锁相环路工作原理
- 格式:doc
- 大小:606.50 KB
- 文档页数:8
锁相环工作原理锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。
其作用是使得电路上的时钟和某一外部时钟的相位同步。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。
因此,所有板卡上各自的本地80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。
因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。
锁相环路是一个相位反馈自动控制系统。
它由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。
锁相环的工作原理:1. 压控振荡器的输出经过采集并分频;2. 和基准信号同时输入鉴相器;3. 鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;4. 控制VCO,使它的频率改变;5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位同步。
当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。
这时,压控振荡器按其固有频率fv进行自由振荡。
当有频率为fR的参考信号输入时,uR 和uv同时加到鉴相器进行鉴相。
如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv= fR,环路锁定。
环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。
锁相环的工作原理
锁相环是一种控制器件,其主要的工作原理是通过比较参考信号和反馈信号的相位差异,并通过反馈调节来达到将两个信号相位同步的目的。
具体工作原理如下:
1. 参考信号生成:锁相环中需要提供一个参考信号,一般通过参考信号发生器产生一个稳定的频率信号。
2. 相频检测与比较:通过相频检测器进行参考信号和反馈信号的相位差检测。
相频检测器通常使用一个比较器进行相位比较,输出一个误差信号,表示相位差偏离。
3. 误差调节:根据相频检测器输出的误差信号,通过滤波器和放大器等组成的控制电路进行调节。
调节的方式可以是改变反馈信号的延时、幅度或频率等。
4. 信号生成与反馈:控制电路输出的调节信号作用于振荡器或VCO(Voltage Controlled Oscillator),调节振荡器的频率、相位等,使得反馈信号与参考信号的相位差逐渐减小。
5. 循环反馈:经过一段时间的调节,反馈信号的相位与参考信号趋于同步,此时锁相环达到稳定状态。
同时,稳定状态下的输出信号也可以作为反馈信号传回控制电路,参与后续的相频检测和误差调节,形成一个闭环反馈系统。
通过反复的相频检测和误差调节,锁相环能够将输出信号与参
考信号同步,并具有抑制噪声、消除相位漂移、提高系统稳定性等优点。
它广泛应用于通信、精密测量、控制系统等领域。
摘要:锁相环路是PLL 是一个能够跟踪输入信号相位变化,以消除频率误差为目的的闭环自动控制系统。
锁相环环路PLL 主要由鉴相器PD 、环路滤波器LF 和电压控制振荡器VCO 组成,工作原理主要是频率牵引和相位锁定。
PLL 在无线电技术很多领域,如调制与解调、频率合成、数字同步系统等方面得到了广泛运用,已经成为现代模拟与数字通信系统中不可缺少的基本部件。
关键词:锁相环;鉴相器;压控振荡器;环路滤波器1锁相环基本工作原理锁相环(PLL )主要由鉴相器(PD )、环路滤波器(LF) 、压控振荡器(VCO)三部分组成。
基本组成框图如图1所示。
图1 锁相环结构图图1中,输入信号()i u t 与反馈输出信号()o u t 的相位进行比较,得到误差相位()e t θ,并由此产生误差电压()D u t ,误差电压经过环路滤波器过滤得到控制电压()c u t ,()c u t 控制VCO 的振荡频率,改变输出信号()o u t 的频率和相位,同时改变了输出信号和输入信号的相位差()e t θ。
即控制电压加到压控振荡器上使之产生频率偏移,来跟踪输入信号频率()i w t 。
当输出信号频率等于输入信号频率时,会有一个稳态相位差,使鉴相器输出一个稳定的直流误差电压,控制VCO 输出信号频率稳定在输入信号频率上,即为PLL 的锁定状态。
在PLL 中,鉴相器的鉴相特性 ()()D d e u t K t θ= (1) 式中:d K 为鉴相器灵敏度。
压控振荡器VCO 的控制特性为 v w =o w +c K ()c u t (2) 式中:o w 为压控振荡器的自由振荡频率(c u 为0时的固有频率),c K 为压控灵敏度。
若输入信号()i u t 为单频信号,()sin[]i i i i u t U wt θ=+,则相位误差()e t θ为()[()]()()tte i i o c c i o i c c t w t w K u t dt w w t K u t dt θθθ=+-+=-+-⎰⎰(3)令环路滤波器单位冲击响应()()h t t δ=,则控制电压()c u t 为()[()]*()()c d e d e u t K t t K t θδθ==因此 ()()()()e i o c c d e d t w w K u t w K t dtθθ=--=∆- (4)式中:()e d t dtθ为环路的瞬时频差,i o w w w ∆=-为环路的固有频差,()d e K t θ为由()c u t 控制VCO 产生的控制频差。
锁相环工作原理锁相环(Phase-Locked Loop,PLL)是一种常用的电子电路,用于同步和稳定地追踪输入信号的相位。
它在许多领域中被广泛应用,如通信系统、数据传输、音频处理等。
本文将详细介绍锁相环的工作原理及其组成部分。
一、锁相环的组成部分1. 相位比较器(Phase Detector):相位比较器是锁相环的核心组成部分,用于比较输入信号和反馈信号的相位差。
常见的相位比较器有边沿比较器、恒幅比较器等。
2. 低通滤波器(Low-Pass Filter):相位比较器的输出信号经过低通滤波器进行滤波,去除高频噪声,得到稳定的控制电压。
3. 电压控制振荡器(Voltage-Controlled Oscillator,VCO):VCO是一种根据输入电压的大小来调节输出频率的振荡器。
锁相环中的VCO的频率可以通过控制电压进行调节。
4. 分频器(Divider):分频器用于将VCO的输出频率进行分频,得到反馈信号,使其与输入信号保持同步。
5. 锁相环滤波器(Loop Filter):锁相环滤波器用于对VCO的控制电压进行滤波和调整,使其能够更好地追踪输入信号的相位。
二、锁相环的工作原理锁相环的工作原理可以简单概括为:通过相位比较器比较输入信号和反馈信号的相位差,根据相位差的大小产生控制电压,通过滤波和调整后的控制电压来调节VCO的频率,使其与输入信号保持同步。
具体工作流程如下:1. 初始状态下,输入信号和反馈信号的相位差较大,相位比较器的输出信号较大。
2. 相位比较器的输出信号经过低通滤波器滤波后,得到稳定的控制电压。
3. 控制电压作用于VCO,调节VCO的频率。
4. 经过分频器的分频,得到反馈信号。
5. 反馈信号与输入信号经过相位比较器比较,进一步调节控制电压。
6. 重复上述步骤,直到输入信号和反馈信号的相位差趋近于零。
通过不断调节VCO的频率,锁相环能够实现对输入信号的相位进行追踪和同步,使得输出信号与输入信号保持一致。
锁相环工作原理锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。
其作用是使得电路上的时钟和某一外部时钟的相位差同步。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。
因此,所有板卡上各自的本地 80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。
因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。
锁相环路是一个相位反馈自动控制系统。
它由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。
锁相环的工作原理:1. 压控振荡器的输出经过采集并分频;2. 和基准信号同时输入鉴相器;3. 鉴相器通过比较上述两个信号的相位差(注顾名思义为相位差,非频率差),然后输出一个直流脉冲电压;4. 控制VCO,使它的频率改变;5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位差同步。
当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。
这时,压控振荡器按其固有频率fv进行自由振荡。
当有频率为fR的参考信号输入时,uR 和uv同时加到鉴相器进行鉴相。
如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv= fR,环路锁定。
环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。
锁相环工作原理锁相环是一种常用的电子反馈控制系统,主要用于同步信号的生成和相位跟踪。
它在许多领域中都有广泛的应用,如通信、雷达、测量仪器等。
本文将详细介绍锁相环的工作原理及其应用。
一、锁相环的基本组成部分锁相环通常由相位比较器、低通滤波器、电压控制振荡器(VCO)、分频器和反馈回路组成。
1. 相位比较器(Phase Comparator):用于比较输入信号和VCO输出信号的相位差,并产生一个误差信号。
2. 低通滤波器(Low Pass Filter):将相位比较器输出的误差信号进行滤波,得到一个平滑的控制电压。
3. 电压控制振荡器(Voltage Controlled Oscillator,VCO):根据控制电压的大小,产生相应频率的输出信号。
4. 分频器(Divider):将VCO输出的信号进行分频,得到一个与输入信号频率相同但相位差较小的信号,作为反馈信号输入到相位比较器。
5. 反馈回路(Feedback Loop):将分频器输出的信号反馈给相位比较器,形成一个闭环控制系统。
二、锁相环的工作原理锁相环的工作原理可以分为两个阶段:捕获阶段和跟踪阶段。
1. 捕获阶段:在捕获阶段,锁相环通过调节VCO的频率和相位,使其与输入信号保持同频同相。
首先,相位比较器将输入信号和VCO输出信号进行相位比较,产生一个误差信号。
该误差信号经过低通滤波器滤波后,得到一个控制电压,该电压决定了VCO的频率和相位的调整方向。
VCO根据控制电压的大小,调整自身的频率和相位,使其逐渐与输入信号同步。
当VCO的频率和相位与输入信号达到同步状态时,进入跟踪阶段。
2. 跟踪阶段:在跟踪阶段,锁相环通过持续调整VCO的频率和相位,使其能够跟踪输入信号的变化。
当输入信号的频率或相位发生变化时,相位比较器会再次产生误差信号,并通过低通滤波器得到相应的控制电压。
VCO根据控制电压的变化,调整自身的频率和相位,以保持与输入信号的同步。
三、锁相环的应用锁相环在许多领域中都有广泛的应用,以下列举几个典型的应用场景:1. 通信系统:锁相环可用于时钟恢复、频率合成、时钟同步等方面。
锁相环的工作原理讲解锁相环(Phase-locked loop,简称PLL)是一种常用的控制系统,它通过对输入信号进行频率和相位的调整,使其与参考信号同步。
锁相环广泛应用于通信、测量、数据采集等领域,具有高精度、稳定性好等优点。
锁相环的工作原理可以简单地描述为三个主要步骤:相比较、滤波和控制。
首先,输入信号和参考信号经过相比较器进行相位比较,产生一个误差信号。
然后,误差信号经过滤波器进行滤波处理,得到一个稳定的控制信号。
最后,控制信号通过控制器对振荡器进行调整,使得输出信号与参考信号同步。
在锁相环中,相比较器是关键的元件之一。
相比较器将输入信号与参考信号进行相位比较,产生一个差异信号。
这个差异信号代表了输入信号与参考信号之间的相位偏差。
根据这个相位偏差,锁相环可以控制振荡器的频率和相位,使得输入信号与参考信号同步。
滤波器是另一个重要的组成部分。
它的作用是对误差信号进行滤波处理,去除高频噪声和杂散信号,得到一个稳定的控制信号。
滤波器通常采用低通滤波器的形式,只允许通过低频信号,抑制高频信号的干扰。
滤波器的设计要考虑到系统的带宽和稳定性。
控制器根据滤波后的误差信号来调整振荡器的频率和相位。
控制器通常采用比例-积分-微分(PID)控制算法,根据误差信号的大小和变化率来调整振荡器的输出。
PID控制器具有响应快、稳定性好的特点,可以使锁相环快速跟踪参考信号。
除了上述的基本组成部分,锁相环还可以包括频率分频器、倍频器、反相器等附加元件,用于实现更复杂的功能。
例如,频率分频器可以将输入信号的频率降低到锁相环的工作范围内;倍频器可以将振荡器的输出信号进行倍频,得到更高频率的信号。
这些附加元件可以根据具体的应用需求进行选择和配置。
锁相环具有很多应用,其中一个典型的应用是频率合成器。
频率合成器可以通过锁相环的频率调整功能,将多个不同频率的信号合成为一个特定频率的信号。
这在通信系统中非常常见,可以用于频率调制、解调、时钟同步等方面。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
1.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C(t)。
即u C(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
当上式不等于零时,说明锁相环的相位还未锁定,输入信号和输出信号的频率不等,u c(t)随时间而变。
1.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u C (t)。
即u C(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
锁相环的组成和工作原理2022-04-24 10:261.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环( PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部份组成,锁相环组成的原理框图如图 8-4-1 所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u (t)电压信号输出,该信号经低通滤波器滤波后形成压控D振荡器的控制电压 u (t),对振荡器输出信号的频率实施C控制。
2.锁相环的工作原理锁相环中的鉴相器通常由摹拟乘法器组 成,利用摹拟乘法器组成的鉴相器电路如图 8-4-2 所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器 输出的信号电压分别为:(8-4-1 ) (8-4-2)式中的 ω 为压控振荡器在输入控制电压为零或者为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则摹拟乘法 器的输出电压 u D 为:用低通滤波器 LF 将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压 u (t)。
即 u (t)为:C C(8-4-3)式中的 ω 为输入信号的瞬时振荡角频率, θ (t) 和 θ (t)i i O分别为输入信号和输出信号的瞬时位相,根据相量的关系可 得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θ 为d(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态, u (t)为恒定c值。
锁相环路基本工作原理一、框图与各部分作用·框图·各部分的作用▲ PD——产生误差电压▲LF——产生控制电压▲VCO——产生瞬时输出频率二、环路工作原理1.原理与环路锁定的充分必要条件·原理PLPLL环路在某一因素作用下,利用输入与输出信号的相位差产生误差电压,并滤除其中非线性成分与噪声后的纯净控制信号控制压控振荡器,使朝着缩小固有角频差方向变化,一旦趋向很小常数(称为剩余相位差)时,则锁相环路被锁定了,即·充分必要条件充分2.举例说明 (以一阶锁相环为例)锁定未锁定锁定锁定锁定锁锁定可可见,环路锁定过程中是从0~2π周期的变化,若干周期后使,则环路被锁定。
三、环路相位模式和环路方程1.相位模式①求环路中各部件的数学表示式与数学模式A.鉴相器(PD)乘积型积型叠加型加型其中:若上述经PD输出的误差电压可表示为则数学模型为B.环路滤波器(LF)环C.压控振荡器(VCO)②环路的相位模型2.环路方程及其物理意义①方程②物理意义a)各项的物理意义b)方程的物理意义: 在任何时候环路开环输入固有角频率永远恒等于环路闭环瞬时角频差和环路控制角频差之和。
在锁定过程瞬时角频差逐渐减小,控制角频差逐渐增大,它们之和永远恒等于开环时输入固有角频差。
3.结论①只有环路锁定时,瞬时角频差为0,才实现了了频率准确跟踪。
②环路进入锁定的条件为显然愈大愈小,环路稳定性愈好。
③环路锁定过程是变化的,所以是交变变的电压;一旦锁定为直流电压。
④环路方程是非线性微分方程,其中非线性取决于鉴相器,而微分方程阶数取决于环路滤波器多项式F(P)的阶数。
四、环路滤波器常用的环路滤波器有:1.RC积分滤波器波器电压传输系数为:器,若作为环路滤波器其中中, F(s)为一个极点而无零点的多项式2.无源RC比例积分滤波器电压传输系数为:电压若作为环路滤波器:其中,F(s)为一个极点一个零点的多项式3.有源RC比例积分(或RC 理想积分)滤波器电压传输系数为:其中, ,F(S)为一个极点一个零点的多项式因为极点在原点,所以是理想的积分环节。
锁相环工作原理锁相环是一种常见的电路系统,用于提供稳定的频率和相位锁定功能。
它在许多应用中被广泛使用,如通信系统、音频处理、频谱分析等。
本文将详细介绍锁相环的工作原理及其组成部分。
一、锁相环的基本原理锁相环的基本原理是通过比较输入信号和反馈信号的相位差,并根据相位差的大小来调整输出信号的频率和相位,使其与输入信号保持同步。
锁相环的核心是一个相位比较器,它将输入信号和反馈信号进行相位比较,并产生一个误差信号。
根据误差信号的大小和方向,锁相环会调整其输出信号的频率和相位,使得误差信号趋近于零。
二、锁相环的组成部分1. 相位比较器:相位比较器是锁相环的核心部分,用于比较输入信号和反馈信号的相位差。
常见的相位比较器有边沿比较器、模拟比较器和数字比较器等。
2. 低通滤波器:低通滤波器用于滤除相位比较器输出中的高频噪声,保留低频成分。
它可以平滑误差信号,减小锁相环的震荡和抖动。
3. 振荡器:振荡器是锁相环的参考信号源,用于提供稳定的参考频率。
常见的振荡器有晶体振荡器和电感电容振荡器等。
4. 分频器:分频器用于将输入信号分频,以匹配振荡器的频率。
通过分频器,锁相环可以工作在不同的频率范围内。
5. 控制电路:控制电路根据相位比较器输出的误差信号,调整振荡器的频率和相位,以使其与输入信号保持同步。
控制电路通常由比例积分控制器(PID控制器)和电压控制振荡器(VCO)组成。
三、锁相环的工作过程1. 初始状态:锁相环开始工作时,相位比较器将输入信号和反馈信号进行比较,产生一个误差信号。
2. 错位信号处理:误差信号经过低通滤波器平滑处理,去除高频噪声。
3. 控制信号生成:平滑后的误差信号经过控制电路处理,生成控制信号。
4. 控制信号调节:控制信号调节振荡器的频率和相位,使其与输入信号同步。
5. 反馈信号生成:调节后的振荡器输出信号作为反馈信号,与输入信号进行相位比较。
6. 误差信号更新:相位比较器再次比较输入信号和反馈信号,产生新的误差信号。
锁相环工作原理.锁相环工作原理锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。
其作用是使得电路上的时钟和某一外部时钟的相位同步。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。
因此,所有板卡上各自的本地80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。
因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。
锁相环路是一个相位反馈、)PD(鉴相器它由以下三个基本部件组成:自动控制系统。
.环路滤波器(LPF)和压控振荡器(VCO)。
锁相环的工作原理:1. 压控振荡器的输出经过采集并分频;2. 和基准信号同时输入鉴相器;3. 鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;4. 控制VCO,使它的频率改变;5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位同步。
当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。
这时,压控振荡器按其固有频率fv进行自由振荡。
当有频率为fR的参考信号输入时,uR 和uv同时加到鉴相器进行鉴相。
如果fR和fv相差不uR进行鉴相的结果,输出一个与uv和uR大,鉴相器对.和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv= fR,环路锁定。
环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。
锁相环工作原理锁相环是一种常用于频率合成和时钟恢复的电路。
它通过对输入信号进行频率和相位的调整,使其与参考信号保持同步。
锁相环广泛应用于通信、雷达、测量仪器等领域。
一、基本原理锁相环由相位比较器、低通滤波器、电压控制振荡器(VCO)和分频器组成。
其工作原理如下:1. 参考信号输入:外部提供一个稳定的参考信号,作为锁相环的参考频率。
2. 相位比较:将输入信号与参考信号进行相位比较,得到相位误差信号。
3. 低通滤波:将相位误差信号经过低通滤波器滤波,得到平滑的控制电压。
4. 控制振荡器调频:将控制电压作为输入,控制电压控制振荡器的频率,实现频率的调整。
5. 分频:将控制振荡器的输出信号进行分频,得到反馈信号。
6. 反馈:将分频后的信号与输入信号进行相位比较,得到新的相位误差信号。
通过不断的相位比较、滤波和调频,锁相环可以实现输入信号与参考信号的同步。
二、工作过程锁相环的工作过程可以分为锁定和跟踪两个阶段。
1. 锁定阶段:在初始状态下,锁相环的输出与输入信号存在相位差。
相位比较器将输入信号与参考信号进行比较,得到相位误差信号。
经过低通滤波器滤波后,控制电压作用于VCO,调整其频率。
经过分频器分频后,反馈信号与输入信号再次进行相位比较,得到新的相位误差信号。
通过不断的反馈和调节,相位误差逐渐减小,最终锁定在一个稳定的值,输出信号与参考信号同步。
2. 跟踪阶段:当输入信号发生频率或相位变化时,锁相环需要跟踪这些变化。
相位比较器检测到相位误差信号增大,低通滤波器将其平滑后,调节VCO的频率。
通过分频器反馈信号与输入信号进行相位比较,得到新的相位误差信号。
锁相环通过不断的反馈和调节,使输出信号重新与输入信号同步。
三、应用领域锁相环在许多领域中都有广泛的应用,包括但不限于以下几个方面:1. 频率合成:锁相环可以将一个稳定的参考信号与一个可调频率的振荡器相结合,生成一个具有所需频率的输出信号。
这在通信系统、雷达系统等需要精确频率合成的应用中非常重要。
锁相环的工作原理锁相环(Phase Locked Loop,简称PLL)是一种电路系统,常见于通信、计算机和测量领域。
它的主要功能是将输入信号与参考信号进行频率和相位的比较,然后控制输出信号的频率和相位与参考信号保持同步。
下面将详细介绍锁相环的工作原理,并分点列出其关键步骤。
锁相环的工作原理如下:1. 参考信号输入:锁相环的工作始于参考信号的输入。
参考信号是一个已知频率和相位的稳定信号。
2. 相频比较:锁相环通过相频比较器将输入信号与参考信号进行相位和频率的比较。
相频比较器产生一个误差信号,表示输入信号与参考信号之间的相位差。
3. 误差放大器:误差信号经过误差放大器进行放大。
误差放大器的增益决定了锁相环的跟踪速度和稳定性。
4. 控制电压生成:经过误差放大器放大后的误差信号被送入控制电压生成器。
控制电压生成器将误差信号转换为控制电压,并输出。
5. 频率/相位控制:控制电压作用下,锁相环的控制电路根据输入信号与参考信号的频率/相位差距调整输出信号的频率/相位,以使两者保持同步。
6. VCO控制:锁相环的输出信号通过控制电压调整压控振荡器(Voltage Controlled Oscillator,简称VCO)的频率/相位。
VCO根据控制电压的变化,产生一个与参考信号频率/相位相匹配的稳定输出信号。
7. 反馈环路:VCO输出的信号作为锁相环的反馈信号,经过反馈环路返回到相频比较器,与参考信号进行比较,产生一个新的误差信号。
这个反馈环路的存在使得锁相环能够稳定在输入信号的频率/相位上。
锁相环的关键步骤包括相频比较、误差放大、控制电压生成、频率/相位控制、VCO控制和反馈环路。
在每一步中,锁相环都通过不同的电路模块来实现其功能。
锁相环的应用十分广泛。
以下列举了一些常见的应用领域:1. 通信系统中的时钟恢复和频率合成。
2. 数字信号处理过程中的抖动抑制和液晶显示驱动的相位锁定。
3. 无线电调频广播和电视系统中的频率合成。
锁相环工作原理引言概述:锁相环(Phase-Locked Loop,简称PLL)是一种常见的电子电路,用于同步信号的频率和相位。
它在通信系统、数字信号处理、时钟同步等领域被广泛应用。
本文将详细介绍锁相环的工作原理,包括基本原理、主要组成部分、工作过程以及应用场景。
一、基本原理:1.1 反馈环路:锁相环的核心是一个反馈环路,通过不断调整输入信号的频率和相位,使其与参考信号保持同步。
这个环路由比较器、低通滤波器和控制电路组成。
1.2 相位检测器:相位检测器用于比较输入信号和参考信号的相位差,产生一个误差信号。
根据误差信号的大小和方向,控制电路将调整输入信号的相位和频率。
1.3 数字控制:现代锁相环通常采用数字控制,通过数字控制器和数字控制电路,实现对反馈环路的精确控制。
数字控制还可以实现自适应调整,提高锁相环的性能。
二、主要组成部分:2.1 振荡器:振荡器是锁相环的基础,它产生一个参考信号,用于与输入信号进行比较。
常见的振荡器有晶体振荡器和压控振荡器,前者具有稳定的频率,适用于需要高精度的应用,而后者可以通过调节电压来改变频率,适用于需要频率可调的应用。
2.2 分频器:分频器用于将输入信号的频率降低到与参考信号相匹配的频率。
它可以将输入信号分成若干个相等的周期,用于和参考信号进行比较。
2.3 低通滤波器:低通滤波器用于滤除相位检测器输出中的高频噪声,保留误差信号中的低频成分。
它可以使锁相环的输出更加稳定。
三、工作过程:3.1 初始状态:锁相环初始状态下,输入信号和参考信号的频率和相位存在差异。
相位检测器会检测到相位差,并产生一个误差信号。
3.2 调整过程:控制电路根据误差信号的大小和方向,调整输入信号的相位和频率。
通过不断调整,误差信号逐渐减小,直到达到稳定状态。
3.3 稳定状态:当输入信号和参考信号的频率和相位完全一致时,锁相环进入稳定状态。
此时,输出信号与参考信号保持同步,相位差为零。
四、应用场景:4.1 通信系统:锁相环在通信系统中用于频率合成、时钟恢复和信号调制等方面。
摘要:锁相环路是PLL 是一个能够跟踪输入信号相位变化,以消除频率误差为目的的闭环自动控制系统。
锁相环环路PLL 主要由鉴相器PD 、环路滤波器LF 和电压控制振荡器VCO 组成,工作原理主要是频率牵引和相位锁定。
PLL 在无线电技术很多领域,如调制与解调、频率合成、数字同步系统等方面得到了广泛运用,已经成为现代模拟与数字通信系统中不可缺少的基本部件。
关键词:锁相环;鉴相器;压控振荡器;环路滤波器1锁相环基本工作原理锁相环(PLL )主要由鉴相器(PD )、环路滤波器(LF) 、压控振荡器(VCO)三部分组成。
基本组成框图如图1所示。
图1 锁相环结构图图1中,输入信号()i u t 与反馈输出信号()o u t 的相位进行比较,得到误差相位()e t θ,并由此产生误差电压()D u t ,误差电压经过环路滤波器过滤得到控制电压()c u t ,()c u t 控制VCO 的振荡频率,改变输出信号()o u t 的频率和相位,同时改变了输出信号和输入信号的相位差()e t θ。
即控制电压加到压控振荡器上使之产生频率偏移,来跟踪输入信号频率()i w t 。
当输出信号频率等于输入信号频率时,会有一个稳态相位差,使鉴相器输出一个稳定的直流误差电压,控制VCO 输出信号频率稳定在输入信号频率上,即为PLL 的锁定状态。
在PLL 中,鉴相器的鉴相特性 ()()D d e u t K t θ= (1) 式中:d K 为鉴相器灵敏度。
压控振荡器VCO 的控制特性为 v w =o w +c K ()c u t (2) 式中:o w 为压控振荡器的自由振荡频率(c u 为0时的固有频率),c K 为压控灵敏度。
若输入信号()i u t 为单频信号,()sin[]i i i i u t U wt θ=+,则相位误差()e t θ为()[()]()()tte i i o c c i o i c c t w t w K u t dt w w t K u t dt θθθ=+-+=-+-⎰⎰(3)令环路滤波器单位冲击响应()()h t t δ=,则控制电压()c u t 为()[()]*()()c d e d e u t K t t K t θδθ==因此 ()()()()e i o c c d e d t w w K u t w K t dtθθ=--=∆- (4)式中:()e d t dtθ为环路的瞬时频差,i o w w w ∆=-为环路的固有频差,()d e K t θ为由()c u t 控制VCO 产生的控制频差。
因此锁相环的控制关系可描述为:瞬时频差=固有频差-控制频差当环路对输入固定频率的信号之后,稳态频差等于零,稳态相差为固定值。
误差电压为直流,直流滤波得到控制电压也是直流。
2环路工作原理与相位模型环路能实现相位锁定,主要是利用负反馈控制系统原理。
负反馈控制系统的的功能是检测误差和修正误差,最后使得被控制变量与输入变量一致或基本一致,其基本结构如图2所示。
输入信号+控制信号误差信号图2 负反馈系统框图反馈部件反馈被控制变量,输入变量与反馈变量比较得到误差信号,误差信号经控制器输出与误差成比例的控制信号,来修正被控制变量,以减少误差,最终使输入变量与反馈变量的误差趋于0。
2.1鉴相器(PD )鉴相器是一个相位比较装置,用来检测环路输入信号与反馈信号之间的相位差()e t θ。
并将相位误差转换为误差电压()D u t ,()D u t 是相差()e t θ的函数。
鉴相器有多种类型,如模拟乘法器、取样保持型、边沿触发数字型等,以下对模拟乘法器型鉴相器,分析其基本原理,给出数学模型。
2.1.1基本原理模拟乘法器主要用来对输入的两个模拟信号进行鉴相。
原理框图如图3所示。
设参考信号()i u t 与反馈信号()o u t 均为单频余弦信号,两个输入信号分别用正弦和余弦函数表示,且两者的初始位相都为0。
由图3(a )得: 1()sin cos [sin()sin()]2D i i o o i o i o i o u t U wtU w t U U w w t w w t ==++-(5)(a )模拟乘法器框图 图3 (b )拟乘法器的鉴相特性经环路滤波器滤除高频分量后 11()sin()sin ()sin ()22D i o i o i o e d e u t U U w w t U U t K t θθ=-==(6) 式中()e t θ为i u 与o u 的相位差;d K 为鉴频灵敏度。
模拟乘法器的鉴频特性如图3(b )所示,我们也把这种鉴频特性为正弦鉴频特性,由图可知,当()e t θ在[~]22ππ-内变化时,输出和输入信号有单一对应关系。
当|()|6e t πθ<时,()()D d e u t K t θ=,即D u 与e θ可近似为线性关系。
一般有模拟乘法器构成的鉴相器都工作在满足上面的条件之下。
2.1.2数学模型(相位模型)根据以上工作原理,鉴相器是以两个输入信号的相位差控制其输出电压变化。
所以数学模型如图4所示。
oθ+-图4 鉴相器数学模型其中: e i o θθθ=-2.2环路滤波器(LF )环路滤波器是由线性电路组成的低通滤波器,在环路中是为了滤除误差电压中的高频成分和噪声,起到平滑VCO 的控制电压()c u t 的作用,它对锁相环的瞬时响应,锁定时间,频率特性和稳定性等都有影响。
所以它是锁相环中的一个重要部件。
2.2.1环路滤波器的模型环路滤波器在时域分析中可用一个传输算子()F p 来表示,这里dp dt=为微分算子。
在复频域分析中可用传递函数()F s 表示,其中s=a+j Ω是复频率;若用s=j Ω带入()F s 中可得到它的频率响应F(j )Ω。
滤波器的描述方程,用时域和复频域表示分别为式(13)和式(14),模型如图8所示 。
()()()c D u t F p u t = (7)()()()c d U s F s U s = (8)(a )时域模型 (b )复频域模型图8 环路滤波器数学模型2.2.2常用环路滤波器的电路原理 (1)无源RC 积分滤波器这是结构最简单的低通滤波器,电路构成如图5所示,其传递函数表达式为()111()1()1c D U s F s U s s s τττ===++ (9) 式中:RC τ=为时间常数,由电路和信号理论可知,该电路具有低通特性,相位滞后。
当频率很高时,幅度趋于零,相位滞后接近2π,即最大相位差为2π-。
图5 RC 积分滤波器 图6 无源比例积分滤波器(2)无源比例积分滤波器电路组成如图6所示,其传递函数表达式为22211111()11s s F s s s ττττττ++==++(10)其中112()R R C τ=+,22R C τ=频率响应为 211()1jw F jw jw ττ+=+ (11)直流增益为,当频率很高时 212()|w R F jw R R →∞=+ (12)频率响应为电阻分压比,这就是滤波器的比例作用。
从相频特性上看,当频率很高时有相位超前校正的作用,这是由相位超前因子(21jw τ+)引起的。
这个相位超前作用将有利于改善环路的稳定性。
(3)有源比例积分滤波器有源比例积分滤波器有运算放大器组成,电路如图7所示。
图7 有源比例积分滤波器传递函数为 2221111()s s F s s sτττττ++=-=- (13)式中 11R C τ=;11R C τ=分析上式可知,对于理想集成运算放大器(高增益),可以近似为理想积分滤波器,(0)F =∞。
实际上,有源比例积分滤波器的(0)F A =,所以它提高了环路的直流增益,有利于降低稳态相对误差。
有源比例积分滤波器的3dB -带宽较窄,利于滤除环路噪声。
频率较高时, 21()|w R F jw R →∞=(14) 所以其高频段增益可以在较大的范围内进行调整,增大了设计上的灵活性。
2.3压控振荡器(VCO )压控振荡器是一个电压-频率变换装置,在理想的情况下,压控振荡器的振荡频率应随输入控制电压()c u t 线性变化,即应有变换关系v w =o w +c K ()c u t 。
实际应用中的压控振荡器的控制特性只有有限的线性控制范围,超出这个范围之后控制灵敏度将会下降。
由于压控振荡器的输出反馈到鉴相器上,对鉴相器输出误差电压()D u t 起作用的不是其频率,而是其相位()()()t tvoc cw d w t K u d ττττ=+⎰⎰即 20()()tcct K u d θττ=⎰ (15)改写成算子形式为 2()()cc K t u t pθ= (16)所以压控振荡器的数学模型如图9所示。
图9 压控振荡器的模型 从模型上看,压控振荡器具有一个积分因子1p,这是相位与角频率之间的积分关系形成的。
锁相环路中要求输出的是相位,因此,这个积分作用是压控振荡器所固有的。
在环路中起着相当重要的作用。
如上所述,压控振荡器应是一个具有线性控制特性的调频振荡器,对它的基本要求是:频率稳定度好(包括);控制灵敏度c K 高;控制特性的线性要好;线性区域要宽等等。
这些要求之间往往是矛盾的,设计中要折衷考虑。
压控振荡器电路的形式很多,常用的有LC 压控振荡器,晶体压控振荡器,负阻压控振荡器和RC 压控振荡器等几种。
3环路的相位模型综合以上各环节的数学模型,锁相环的相位模型如图10所示。
图10 锁相环的相位模型由图写出环路的基本方程式为0()()()()()sin[()]ce i i d e K t t t t K F p t pθθθθθ=-=- (17)两边对t 求导,整理得: ()()sin[()]e i d c e p t p K K F p t θθθ=- (18) 式17完整的描述环路闭合后所发生的控制过程。
()()e e i o d t p t w w w dtθθ==∆=-称为瞬时频差,它表示压控振荡器频率o w 偏离输入信号i w 的数值。
令()sin[()]d c e K K F p t θ00()o o w t w w =∆=-其中0o w 是未加控制电压()c u t 时压控振荡器的固有频率。
()sin[()]d c e K K F p t θ称为控制频差,它表示压控振荡器在()()sin[()]c d c e u t K K F p t θ=的作用下,产生振荡频率i w 偏离0o w 的数值。
0ii i o d p w w dtθθ==-为固有频差,它表示输入频率i w 偏离0o w 的数值。
由此可知式17说明锁相环路闭合后的任意时刻,瞬时频差w ∆()t 与控制频差0()w t ∆之和恒等于输入固有频率()i w t ∆,即()()()o i w t w t w t ∆+∆=∆ 与第一节中式4结论一致。