x-2017|的最小值.(3)公共汽车运营线路AD段上有A、B、C、D四个汽车站,如图,现在要在AD段上修建一个加油站M,为了使加油站选址合理,要求A、B、C、D四个汽车站到加油站M的路程总和最小,试分析加油站M在何处选址最好.四、反馈练习一、填空题1.(1)如果温度上升10℃记作+10℃,那么下降5℃记作____________.(2)高出正常水位0.5米记作+0.5米,则低于正常水位0.3米记作________,正常水位记作________.(3)负债2000元,可以说成拥有_____________元.(4)一潜艇所在高度是-80米,一条鲨鱼在潜艇上方30米处,则鲨鱼所在的高度是____米.2.2002,-3.1416,310,0,190%,0.2,1,+3.2,-5%,34中 属正数集合的是_______________________,属负数集合的是______________________,属整数集合的是_______________________,属分数集合的是______________________,属正整数集合的是_____________________,属负分数集合是______________________,属有理数集合的是______________________.3.点A 表示-3,从点A 出发,沿数轴移动4个单位长度到达B 点,则点B 表示的数是_______.4.与原点距离5个单位长度的点共有__________个,它们分别可以表示有理数______________________.5.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是6,则这个数是_____.6.化简-{+[-(-1)]}=___________,|-(5)|=__________,-|-6.7|=_______.7.绝对值不大于5.5的整数有______________________.8.已知|x |>|y |,x <0,y >0,把x ,y ,-x ,-y 从小到大排列,可得__________.(用“<”连接)9.已知|a |=5,|b |=3,且|a -b |=b -a ,那么a +b =__________.10.已知|2a -1|+|3b -2|=0,则a =_______,b =_________.11.已知b 为正整数,且a ,b 满足|2a -4|+b =1,则a b =___________.12.若a <0,ab <0,|a |>|b |,则a ,b ,-a ,-b 的大小关系为______________;化简|a +b |+|a -b |-|a |-|b |=___________.二、解答题1.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值等于2,p 的绝对值是最小的数,求p 2000-cd +abcdb a +m 2的值.2.有理数a ,b ,c 均不为0,且a +b +c =0,设x =|c b a++a c b++b a c+|,试求:x 19+2x +13的值.3.化简|x -1|-|3x -6|.4.将1,2,3,…,200这100个自然数任意分成100组,每组两个数,现将每组的两个数中任一个数记为a ,另一个数记为b ,代入代数式21(|a -b |+a +b )中进行计算,求出其结果,100组都代进后可求得100个值,求这100个值的和的最大值.。
绝对值(一)——初中数学第一册教案一、教学目标1.了解绝对值的定义和性质;2.掌握求解绝对值的方法;3.应用绝对值求解实际问题。
二、教学重点1.绝对值的概念;2.求解含有绝对值的方程和不等式。
三、教学内容1. 绝对值的定义和性质1.1 定义绝对值表示一个数与0的距离,用竖线“| |”表示。
对于任意实数a,绝对值的定义如下:|a| = a,若a≥ 0; |a| = −a,若a < 0。
1.2 性质•非负性:对任意实数a,有 |a| ≥ 0;•同号性:若a > 0,则有 |a| = a;若a < 0,则有 |a| = −a;•反对称性:若a≠ 0,则有−|a| ≠ a。
2. 求解含有绝对值的方程和不等式2.1 求解含有绝对值的方程对于形如 |a| = a的方程,可以有以下两种情况:•当a≥ 0时,解方程 |a| = a有两个解:a = a或a= −a;•当a < 0时,解方程 |a| = a无解。
例题1:求解方程 |a| = 3。
解:根据绝对值的定义,|a| = 3 表示a与0的距离为3。
根据性质,可以得到a = 3 或a = −3。
因此,方程 |a| = 3 的解为a = 3 或a = −3。
2.2 求解含有绝对值的不等式对于形如 |a| > a或 |a| < a的不等式,可以有以下情况:•当a > 0时,解不等式 |a| > a或 |a| < a为a > a或a< −a;•当a = 0时,解不等式 |a| > 0 或 |a| < 0 为a≠ 0;•当a < 0时,解不等式 |a| > a或 |a| < a为a∈ ℝ。
例题2:求解不等式 |a| < 2。
解:根据绝对值的定义,不等式 |a| < 2 表示a与0的距离小于2。
根据性质,可以得到−2 < a < 2。
因此,不等式 |a| < 2 的解为−2 < a < 2。
第1讲 有理数、数轴与绝对值有理数:整数和分数统称为有理数。
数轴:规定原点、正方向和单位长度的直线叫做数轴(1)有理数都可以在数轴上表示出来。
但数轴上不是所有的点都表示有理数,比如π.(2)互为相反数的两点在数轴上关于原点对称。
(3)点A(a)与B(b)的中点表示的数为2a b +。
绝对值的定义与性质(注意它的非负性)1、定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零。
用公式表示为: (0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2、性质: ①非负性:|a |≥0; ②|ab |=|a ||b |; ③|b a |=||||b a (b ≠0); ④222||||a a a ==; ⑤|a +b |≤|a |+|b |; ⑥||a |-|b ||≤|a -b |≤|a |+|b |.3、绝对值的几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。
..........................①) a 表示a 点到0点的距离a b -表示a 点到b 点的距离注:一般地,设123,,,...n a a a a 是数轴上依次排列的有理数,则(1)当n 为奇数时,若12n x a +=亦即x 是中间一个点时,则x 到这n 个点的距离之和12||||...||n x a x a x a -+-++-的值最小;(2)当n 为偶数时,若122n n a x a +≤≤亦即x 位于中间两个点之间任何位置时,则12||||...||n x a x a x a -+-++-的值最小。
A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么点B 对应的数是___________.1个单位,点A 、B 、C 、D 对应的数分别为a 、b 、c 、d ,且d —2a=10,那么原点应是( )A. A 点B. B 点C. C 点D. D 点|a|表示数a 到原点的距离,这是绝对值的几何意义。
不等式选作第1讲 绝对值不等式 1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ;②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .考点一__含绝对值不等式的解法________________解不等式|x -1|+|x +2|≥5.[解] 法一:如图,设数轴上与-2,1对应的点分别是A ,B ,则不等式的解就是数轴上到A 、B 两点的距离之和不少于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A 向左移动一个单位到点A 1,此时|A 1A |+|A 1B |=1+4=5.把点B 向右移动一个单位到点B 1,此时|B 1A |+|B 1B |=5,故原不等式的解集为(-∞,-3]∪[2,+∞).法二:原不等式|x -1|+|x +2|≥5⇔⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+x +2≥5或⎩⎪⎨⎪⎧x ≥1,x -1+x +2≥5, 解得x ≥2或x ≤-3,∴原不等式的解集为(-∞,-3]∪[2,+∞).[规律方法] 形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.1.解不等式|x +3|-|2x -1|<x2+1.解:①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.考点二__绝对值不等式性质的应用______________确定“|x -a |<m 且|y -a |<m ”是“|x -y |<2m (x ,y ,a ,m ∈R )”的什么条件.[解] ∵|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m , ∴|x -a |<m 且|y -a |<m 是|x -y |<2m 的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m =2.5, 故|x -a |<m 且|y -a |<m 不是|x -y |<2m 的必要条件.故为充分不必要条件. [规律方法] 两数和与差的绝对值不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |. (1)对绝对值三角不等式定理|a |-|b |≤|a ±b |≤|a |+|b |中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a |-|b ||≤|a ±b |≤|a |+|b |,它经常用于证明含绝对值的不等式.2.若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,求a 的取值范围.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a ≤3即可.故a 的取值范围为(-∞,3]. 考点三__绝对值不等式的综合应用______________(2013·高考辽宁卷)已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. [解] (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4,解得x ≥5. 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎨⎧a -12=1,a +12=2,于是a =3.[规律方法] 1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.3.(2015·唐山市第一次模拟)已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围.解:f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时等号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).1.求不等式|x +3|-|x -2|≥3的解集.解:原不等式等价于⎩⎪⎨⎪⎧x ≤-3,-x -3+x -2≥3或⎩⎪⎨⎪⎧-3<x <2,x +3+x -2≥3或⎩⎪⎨⎪⎧x ≥2,x +3-x +2≥3,解得1≤x <2或x ≥2,故原不等式的解集为{x |x ≥1}. 2.在实数范围内,解不等式||x -2|-1|≤1.解:依题意得-1≤|x -2|-1≤1,即|x -2|≤2,解得0≤x ≤4.故x 的取值范围是[0,4]. 3.(2015·山西省忻州市联考)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1,解得1≤x ≤2,∴m =1,n =2,m +n =3. (2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 4.(2014·高考课标全国卷Ⅱ)设函数f (x )=|1|ax ++|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围. 解:(1)证明:由a >0,有f (x )=|1|a x ++|x -a |≥|)(1|a x ax --+=1a +a ≥2.所以f (x )≥2. (2)f (3)=|13|a++|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.5.(2015·大连市模拟)设不等式|x -2|+|3-x |<a (a ∈N *)的解集为A ,且2∈A ,32∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解:(1)由题可得⎩⎪⎨⎪⎧a >1a ≤2所以1<a ≤2,因为a ∈N *所以a =2.(2)因为|x +2|+|x -2|≥|(x +2)-(x -2)|=4,所以f (x )的最小值是4. 6.(2015·新乡许昌平顶山调研)已知函数f (x )=|x -1|+|x -a |.若a >1,∀x ∈R ,f (x )+|x -1|≥1,求实数a 的取值范围.解:令F (x )=f (x )+|x -1|,则F (x )=⎩⎪⎨⎪⎧-3x +2+a ,x <1x -2+a ,1≤x <a ,3x -2-a ,x ≥a所以当x =1时,F (x )有最小值F (1)=a -1,只需a -1≥1,解得a ≥2,所以实数a 的取值范围为[2,+∞).1.(2015·辽宁五校协作体联考)已知函数f (x )=|2x -a |+a . (1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f )(2t≤m -f (-t )成立,求实数m 的取值范围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,∴a -6≤2x -a ≤6-a ,即a -3≤x ≤3,∴a -3=-2, ∴a =1.(2)∵f )(2t ≤m -f (-t ),∴|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎪⎨⎪⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.∴y min =72,∴m ≥72.2.(2013·高考课标全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g (x ),求a 的取值范围.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是{x |0<x <2}.(2)当x ∈[-a 2,12)时,f (x )=1+a ,不等式f (x )≤g (x )化为1+a ≤x +3,所以x ≥a -2对x ∈[-a 2,12)都成立,故-a 2≥a -2,即a ≤43.从而a 的取值范围是(-1,43].3.(2015·云南省统考)已知a 、b 都是实数,a ≠0,f (x )=|x -1|+|x -2|.(1)若f (x )>2,求实数x 的取值范围;(2)若|a +b |+|a -b |≥|a |f (x )对满足条件的所有a 、b 都成立,求实数x 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧3-2x ,x ≤11,1<x ≤2.2x -3,x >2由f (x )>2得⎩⎪⎨⎪⎧x ≤13-2x >2或⎩⎪⎨⎪⎧x >22x -3>2,解得x <12或x >52.∴所求实数x 的取值范围为(-∞,12)∪(52,+∞).(2)由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又∵|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,∴f (x )≤2.∵f (x )>2的解集为{x |x <12或x >52},∴f (x )≤2的解集为{x |12≤x ≤52},∴所求实数x 的取值范围为[12,52].4.已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y =mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪[14,+∞).。
绝对值是初中数学最活跃的概念之一,能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.
解绝对值方程的基本方法是设法去掉绝对值符号.将绝对值方程转化为常见的方程求解,今天我们主要学习两种类型的绝对值方程:一种是绝对值外只有常数;一种是绝对值外还有未知数。
对于前一种我们可以利用绝对值的意义直接去掉绝对值符号,转化为两个一元一次方程分别求解即可;对于后一种我们有两种方法:方法一是把绝对值外面的项当做一个整体视为非负数,直接去掉绝对值,转化为两个一元一次方程,求出两个解之后要检验去掉一个不符合的绝对值意义的解;方法二是直接转化为两个一元一次方程和一个不等式,分别求解这三个方程和不等式,把不满足不等式的解去掉。
一、典型例题
【例1】如果|x |=8,求x .
思路点拨 设法去掉绝对值符号,将原方程转化为一般的一元一次方程来求解(转化思想). 【例2】解方程:|2x -1|=3.
思路点拨 利用整体思想设法去掉绝对值符号,将原方程转化为一般的一元一次方程来求解.
【例3】解方程:方程5665-=+x x .
思路点拨 形如d cx b ax +=+的绝对值方程可变形为)(d cx b ax +±=+且0≥+d cx 。
【例4】解方程:1112
x x -=-. 思路点拨 形如d cx b ax +=+的绝对值方程可变形为)(d cx b ax +±=+且0≥+d cx 。
二、解方程专项训练:
1.15)1(3+=
-x x 2. 199519953990=+x
3. 2+=x x 4. 20002020002000⨯=+x
5. 0223=++x
6. 055=-+-x x
7. 0121=--
x 8. 523x -=
9. 43234+=--x x 10. 121x x -=-+
11.
21513x --= 12. x x -=-20082008
13.152x x --+= 思考:形如()ax b cx d e e +++=是常数该怎么解呢?。