七年级上册数学重点知识复习学案
- 格式:doc
- 大小:85.03 KB
- 文档页数:8
初一数学复习教案初一数学复习教案作为一无名无私奉献的教育工作者,就有可能用到教案,教案有助于顺利而有效地开展教学活动。
那么你有了解过教案吗?以下是店铺收集整理的初一数学复习教案,仅供参考,欢迎大家阅读。
初一数学复习教案篇1一、等式的概念和性质1等式的概念,用等号“=”表示相等关系的式子,叫做等式在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则2等式的类型(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立如:数字算式(2)条等式:只能用某些数值代替等式中的字母,等式才能成立方程需要才成立(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立如,注意:等式由代数式构成,但不是代数式代数式没有等号体3等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式若,则;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式若,则,注意:(1)在对等式变形过程中,等式两边必须同时进行即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,②等式具有传递性,二、方程的相关概念1方程,含有未知数的等式叫作方程注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母二者缺一不可2方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元3方程的已知数和未知数已知数:一般是具体的数值,如中(的系数是1,是已知数但可以不说)5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有、、、、等表示未知数:是指要求的数,未知数通常用、、等字母表示如:关于、的方程中,、、是已知数,、是未知数4方程的解使方程左、右两边相等的未知数的值,叫做方程的解5解方程求得方程的解的过程注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程6方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是三、一元一次方程的定义1一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数2一元一次方程的形式标准形式:(其中,,是已知数)的形式叫一元一次方程的标准形式最简形式:方程(,,为已知数)叫一元一次方程的最简形式注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式验证如方程是一元一次方程如果不变形,直接判断就出会现错误(2)方程与方程是不同的,方程的解需要分类讨论完成四、一元一次方程的解法1解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号(2)去括号:一般地,先去小括号,再去中括号,最后去大括号注意:不要漏乘括号里的项,不要弄错符号(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边注意:①移项要变号;②不要丢项(4)合并同类项:把方程化成的形式注意:字母和其指数不变(5)系数化为1:在方程的两边都除以未知数的系数(),得到方程的解注意:不要把分子、分母搞颠倒体2解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等3关于x的方程 ax b 解的情况⑴当a 0时,x⑵当a ,b 0时,方程有无数多个解⑶当a 0,b 0时,方程无解练习1、等式的概念和性质1.下列说法不正确的是()A等式两边都加上一个数或一个等式,所得结果仍是等式B等式两边都乘以一个数,所得结果仍是等式C等式两边都除以一个数,所得结果仍是等式D一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式2.根据等式的性质填空(1),则;(2),则;(3),则;(4),则练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?2.判断题(1)所有的方程一定是等式()(2)所有的等式一定是方程()(3)是方程()(4)不是方程()(5)不是等式,因为与不是相等关系()(6)是等式,也是方程()(7)“某数的3倍与6的差”的含义是,它是一个代数式,而不是方程()练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12;(2) + =5;(3)2x+y=3;(4)y2+5y-6=0;(5) =2.2.已知是关于的一元一次方程,求的值3.已知方程是关于x的一元一次方程,则m=_________4.已知方程是一元一次方程,则;练习4、一元一次方程的解与解法1)一元一次方程的解一)、根据方程解的具体数值确定1.若关于x的方程的解是,则代数式的值是_________。
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
七年级数学上册总复习教案第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。
有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。
有理数的运算是全章的重点。
在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。
6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。
表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
第一章有理数复习复习整理有理数有关概念和有理数的运算法则,运算律以及近似数等有关知识.重点:有理数概念和有理数的运算;难点:对有理数的运算法则的理解.知识回顾(一)正负数、有理数的分类正整数、零、负整数统称整数,试举例说明.正分数、负分数统称分数,试举例说明.整数和分数统称有理数.(二)数轴:规定了原点、正方向、单位长度的直线,叫数轴.(三)相反数的概念,只有符号不同的两个数叫做互为相反数.0的相反数是__0__.一般地:若a为任一有理数,则a的相反数为-a.相反数的相关性质:1.相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点0的两边,并且到原点的距离相等;2.互为相反数的两个数,和为0.(四)绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣;一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是__0__.一个有理数a的绝对值,用式子表示就是:(1)当a是正数(即a>0)时,∣a∣=a;(2)当a是负数(即a<0)时,∣a∣=__-a__;(3)当a =0时,∣a ∣= 0 .(五)有理数的运算(1)有理数加法法则:______________________; (2)有理数减法法则:______________________;(3)有理数乘法法则:______________________;(4)有理数除法法则:______________________;(5)有理数的乘方:________________________.求n 个相同因数的积的运算,叫做有理数的乘方.即:a n=aa …a (有n 个a ).从运算上看式子a n ,可以读作a 的n 次方;从结果上看式子a n ,可以读作a 的n 次幂. 有理数混合运算顺序:(1)先乘方,再乘除,后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行(六)科学记数法、近似数把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法.1.把下列各数填在相应的大括号内:1,,-789,25,0,-20,,-590,78正整数集{1,25,…};正有理数集{1,25,78…}; ,-789,-20,,-590…};负整数集{-789,-20,-590…};自然数集{1,25,0…};正分数集{78…};,,…}.2.如图所示的图形为四位同学画的数轴,其中正确的是( D )3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来. 4,-|-2|,,1,0.4.下列语句中正确的是( D )A .数轴上的点只能表示整数B .数轴上的点只能表示分数C .数轴上的点只能表示有理数D .所有有理数都可以用数轴上的点表示出来5.-5的相反数是__5__;-(-8)的相反数是-8;-[+(-6)]=__6__;0的相反数是__0__;a 的相反数是-a .6.若a 和b 是互为相反数,则a +b =__0__.7.如果-x =-6,那么x =__6__;-x =9,那么x =-9.8.|-8|=__8__;-|-5|=-5;绝对值等于4的数是±4.9.如果a >3,则|a -3|=__a -3__,|3-a |=a -3. 10.有理数中,最大的负整数是__-1__,最小的正整数是__1__,最大的非正数是__0__.11.33=__27__;(-12)2=__14__;-52=-25;22的平方是__16__. 12.下列各式正确的是( C )A .-52=(-5)2B .(-1)1996=-1996 C .(-1)2003-(-1)=0 D .(-1)99-1=013.用科学记数法表示:1 305 000 000=1.305×109;-1 020=-1.02×103. 14.120万用科学记数法应写成1.20×10624000.15.千万分位;5.47×105精确到__千__位.16.计算:(1)12-(-18)+(-7)-15;解:原式=12+18-7-15=30-22=8;(2)-23÷49×(-23)3; 解:原式=-8×94×(-827) =163; (3)(-1)10×2+(-2)3÷4;解:原式=1×2-8÷4=2-2=0;(4)(-10)4+[(-4)2-(3+32)×2].解:原式=10000+[16-(3+9)×2]=10000+(16-24)=10000-8=9992.。
七年级数学上册知识点教案教学目标:1.能够理解并操作整数的加减乘除法;2.学会使用分数进行加减乘除运算,并能够在日常问题中灵活运用;3.掌握解一元一次方程的基本方法,并能够独立解决相关问题。
教学重点:1.整数的加减乘除法运算;2.分数的加减乘除运算方法和日常问题中的应用;3.解一元一次方程的基本方法。
教学难点:1.理解整数加减乘除法的正负规则;2.掌握分数的乘法和除法运算方法,并能够在日常问题中应用;3.熟练掌握解一元一次方程的基本方法。
教学过程:一、整数运算1.整数的概念和符号的表示方法。
2.整数的加减法运算。
3.整数的乘除法运算。
二、分数运算1.分数的概念和基本性质。
2.分数的加减法运算。
3.分数的乘法和除法运算。
4.分数的化简和通分。
5.应用题。
三、方程的解法1.方程的概念和基本形式。
2.移项变形和消元。
3.验证解的正确性。
四、综合练习1.整数加减乘除法的练习题。
2.分数加减乘除法的练习题。
3.一元一次方程解法的练习题。
4.综合应用题。
五、教学总结1.整理知识点。
2.解答学生的疑问。
3.巩固作业的布置。
教学方法:1.探究式教学法:让学生通过实际问题的操作感受整数、分数和方程的运用。
2.引导式教学法:通过引导让学生自行解决问题,培养学生的解决问题的能力。
3.综合教学法:通过将整数、分数和方程三个部分联系起来,加深学生对知识点的理解。
教学手段:1.黑板、白板2.练习题3.计算器教学实施:一、整数运算1.整数的概念和符号的表示方法。
教师将正数、负数和0三种整数的概念解释清楚,然后让学生书写整数符号(+、-、0)。
2.整数的加减法运算。
教师先让学生回忆数字的加减法,并借助图形和数字,让学生理解整数的加减法规则。
3.整数的乘除法运算。
教师举例,通过有趣的运算游戏来帮助学生理解整数的乘除法规则。
二、分数运算1.分数的概念和基本性质。
教师将分数的定义、性质和基本概念解释清楚,然后以图形和数字为例,帮助学生理解分数的概念。
专题11 线段的计算专题复习(解析版)第一部分教学案类型一单中点1.(2020秋•开福区校级月考)已知线段AB=13cm,C为线段AB上一点,BC=5cm,点D 为AC的中点.求DB的长度.思路引领:根据线段图,先求出AC的长,再求出DC的长,就可以求出DB的长.解:∵AB=13cm,BC=5cm,∴AC=AB﹣BC=8cm.∵D是AC中点.∴CD=12AC=4cm,∴DB=DC+CB=9cm.总结提升:本题主要考查线段的长度计算,分别考查了线段的做差、中点、求和等问题.属于简单题.主要锻炼学生书写解题过程,和逻辑推理能力.2.已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2cm,点E是DC的中点,则线段DE的长为 .思路引领:分C在线段AB延长线上,C在线段AB上两种情况作图.再根据正确画出的图形解题.解:∵AB=10cm,点D是线段AB的中点,∴DB=12AB=12×10=5(cm),①C在线段AB上,∵BC=2cm,∴DC=AB﹣BC=5﹣2=3(cm),∵点E是DC的中点,∴DE=12DC=12×3=32(cm),②C在线段AB延长线上,∵BC=2cm,∴DC=DB+BC=5+2=7(cm),∵点E是DC的中点,∴DE=12DC=12×7=72(cm),故答案为:32或72.总结提升:本题考查了两点间的距离,利用了线段中点的性质,线段的和差,分类讨论是解题关键,以防遗漏.3.(2019秋•潮阳区期末)如图,点C、D在线段AB上,D是线段AB的中点,AC=13 AD,CD=4,求线段AB的长.思路引领:根据AC=13AD,CD=4,求出CD与AD,再根据D是线段AB的中点,即可得出答案.解:∵AC=13AD,CD=4,∴CD=AD﹣AC=AD―13AD=23AD,∴AD=32CD=6,∵D是线段AB的中点,∴AB=2AD=12;总结提升:此题考查了两点间的距离公式,主要利用了线段中点的定义,比较简单,准确识图是解题的关键.类型二双中点4.(2019秋•秦淮区期末)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC=4,BC=6,则线段MN= ;(2)若AB=m,求线段MN的长度.思路引领:(1)由已知可求得CM,CN的长,从而不难求得MN的长度;(2)由已知可得AB的长是NM的2倍,已知AB的长则不难求得MN的长度.解:(1)∵N是BC的中点,M是AC的中点,AC=4,BC=6,∴MC=2,CN=3,∴MN=MC+CN=2+3=5;(2)∵M是AC的中点,N是BC的中点,AB=m,∴NM=MC+CN=12AB=12m.故答案为:5.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.5.(2022春•垦利区期末)如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.思路引领:(1)根据“点M是AC的中点”,先求出MC的长度,再利用BC=MB﹣MC,CN=12BC,MN=CM+CN即可求出线段BC,MN的长度.(2)先画图,再根据线段中点的定义得MC=12AC,NC=12BC,然后利用MN=MC﹣NC得到MN=12 acm.解:(1)∵M是AC的中点,∴MC=12AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN=12BC=3.5cm,∴MN=MC+NC=6.5cm;(2)如图1(或图2):∵M是AC的中点,∴CM=12 AC,∵N是BC的中点,∴CN=12 BC,∴MN=CM﹣CN=12AC―12BC=12(AC﹣BC)=12acm.总结提升:本题主要考查了两点间的距离,线段的中点定义,线段的中点把线段分成两条相等的线段.6.(2019秋•长兴县期末)如图,已知点C 为线段AB 上一点,AC =15cm ,CB =35AC ,点D ,E 分别为线段AC ,AB 的中点,求线段AB 与DE 的长.思路引领:根据线段的中点定义即可求解.解:∵AC =15cm ,CB =35AC ,∴BC =9,∴AB =AC +BC =24,∵点D ,E 分别为线段AC ,AB 的中点,∴AD =12AC =152AE =12AB =12∴DE =AE ﹣AD =92.答:线段AB 与DE 的长为24、92.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.7.已知A 、B 、C 三点在同一条直线上,AB =8,BC =4,M 、N 分别为AB 、BC 的中点,求线段MN 的长.思路引领:由题意将C 点位置分两种情况分别求解:①当C 点在AB 之间时,M 与C 点重合;②当C 在线段AB 延长线上时,MN =BM +BN .解:①当C 点在AB 之间时,由已知,M 与C 点重合,∵AB =8,BC =4,M 、N 分别为AB 、BC 的中点,∴MN =BN =2;②当C 在线段AB 延长线上时,MN =BM +BN =4+2=6;综上所述,MN 的长为2或6.总结提升:本题考查线段两点间距离;能够准确确定C 点的位置是解题的关键.类型三 方程思想8.(2019秋•克东县期末)如图,N 为线段AC 中点,点M 、点B 分别为线段AN 、NC 上的点,且满足AM :MB :BC =1:4:3.(1)若AN =6,求AM 的长.(2)若NB=2,求AC的长.思路引领:(1)根据线段中点的定义得到AC=2AN=12,于是得到AM=1143×AC=1 8×12=32;(2)根据线段中点的定义得到AN=12AC,得到AB=14143AC=58AC,列方程即可得到结论.解:(1)∵AN=6,N为线段AC中点,∴AC=2AN=12,∵AM:MB:BC=1:4:3.∴AM=1143×AC=18×12=32;(2)∵N为线段AC中点,∴AN=12 AC,∵AM:MB:BC=1:4:3,∴AB=14143AC=58AC,∴BN=AB﹣AN=58AC―12AC=18AC=2,∴AC=16.总结提升:本题考查的是两点间的距离,正确理解线段中点的意义是解题的关键.9.(2019秋•江夏区期末)如图,点B,D在线段AC上,BD=13AB,AB=34CD,线段AB、CD的中点E、F之间的距离是20,求线段AC的长.思路引领:设BD=x,求出AB=3x,CD=4x,求出BE=12AB=1.5x,DF=2x,根据EF=20得出方程1.5x+2x﹣x=5,求出x即可.解:设BD=x,则AB=3x,CD=4x,∵线段AB、CD的中点分别是E、F,∴BE=12AB=1.5x,DF=2x,∵EF=20,∴1.5x+2x﹣x=20,解得:x=8,∴AE+EF+CF=1.5x+20+2x=12+20+16=48.总结提升:本题考查了求两点之间的距离,能根据题意得出方程是解此题的关键.10.(鄂城区期末)已知A,B,C,D四点在同一条直线上,点C是线段AB的中点,点D 在线段AB上.(1)若AB=6,BD=13BC,求线段CD的长度;(2)点E是线段AB上一点,且AE=2BE,当AD:BD=2:3时,线段CD与CE具有怎样的数量关系?请说明理由.思路引领:(1)根据线段中点的性质求出BC,根据题意计算即可;(2)设AD=2x,用x表示出AB,根据题意用x表示出CD、CE,得到CD与CE的数量关系.解:(1)如图1,∵点C是线段AB的中点,AB=6,∴BC=12AB=3,∵BD=1 3,∴BD=1,∴CD=BC﹣BD=2;(2)如图2,设AD=2x,则BD=3x,∴AB=AD+BD=5x,∵点C是线段AB的中点,∴AC=12AB=52x,∴CD=AC﹣AD=12 x,∵AE=2BE,∴AE=23AB=103x,CE=AE﹣AC=56 x,∴CD:CE=12x:56x=3:5.总结提升:本题考查的是两点间的距离的计算,正确理解线段中点的概念和性质是解题的关键.11.(2019秋•樊城区期末)如图,AB=97,AD=40,点E在线段DB上,DC:CE=1:2,CE:EB=3:5,求AC的长度.思路引领:根据AB=97,AD=40,可得BD=AB﹣AD=57,由DC:CE=1:2,CE:EB=3:5,可以设DC=x,可得CE=2x,EB=10x3,进而列出等式解得x的值,再求AC的长即可.解:因为AB=97,AD=40,所以BD=AB﹣AD=57因为DC:CE=1:2,CE:EB=3:5,所以设DC=x,则CE=2x,EB=10x 3,因为BD=DC+CE+EB所以x+2x+10x3=57解得x=9所以AC=AD+DC=40+9=49.答:AC的长度为49.总结提升:本题考查了两点间的距离,解决本题的关键是利用线段之间的关系列出等式.类型四整体思想12.如图,点P在线段AB的延长线上,点C为线段AB的中点.试探究PA+PB与PC之间的数量关系,并说明理由.思路引领:设AC=BC=x,PB=y,求出PA+PB的长,然后与PC的长进行比较即可发现它们之间的数量关系.解:PA+PB与PC之间的数量关系为:PA+PB=2PC.设AC=BC=x,PB=y,由图中所给信息可得:则PC=x+y,PA=2x+y,所以PA+PB=2x+y+y=2(x+y),所以PA+PB=2PC.总结提升:本题考查线段的和差问题,关键是正确表示出线段的长.13.(2021秋•覃塘区期末)如图,点C,D为线段AB的三等分点,点E为线段AC的中点,若ED=12,则线段AB的长为 .思路引领:设EC=x,根据点E为线段AC的中点,得AC=2EC=2x,再根据点C,D 为线段AB的三等分点,得AB=3AC,结合ED=12,求出x,进而得出线段AB的长.解:设EC=x,∵点E为线段AC的中点,∴AC=2EC=2x,∵点C,D为线段AB的三等分点,∴AC=CD=BD=2x,∵ED=EC+CD,ED=12,∴x+2x=12,解得x=4,∴AB=3AC=24,故答案为:24.总结提升:本题主要考查了两点间的距离,掌握线段三等分点的定义,线段之间的数量转化是解题关键.14.如图,已知C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.(1)若AB=24,CD=10,求MN的长.(2)若AB=a,CD=b,请用含,b的式子表示出MN的长.思路引领:(1)利用M,N分别是AC,BD的中点,可以得出MC=12AB,DN=12BD,再利用线段的和差关系表示即可求出答案;(2)和方法(1)一样,利用线段的和差关系表示出关系式即可.解:(1)∵M,N分别是AC,BD的中点,∴MC=12AB,DN=12BD,∴MN=MC+CD+DN=12AC+12BD+CD=12(AC+BD)+CD=12(AB―CD)+CD=12AB+12CD=12(AB+CD)=12(24+10)=17,故MN的长是17.答:MN的长是17.(2)由(1)可知,MN =12(AB +CD ),∵AB =a ,CD =b ,∴MN =12(a +b ),答:MN 的长是12(a +b ).总结提升:本题主要考查两点间的距离,熟练掌握中点的定义和线段的和差关系是解题的关键.类型五 分类讨论思想15.(聊城期末)已知A ,B ,C 三点在同一条直线上,若AB =60cm ,BC =40cm ,则AC 的长为 .思路引领:根据题意,分两种情况讨论:(1)C 在AB 内,则AC =AB ﹣BC ;(2)C 在AB 外,则AC =AB +BC .解:(1)C 在AB 内,则AC =AB ﹣BC =20cm ;(2)C 在AB 外,则AC =AB +BC =100cm .∴AC 的长为100cm 或20cm .总结提升:本题渗透了分类讨论的思想,体现了思维的严密性.灵活运用线段的和、差转化线段之间的数量关系.在今后解决类似的问题时,要防止漏解.16.( 永新县期末)已知线段AB =6,在直线AB 上取一点P ,恰好使AP =2PB ,点Q 为PB 的中点,求线段AQ 的长.思路引领:根据中点的定义可得PQ =QB ,根据AP =2PB ,求出PB =13AB ,然后求出PQ 的长度,即可求出AQ 的长度.解:如图1所示,∵AP =2PB ,AB =6,∴PB =13AB =13×6=2,AP =23AB =23×6=4;∵点Q 为PB 的中点,∴PQ =QB =12PB =12×2=1;∴AQ =AP +PQ =4+1=5.如图2所示,∵AP =2PB ,AB =6,∴AB =BP =6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.总结提升:本题考查了两点间的距离:两点的连线段的长叫两点间的距离,解题时注意分类思想的运用.17.如图,已知点C,D为线段AB上顺次两点,M,N分别是AC,BD的中点.若AB=24,CD=10,求MN的长.思路引领:根据点M、N分别为AC、BD的中点,可求出MC+ND的值,进而求出MN 的值.解:∵点M、N分别为AC、BD的中点,∴MA=MC=12AC,NB=ND=12BD,∴MC+ND=12(AC+BD)=12(AB﹣CD)=12(24﹣10)=7(cm),∴MN=MC+ND+CD=7+10=17(cm),即MN的长为17cm.总结提升:本题主要考查两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.18.已知:线段AB=10,C、D为直线AB上的两点,且AC=6,BD=8,求线段CD的长.思路引领:因为C、D的位置不确定,需要分四种情况讨论,分别画出图形,即可求出线段CD的长.解:分四种情况:①图1中,CD=CB+BD=(AB﹣AC)+BD=4+8=12;②图2中,CD=AB﹣AD﹣BC=AB﹣(AB﹣BD)﹣(AB﹣AC)=10﹣2﹣4=4;③图3中,CD=CA+AB+BD=24;④图4中,CD=CA+AD=CA+(AB﹣BD)=6+2=8.综上可得:线段CD的长为12或4或24或8.总结提升:本题考查了两点间的距离,解答本题的关键是分类讨论C、D的位置,容易漏解.类型六动点问题19.如图,数轴上A、B所对应的数分别为﹣5、10,O为原点,点C为数轴上一动点且对应的数为x.点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动(不改变方向).设运动时间为t秒.(1)若点P、Q相向而行且OP=OQ,求t的值.(2)若点P、Q在点C处相遇,求出C点对应的数x.(3)当PQ=5时,求t的值.(4)若点P、Q相向,同时一只宠物鼠每秒4个单位长度从B点出发,与点P相向而行,宠物鼠遇到P后立即返回,又遇到Q点后立即返回,又遇到P后立即返回…直到A、B 相遇为止,求宠物鼠整个过程中的行驶路程.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程﹣10=Q的路程﹣5,列出关于t的方程求解即可;(2)求出P点运动的路程,进一步求解即可;(3)根据PQ=5,分三种情况列出关于t的方程求解即可;(4)根据路程=速度×时间,列式计算即可求解.解:(1)依题意有(2+3)t=10﹣(﹣5),解得t=3;或3t﹣10=2t﹣5,解得t=5.答:t的值是3或5.(2)﹣5+3×2=﹣5+6=1,或10﹣[10﹣(﹣5)]÷(3﹣2)×3=10﹣15÷1×3=﹣35.故C点对应的数是1或﹣35.(3)依题意有①(2+3)t=10﹣(﹣5)﹣5,解得t=2;②(2+3)t=10﹣(﹣5)+5,解得t=4;答:t的值是2或4.(4)4×3=12个单位长度.答:宠物鼠整个过程中的行驶路程是12个单位长度.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.20.如图,数轴上A、B所对应的数分别为﹣5,10,O为原点,点P以每秒2个单位长度,点Q以每秒3个单位长度,分别自A、B两点同时出发,在数轴上运动,设运动时间为t 秒.(1)若点P、Q相向而行,且OP=OQ,求t的值;(2)若P、Q相向而行,且PQ=5,求t的值;(3)若P、Q同时向左运动,且PQ=5,求t的值.思路引领:(1)根据OP=OQ,即路程和=AB,或P的路程−10=Q的路程−5,列出关于t的方程求解即可;(2)由于运动的时间为t秒,根据P、Q相向而行,且PQ=5,列出方程求得t的值即可;(3)根据P、Q同时向左运动,且PQ=5,列出关于t的方程求解即可.解:(1)依题意有(2+3)t=10−(−5),解得t=3;或3t−10=2t−5,解得t=5.答:t的值是3或5.(2)依题意有|15﹣3t﹣2t|=5,即15﹣3t﹣2t=5或15﹣3t﹣2t=﹣5,解得t=2或4;(3)依题意有|3t﹣15﹣2t|=5,3t﹣15﹣2t=5或3t﹣15﹣2t=﹣5,解得t=20或10,答:t的值是20或10.总结提升:考查了一元一次方程的应用,两点间的距离的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(2020秋•西湖区期末)如图,数轴上有A,B两点,A在B的左侧,表示的有理数分别为a,b,已知AB=12,原点O是线段AB上的一点,且OA=5OB.(1)求a,b的值.(2)若动点P,Q分别从A,B同时出发,向数轴正方向匀速运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,设运动时间为t秒,当点P与点Q重合时,P,Q两点停止运动,当t为何值时,2OP﹣OQ=3.(3)在(2)的条件下,若当点P开始运动时,动点M从点A出发,以每秒3个单位长度的速度也向数轴正方向匀速运动,当点M追上点Q后立即返回,以同样的速度向点P 运动,遇到点P后点M就停止运动.求点M停止时,点M在数轴上所对应的数.思路引领:(1)由AO=5OB可知,将12平均分成6份,AO占5份为10,OB占一份为2,由图可知,A在原点的左边,B在原点的右边,从而得出结论;(2)分两种情况:点P在原点的左侧和右侧时,OP表示的代数式不同,OQ=2+t,分别代入2OP﹣OQ=3列式即可求出t的值;(3)设点M运动的时间为t秒,分两种情况:点M追上点Q;点P与点M相遇时;列出方程即可解决问题.解:(1)∵AB=12,AO=5OB,∴AO=10,OB=2,∴A点所表示的数为﹣10,B点所表示的数为2,∴a=﹣10,b=2.故答案为:﹣10;2;(2)当0<t<5时,如图1,AP =2t ,OP =10﹣2t ,BQ =t ,OQ =2+t ,∵2OP ﹣OQ =3,∴2(10﹣2t )﹣(2+t )=3,解得t =3,当点P 与点Q 重合时,如图2,2t =12+t ,解得t =12,当5<t <12时,如图3,OP =2t ﹣10,OQ =2+t ,则2(2t ﹣10)﹣(2+t )=3,解得t =813,综上所述,当t 为3或813时,2OP ﹣OQ =3;(3)设点M 运动的时间为t 秒,点M 追上点Q ,3(t ―103)=2+t ,解得t =6,∴OP =2(t ﹣5)=2,此时OM =3(t ―103)=8;点P 与点M 相遇时,2t +3t =6,解得t =1.2,此时OM =8﹣3×1.2=4.4.故点M 停止时,点M 在数轴上所对应的数是4.4.总结提升:本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.第二部分 配套作业一.填空题(共3小题)1.(2006•鄂州)已知AB=8cm,若点C在AB的延长线上,且B为AC的一个三等分点,则AC= cm.思路引领:已知AB的长度,根据B为AC的一个三等分点,因B点不确定,要分类讨论.解:本题要分两种情况讨论:①如果,BC占线段AC的三分之一,则AC等于12cm;②如果AB占线段AC的三分之一,AC等于24cm.∴AC=12或24cm.总结提升:要分类讨论,以确定AC的长度.2.(2022•天河区校级模拟)如图,点C是线段AB的中点,点D在CB上,BC=4cm,BD =1.5cm,则线段AD= cm.思路引领:首先根据线段中点定义求出AC、BC长.再根据线段和差关系求出AD的长.解:∵点C是线段AB的中点,∴AC=BC=4(cm),∵BD=1.5cm,∴CD=2.5(cm),∴AD=AC+CD=6.5(cm),故答案为:6.5.总结提升:本题主要考查了两点间的距离,熟练掌握线段中点定义的应用,线段之间的数量转化是解题关键.3.(2021秋•宣化区期末)已知点P是射线AB上一点,当PAPB=2或PAPB=12时,称点P是射线AB的强弱点,若AB=6,则PA= .思路引领:分三种情况讨论,分别画出符合题意的图形,结合P的位置得到PA与PB的具体的数量关系,结合AB=6,从而可得答案.解:①如图,AB=6,当PAPB =12时,∴PA=13AB=13×6=2;②如图,AB=6,当PAPB=2且P在线段AB上时,∴PA =23AB =23×6=4;③如图,AB =6,当PA PB=2且P 在线段AB 的延长线上时,∴PA =2AB =2×6=12;综上:PA =2或4或12.故答案为:2或4或12.总结提升:本题考查的是线段的和差倍分关系,有理数的乘法运算,分类思想的运用,掌握线段的和差倍分是解题的关键.二.解答题(共15小题)4.已知点A ,B ,C 是同一条直线上的任意三点,如果AC =7,BC =3,求线段AC 和BC 的中点间距离.思路引领:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离;②当B 在线段AC 上时,那么AB =AC ﹣CB ,然后根据中点的性质即可求出线段AC 和BC 的中点之间的距离.解:此题有两种情况:①当C 点在线段AB 上,此时AB =AC +BC ,而AC =7,BC =3,∴AB =AC +BC =10,∴线段AC 和BC 的中点之间的距离为12AC +12BC =12(AC +BC )=5;②当B 点在线段AC 上,此时AB =AC ﹣BC ,而AC =7,BC =3,∴AB =AC ﹣BC =4,∴线段AC 和BC 的中点之间的距离为12AC ―12BC =12(AC ﹣BC )=2.故答案为:5或2.总结提升:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.5.(2020秋•盱眙县期末)如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.思路引领:作出图形后首先求得AC的长,然后求其一半的长,最后求线段BP的长即可.分点C在AB上和点C在AB的延长线上两种情况讨论即可.解:当点C在AB上时,如图:∵AB=10cm,BC=4cm,∴AC=AB﹣BC=10﹣4=6(cm),∵P为线段AC的中点,∴PC=12AC=12×6=3(cm),∴BP=PC+BC=3+4=7(cm);当点C在AB的延长线上时,如图:∵AB=10cm,BC=4cm,∴AC=AB+BC=10+4=14(cm),∵P为线段AC的中点,∴PC=12AC=12×14=7(cm),∴BP=PC﹣BC=7﹣4=3(cm);∴BP的长为7cm或3cm总结提升:本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.(2021秋•钦北区期末)如图,线段AB=8,点C是AB的中点,点D是BC的中点,E 是AD的中点.(1)求线段BD的长;(2)求线段EC的长.思路引领:(1)由点C是AB的中点可得AC=BC=4cm,由点D是BC的中点可得BD=CD=2即可;(2)由(1)可知AE、AD的长,再根据EC=AC﹣AE,即可得出线段EC的长.解:(1)∵点C是AB的中点,AB=8,∴12AB=AC=BC=4,又∵点D是BC的中点,∴12BC=BD=CD=2.(2)由(1)得AC=4,AD=AC+CD=6,∵E是AD的中点,∴12AD=AE=ED=3,∴EC=AC﹣AE=4﹣3=1.总结提升:本题考查了两点间的距离以及线段中点的定义,利用线段的和差是解题关键.7.(2019秋•南关区校级期末)如图,延长线段AB至点D,使点B为线段AD的中点,点C在线段BD上,CD=2BC,若BC=3,求AD的长.思路引领:先由CD=2BC,BC=3,求得CD=6,进而得BD,再由点B为线段AD的中点,得AD.解:∵CD=2BC,BC=3,∴CD=6,∴BD=BC+CD=3+6=9,∵点B为线段AD的中点,∴AD=2BD=18.总结提升:本题主要考查了线段的和差计算,线段的中点定义,关键是弄清各线段之间的关系,正确运用线段和差和线段中点,进行解答.8.(2022秋•江都区月考)在直线m上取点A、B,使AB=10cm,再在m上取一点P,使PA=2cm,M、N分别为PA、PB的中点,求线段MN的长.思路引领:根据题意,正确画出图形,此题要分情况讨论:(1)当点P在线段AB上;(2)当点P在线段BA的延长线上.解:(1)如图,当点P在线段AB上时,PB=AB﹣PA=8cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PM+PN=12AP+12BP=1+4=5(cm);(2)如图,当点P在线段BA的延长线上时,PB=AB+PA=12cm,M、N分别为PA、PB的中点,∴PN=12PB,PM=12AP.∴MN=PN﹣PM=12BP―12AP=6﹣1=5(cm).∴线段MN的长是5cm.总结提升:本题考查了两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.要分情况进行讨论,以防遗漏.9.如图,点C是线段AB的中点,点D是线段AC上一点,CD=2AD.(1)若线段AB=12,求CD的长;(2)若E是线段BC上一点,CE:BE=1:5,且CD比CE的3倍长1,求BE的长.思路引领:(1)根据线段中点的定义可得AC=6,再根据已知可得CD=23AC=4,即可解答;(2)根据题意可设CE=x,则CD=3x+1,再根据已知可得BC=6x,AC=9x32,然后根据线段中点的定义列出关于x的方程,进行计算即可解答.解:(1)∵点C是线段AB的中点,AB=12,∴AC=12AB=6,∵CD=2AD,∴CD=23AC=4,∴CD的长为4;(2)如图:∵CD比CE的3倍长1,∴设CE=x,则CD=3x+1,∵CE:BE=1:5,∴BC=6CE=6x,∵CD=2AD,∴AC=32CD=9x32,∵点C是线段AB的中点,∴AC=BC,∴9x32=6x,∴x=1,∴BE=5CE=5,∴BE的长为5.总结提升:本题考查了两点间的距离,根据题目的已知条件并结合图形进行分析是解题的关键.10.(2022秋•高密市期中)如图所示,B,C两点把线段AD分成4:5:7的三部分,E是线段AD的中点,CD=14厘米.(1)求EC的长.(2)求AB:BE的值.思路引领:(1)由题意知,B,C两点把线段AD分成4:5:7三部分,则令AB,BC,CD分别为4x厘米,5x厘米,7x厘米.根据CD=14厘米,得出x=2.根据E是线段AD的中点,可得ED=12AD=16厘米,代入EC=ED﹣CD可求;(2)分别求出AB,BE的长后计算AB:BE的值.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米,∵CD=7x=14,∴x=2.(1)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=AB+BC+CD=8+10+14=32(厘米).∵E是线段AD的中点,∴ED=12AD=16厘米,∴EC=ED﹣CD=16﹣14=2(厘米);(2)∵BC=10厘米,EC=2厘米,∴BE=BC﹣EC=10﹣2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.总结提升:本题考查了两点的间的距离,通过设适当的参数,由CD=7x=14求出参数x =2后,再求出各线段的值,同时利用线段的中点把线段分成相等的两部分的性质.11.(2020秋•巴南区期末)已知点B、D在线段AC上,(1)如图1,若AC=20,AB=8,点D为线段AC的中点,求线段BD的长度;(2)如图2,若BD=13AB=14CD,AE=BE,EC=13,求线段AC的长度.思路引领:(1)由线段的中点,线段的和差求出线段DB的长度;(2)由线段的中点,线段的和差倍分求出AC的长度.解:(1)∵D为线段AC的中点∴DC=12AC=12×20=10,∵AB=8,∴BD=AD﹣AB=10﹣8=2;(2)设BD=x,∵BD=13AB=14CD,∴AB=3x,CD=4x,∴AC=3x+x+4x=8x,∵AE=BE,∴AE=12AB=1.5x,∴EC=8x﹣1.5x=13,解得x=2,∴AC=8x=16.总结提升:本题综合考查了线段的中点,线段的和差倍分等相关知识点,重点掌握直线上两点之间的距离公式计算方法.12.(2022秋•南丹县期末)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.思路引领:(1)根据线段的和差,可得答案;(2)根据线段的和差,可得答案;(3)根据线段中点的定义和线段的和差即可得到结论.(1)设BC=xcm,则AC=3xcm.又∵AC=AB+BC=(20+x)cm,∴20+x=3x,解得x=10.即BC=10cm;(2)∵AD=AB=20cm,∴DC=AD+AB+BC=20cm+20cm+10cm=50cm;(3)∵M为AB的中点,∴AM=12AB=10cm,∴MD=AD+AM=20cm+10cm=30cm.总结提升:本题考查了求两点之间的距离的应用,主要考查学生的计算能力.13.(2020秋•喀喇沁旗期末)先画图,再解答:(1)画线段AB,在线段AB的反向延长线上取一点C,使AB=12AC,再取AB得中点D;(注:非尺规作图)(2)在(1)中,若C、D两点间的距离为6cm,求线段AB的长.思路引领:(1)直接根据题意画出图形即可;(2)根据中点的定义和已知条件求出CD=5AD,再根据CD=6cm,得出AD的长,再根据AD=12AB,即可得出答案.解:(1)根据题意画图如下:(2)∵点D是AB的中点,∴AD=12 AB,∵AB=12 AC,∴CD=5AD,∵CD=6cm,∴AD=65 cm,∴AB=125cm.总结提升:此题考查了两点间的距离,根据题意正确画出图形是解题的关键,比较简单.14.(2021秋•江阴市校级月考)已知:如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若线段AC =6,BC =4,则求线段AB 和线段MN 的长度;(2)若AB =a ,则线段MN = 12a ;(3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上”,(1)小题的结果会有变化吗?求出线段MN 的长度.思路引领:(1)由点M 、N 分别是AC 、BC 的中点.可知MC =3,CN =2,从而可求得MN 的长度;(2)由点M 、N 分别是AC 、BC 的中点,MN =MC +CN =12(AC +BC )=12AB ;(3)由于点C 在直线AB 上,所以要分两种情况进行讨论计算MN 的长度.解:(1)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC +CN =5;(2)∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC ,CN =12BC ,∴MN =MC +CN =12(AC +BC )=12AB =12a .故答案为:12a ;(3)当点C 在线段AB 内时,由(1)可知:MN =5,当点C 在线段AB 外时,此时点C 在点B 的右侧,∵点M 、N 分别是AC 、BC 的中点.∴MC =12AC =3,CN =12BC =2,∴MN =MC ﹣CN =1,综上所述,MN =5或1.总结提升:本题考查线段计算问题,涉及线段中点的性质,分类讨论的思想,属于基础题型.15.(2020秋•淮北月考)如图,已知B ,C 是线段AD 上的任意两点,M 是AB 的中点,N是CD 的中点.(1)若AB =4,BC =1,CD =6,求线段MN 的长度;(2)若AD=11,BC=1,求线段MN的长度;(3)请你说明:2MN=BC+AD.思路引领:(1)由已知可求得MB,CN的长,从而不难求得MN的长度;(2)由已知条件可知,MN=MB+CN+BC,AD=2(MB+CN)+BC,先求出MB+CN的值,则可求MN的长度;(3)由MN=MB+CN+BC,利用等式性质可得2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.解:(1)∵M是AB的中点,N是CD的中点,∴MN=MB+BC+CN=12AB+BC+12CD,∵AB=4,BC=1,CD=6,∴MN=12×4+1+12×6=6;(2)∵AD=AB+BC+CD=2(MB+CN)+BC,∵AD=11,BC=1,∴MB+CN=5,∴MN=MB+BC+CN=6;(3)∵MN=MB+BC+CN,∴2MN=2MB+2BC+2CN=BC+(AB+BC+CD)=BC+AD.总结提升:本题主要考查了两点间的距离,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.16.(2006秋•中山区期末)如图,线段AB=30cm,点O在AB线段上,M、N两点分别从A、O同时出发,以2cm/s,1cm/s的速度沿AB方向向右运动.(1)如图1,若点M、点N同时到达B点,求点O在线段AB上的位置.(2)如图2,在线段AB上是否存在点O,使M、N运动到任意时刻,(点M始终在线段AO上,点N始终在线段OB上),总有MO=2BN?若存在,求出点O在线段AB上的位置;若不存在,请说明理由.思路引领:(1)设AO的长度为xcm,则OB=(30﹣x)cm,根据时间相等建立方程求出其解即可;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由MO=2BN 建立方程求出其解即可.解:(1)设AO的长度为xcm,则OB=(30﹣x)cm,由图形,得30 2=30x1,解得:x=15,∴点O在AB的中点;(2)设AO的长度为ycm,运动的时间为t,则MO=y﹣2t,BN=30﹣y﹣t,由题意,得y﹣2t=2(30﹣y﹣t),解得:y=20,∴AO=20cm时,MO=2BN.总结提升:本题考查了线段与行程问题的关系的运用,线段之间的数量关系的运用,一元一次方程的运用,解答时找到题意的等量关系是关键.17.(2016秋•和平区期末)已知A,B,C三点在同一条数轴上.(1)若点A,B表示的数分别为﹣2,4,且AC=13AB,则点C表示的数是 ﹣4或0 ;(2)若点A,B表示的数分别为m,n,且m<n.①点C在点A的右边,且AC=13AB,求点C表示的数(用含m,n的式子表示);②已知n﹣m=10,点P,Q分别是这条数轴上的两个动点,点P以每秒2个单位长度的速度从点A向左运动,同时点Q以每秒3个单位长度的速度从点B向左运动,当点Q追上点P后立即返回向点B运动,点P继续向左运动,当点Q到达点B时,点P,Q同时停止运动.在此运动过程中,点P的运动时间为多少秒时,BP=2BQ(P,Q两点的运动速度始终保持不变).思路引领:(1)由已知条件得到AB=6,设点C表示的数是x,列方程即可得到结论;(2)①设点C表示的数是x,根据题意列方程即可得到结论;②Ⅰ、当点Q没追上点P时,设点P的运动时间为t秒时,BP=2BQ,Ⅱ、设点P运动x秒时,点Q追上点P,列方程得到x=10,当点Q追上点P后,设点P再运动t秒时,BP=2BQ,根据题意列方程即可得到结论.解:(1)∵点A,B表示的数分别为﹣2,4,∴AB=6,设点C表示的数是x,∴AC=|﹣2﹣x|,∵AC=13 AB,∴|﹣2﹣x|=13×6,解得:x=﹣4或x=0,∴点C表示的数是﹣4或0;故答案为:﹣4或0;。
本章复习【知识与技能】1.使学生系统掌握有理数这一章的基本概念.2.使学生提高辨别概念能力.【过程与方法】通过归纳与联系,巩固本章知识,形成计算能力.【情感态度】学习过程中养成谨慎认真的学习态度.【教学重点】有理数的混合运算.【教学难点】有理数基本概念的理解和知识间的联系.一、知识框图,整体把握二、释疑解惑,加深理解【教学说明】本章内容主要涉及基本定义、基本计算,以及实际问题的解决,注意分类讨论思想的应用和数形结合思想的运用.下列问题由学生自主解答,并理顺本章知识间基本联系.例1下列四个数中,在-1和2之间的数是()A.0B.-2C.-3D.3【分析】本题的实质是要识别介于正数、负数之间的整数,0正好是符合这个条件的特殊数;还可以利用数轴表示出这些数,直观地找到结果,选A.例2如果a与1互为相反数,则|a+2|等于()A.2B.-2C.1D.-1【分析】选C.互为相反数的两数和为0,故得到a=-1,|a+2|=|-1+2|=1,故选C.练一练如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则点A表示的数为()A.7B.3C.-3D.-2【分析】本题可逆向思考,即从点C左移5个单位长度至点B,再右移2个单位长度至点A,故应选D.例3一件衬衣标价是132元,若以九折出售,仍可获利10%,则这件衬衣的进价是元。
【分析】标价的九折作为售价,则售价为:132×0.9=118.8,而获利是相对于进价来说的,设进价为a元,则118.8-a=0.1a,解得a=108.练一练某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”,你认为售货员应标在标签上的价格为元.【答案】120例4为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母,a,b,c,……,z依次对应0,1,2,……,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应的密文c.按上述规定,将明文“maths”译成密文后是()A.wkdrcB.wkhtcC.eqdjcD.eqhjc【分析】m对应的数字是12,12+10=22,22除以26的余数仍为22,因此对应的字母是w;a对应的数字是0,0+10=10,10除以26的余数仍然为10,因此对应的字母为k,……,所以明文“maths”译成密文后是“wkdrc”,选A.练一练1.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第一位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位所有数字之和是()A.495B.497C.501D.503【分析】通过操作,当第1位数是3时,可得到的多位数应是3624862486248……,可以知道,前100位数字之和应为:(6+2+4+8)×24+3+6+2+4=480+15=495,故选A.2.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,……通过观察,用你所发现的规律确定32000的个位数字是()A.3B.9C.7D.1【分析】观察算式,可发现每4个数字的个位数字循环一次,因2000÷4=500,故32000的个位数字为1,选D.3.古希腊著名的毕达哥拉斯学派把1,3,6,10,……这样的数称为“三角形”数,而把1,4,9,16,……这样的数称为“正方形”数.从图中可以发现,任何一个大于1的“正方形”数都可以看作两个相邻的“三角形”数之和,下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+31【分析】36=(1+2+3+4+5)+(1+2+3+4+5+6),选C.三、典例精析,复习新知例1计算:【分析】按照有理数混合运算的运算顺序进行计算,一般可将所有的乘方运算用一步完成,乘除运算用一步完成,加减运算用一步完成.【教学说明】有理数的混合运算,可以以加减号为界,把整个式子分成几部分,每部分只有二、三级运算,容易计算,先算出代数和,最后再做一级运算加减法,这样可使复杂的式子变成几个简单式子的综合,能避免运算顺序不当引起的错误.例2京华球迷协会组织36名球迷拟租乘汽车赴比赛场地,为中国国家足球队加油助威,可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不能留空座,也不超载.(1)请你给出不同的租车方案(至少三种);(2)若每辆8个座位的车子的租金是300元/天,每辆4个座位的车子的租金是200元/天,请你设计费用最少的租车方案,并说明理由.【分析】本题的实质是要把36人合理安排到两种不同类型的车内就坐,因不能留空座,所以要求每种车内坐的人数分别是4的倍数,8的倍数,因36是4的9倍,故可从租9辆4座车分析起,选择出符合要求的方案.解:(1)可列表分析(√表示可行方案,×表示不可行方案)故共有五种可行方案.(2)因要求费用最少,故尽量多租8座车,即租8座车4辆,4座车1辆,此时所要费用为4×300+1×200=1400(元)【教学说明】从题设中可知,4座车比8座车的平均单价高,这就要求尽量少租用4座车.四、复习训练,巩固提高1.给出一个有理数-107.987及下列判断:①这个数不是分数,但是有理数;②这个数是负数,也是分数;③这个数与π一样,不是有理数;④这个数是一个负小数,也是负分数.其中判断正确的个数是()A.1B.2C.3D.42.如果a与1互为相反数,则|a|等于()A.2B.-2C.1D.-13.在数轴上,把表示3的点沿着数轴向负方向移动3个单位长度,则与此位置相对应的数是.4.某建筑占地面积约为104500m2,这个数用科学记数法表示为m2.5.计算:6.下列数轴上标有a、b、c的值.(1)试写出a与b,b与c之间的距离;(2)求a bb--和()b b ca-+-的值.【教学说明】本栏目设计了6道简单的课堂练习题,教师让学生独立思考,独立完成.前面4题由学生举手回答,后面2题让学生上台板演.【答案】1.B 2.C 3.0 4.1.045×105五、师生互动,课堂小结通过本节课的复习,你学到了什么?你还有什么困惑与疑问?1.布置作业::从教材复习题1中选取.2.完成练习册中本课时的练习.本课时的复习目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合应用数学知识、灵活地分析和解决问题的能力.有理数的复习,要抓住概念和运算法则,并通过数轴将全章知识串联起来,利用知识间的联系加强理解,便于实际应用,提高计算能力.在选择训练习题时应注意筛选加强基础和提高能力、发展智力并举的问题,全面复习又要突出重点.教师指导学生练习时,更要针对学生普遍存在的易误点进行指导.作者留言:非常感谢!您浏览到此文档。
第一章 有理数复习一、【课标要求】二、知识结构三、主要考点考点一:有理数的分类有理数概念有理数 相反数大小比较 绝对值 倒数 数轴运算加法减法 乘法 除法 乘方混合运算科学记数法用计算器进行简单的计算近似数与有效数字正有理数零负有理数正整数正分数负整数负分数有理数含正有限小数和无限循环小数有理数的另一种分类1、填空①_____________统称整数。
_____________统称分数。
_____________统称有理数。
0既不是 ,也不是 。
②增加-20%,实际的意思是 。
甲比乙大-3表示的意思是 。
③月球表面的白天平均温度为126℃,记作+126℃,夜间平均温度零下150°C, 记作 ℃. 白天比夜间高 ℃想一想:零是整数吗?自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?零是整数;自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数 2、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590正整数集{ …} 负整数集{ …} 正分数集{ …}负分数集{ …} 正有理数集{ …} 负有理数集{ …} 自然数集{ …}有理数整数 分数正整数 负整数0 负分数正分数自然数含负有限小数和无限循环小数3、判断正误①不带“-”号的数都是正数 ( )②如果a是正数,那么-a一定是负数 ( )③不存在既不是正数,也不是负数的数 ( )④0℃表示没有温度 ( )考点二:数轴1、填空①规定了,和的直线叫做数轴。
②比-3大的负整数是_______;已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是____,最小的正整数是____。
最大的非正数是__。
④与原点的距离为三个单位的点有____个,他们分别表示的有理数是________。
2、选择题①下列数轴画法正确的是( )②在数轴上,原点及原点左边所表示的数是()A整数B负数C非负数D非正数③下列语句中正确的是()A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来考点三:相反数1、填空①-2的相反数是;它的倒数是;它的绝对值是。
第二章 整式的加减复习学案班级:_______________ 姓名:_________________(一)单项式:表示 或 的乘积..式子称为单项式。
单独一个数或一个字母也是单项式,如a ,5。
单项式的系数:单项式里的 叫做单项式的系数。
单项式的次数:单项式中 叫做单项式的次数。
考点1:单项式、系数、次数1.单项式853ab -的系数是 ,次数是 ;2.若单项式233x y 与y x m ||2-的次数相同,m 的值是3.若(a -1)x 2y b 是关于x ,y 的五次单项式,且系数为-2, 则a =______,b =______.(二)多项式:几个 ____ 的和叫做多项式。
其中,每个单项式叫做多项式的 ,不含字母的项叫做 。
多项式的次数:多项式里 的次数,叫做多项式的次数。
多项式的命名:一个多项式含有几项,就叫几项式。
所以我们就根据多项式的项数和次数来命名一个多项式。
如:3n 4-2n 2+1是一个四次三项式。
(三)整式。
___________和_____________统称整式。
考点2:多项式、次数、整式1、在32221123,3,1,,,,4,,,2,43xy x x y m n x ab x x x x --+----+π2b 中,单项式有__________________________多项式有: ______________ 。
整式-abπr2232ab --a+b2453-+y x a 3b 2-2a 2b 2+b 3-7ab+5系数 次数 项3.代数式7-2xy-3x 2y 3+5x 3y 2z-9x 4y 3z 2是 次 项式,其中最高次项是 ,最高次项的系数是 ,常数项是 。
4.关于x 的多项式(m -1)x 3-2x n +3x 的次数是2,那么m =______,n =_____5.多项式2237583xy y x y x -+-按x 的降幂排列是6.当k =______时,多项式x 2-(3k -4)xy -4y 2-8中只含有三个项.(四)同类项:所含_____________相同,并且相同字母的指数______________也相同的项叫做同类项。
科目:数学 年级:初一 任课教师:寄金龙 日期:2012年 月 日 第5课时
教学学案---复习
先化简,再求值: (1)y xy x y x xy y x 22)(2)(22222----+的值,其中2,2=-=y x
(2))3
123()31(221y x y x x +-+--,其中x =-1,y =2 ;
应用题:
1、我校初一所有学生参加2011年“元旦联欢晚会”,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,则初一年级共有多少名学生?
2、星星果汁店中的A 种果汁比B 种果汁贵1元,小彬和同学要了3 杯B 种果汁、2杯A 种果汁,一共花了16元。
A 种果汁、B 种果汁的单价分别是多少元?
3、 某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
4、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?
5、“春节期间”,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?
6、小红爸爸上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况。
(单位:元)
(1)通过上表你认为星期三收盘时,每股是多少?
(2)本周内每股最高是多少?最低是多少元?
(3)已知小红爸爸买进股票时付了1.5‰的手续费,卖出时还需付成交额,1.5‰的手续费和1‰
的交易税,如果小红爸爸在星期五收盘时将全部股票卖出,你对他的收益情况怎样评价?
星期
一 二 三 四 五 每股涨跌 +4
+4.5 -1 -2.5 -6
7、某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.05元/分;第二种是包月制,69元/月(限一部个人住宅电话上网)。
此外,每一种上网方式都得加收通讯费0.02元/分。
(1)若小明家今年三月份上网的时间为x小时,请你分别写出两种收费方式下小明家应该支付的费用;
(2)若小明估计自家一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
8、(9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:
-2,+5,-1,+1,-6,-2,问:
(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得1
6
×
1
2
+(
1
6
+
1
4
)x=1
解这个方程,得x=11 5
11
5
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
π·(200
2
)2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为
600
x 分.
过完第二铁桥所需的时间为250
600
x-
分.
依题意,可列出方程
解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.6.解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.。