水池结构设计指南.
- 格式:doc
- 大小:1.04 MB
- 文档页数:29
工业建筑结构设计混凝土结构设计指南及规定第六册水池结构设计指南(共八册)中冶京诚工程技术有限公司工业建筑院二OO五年七月目录一.材料 (2)二.水、土压力计算 (3)三.侧壁内力计算 (4)四.底板内力计算 (6)五.配筋计算 (9)六.裂缝宽度验算 (9)七.侧壁、底板厚度拟定 (10)八.抗浮验算 (11)九.工况组合 (11)十.构造要求 (11)十^一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14)十二.例题 (26)编制:李绪华审核:孙衍法编程:覃嘉仕钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢, 都存在水池。
因没有统一的设计方法,导致设计方法较为离散。
结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。
一.材料1. 砼强度等级不低于C25,严寒和寒冷地区不低于C30。
2. 抗渗等级,根据最大作用水头与砼厚度的比值确定一般情况下采用S6即可满足要求。
3. 抗冻等级最冷月平均气温低于一3C的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用:砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5% 最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。
如:北京—45C 天津—4.0C通化—16.1C 石家庄—29C承德—94C 西安—09C太原—65C 本溪—122C兰州—67C 银川—89C 基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。
二.水、土压力计算1 .水压力按季节最高水位计算水压力,勘察报告中一般提出勘察期间地下水位,可根据勘察的季节及水位变化幅度确定计算水位,准永久值系数为1.0。
2. 土压力主动土压力系数K a可按1/3,地下水位以上土的重度取18kN/m3, 地下水位以下取土的有效重度,可按10 kN/m3,准永久值系数为1.0。
水池结构设计要点:水池设计包括平面设计、立面设计、剖面设计和管线设计。
水池平面设计主要是与所在环境的气氛、建筑和道路的线型特征以及视线关系相协调统一。
水池的平面轮廓要“随曲合方”,即体量与环境相称,轮廓与广场走向、建筑外轮廓取得呼应与联系。
要考虑前景、框景和背景的因素。
不论规则式、自然式、综合式的水池,都要力求造型简洁大方而又具有个性的特点。
水池平面设计主要显示其平面位置和尺度。
标注池底、池壁顶、进水口、溢水口和泄水口、种植池的高程和所取剖面的位置。
设循环水处理的水池要注明循环线路及设施要求。
模式管线布置图如下:水池的应用:首先确定水池的用途,是用于观赏,还是嬉水或养鱼,其水池设计结构均不同。
如为嬉水,其设计水深应在30cm以下,池底作防滑处理,注意安全性。
而且,因儿童有可能误饮池水,因此尽量设置过滤装置。
养鱼池应确保水质,水深宜在30cm~50cm左右,并设置越冬用鱼巢。
另外,为解决水质问题,除安装过滤装置外,还务必作水除氯处理。
池底处理:如水深30cm以下的水池以及游泳池等,其池底清晰可见,所以应考虑对池底作相应的艺术处理。
浅水池一般可采用与池床相同的饰面处理,或贴锦砖。
普通水池常采用水洗豆砾石饰面或嵌砌卵石的方法处理。
各种池底都有其利弊。
瓷、砖石料铺砌的池底如无过滤装置,存污后会很醒目。
铺砌大卵石虽然耐脏,但不便清扫。
对游泳池而言,如要使池水显得清澈、洁净,可采用水色涂料或瓷砖装饰池底。
如想突出水深,可把池底作深色处理。
确定有水种类(自来水、地下水、雨水等)以及是否需要循环装置。
一般地下水、雨水无需循环,不必安装循环装置,让其白白排放。
确定是否需要安装过滤装置。
对养护费用有限但又需经常进行换水、清扫的小型水池,可安装氧化灭菌装置,原则上可不再安装过滤装置。
但考虑到藻类的生长繁殖会污染水质,最好还是配备为宜。
一般常用的过滤装置种类很多,从小型池常用的利用过滤材料的小型过滤器,至高尔夫球场等场所规模水池所用的依靠微生物进行过滤的装置。
工业建筑结构设计混凝土结构设计指南及规定第六册水池结构设计指南(共八册)中冶京诚工程技术有限公司工业建筑院二○○五年七月目录一.材料 (2)二.水、土压力计算 (3)三.侧壁内力计算 (4)四.底板内力计算 (6)五.配筋计算 (9)六.裂缝宽度验算 (9)七.侧壁、底板厚度拟定 (10)八.抗浮验算 (11)九.工况组合 (11)十.构造要求 (11)十一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14)十二.例题 (26)编制:李绪华审核:孙衍法编程:覃嘉仕钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。
因没有统一的设计方法,导致设计方法较为离散。
结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。
一.材料1.砼强度等级不低于C25,严寒和寒冷地区不低于C30。
2.抗渗等级,根据最大作用水头与砼厚度的比值确定一般情况下采用S6即可满足要求。
3.抗冻等级最冷月平均气温低于-3℃的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用:砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5%。
最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。
如:北京-4.5℃天津-4.0℃通化-16.1℃石家庄-2.9℃承德-9.4℃西安-0.9℃太原-6.5℃本溪-12.2℃兰州-6.7℃银川-8.9℃基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。
二.水、土压力计算1.水压力按季节最高水位计算水压力,勘察报告中一般提出勘察期间地下水位,可根据勘察的季节及水位变化幅度确定计算水位,准永久值系数为1.0。
2.土压力主动土压力系数K a可按1/3,地下水位以上土的重度取18kN/m3,地下水位以下取土的有效重度,可按10 kN/m3,准永久值系数为1.0。
水池结构设计指南水池是一个常见的建筑物结构,它不仅能够提供储水功能,还可以用于游泳、养鱼等休闲娱乐活动。
在设计水池结构时,需要考虑到水池的功能需求、安全性、结构稳定性等方面。
下面是一个关于水池结构设计的指南,以帮助您完成一个理想的水池设计。
一、确定功能需求在设计水池结构前,需要明确水池的功能需求。
水池可以用于供应生活用水、游泳或养鱼等活动。
根据不同的功能需求,水池的设计和结构将有所不同。
例如,供应生活用水的水池需要考虑到水质安全和水泵系统等因素,游泳池则需要考虑到游泳池边缘的处理和深浅适宜等因素。
因此,在设计水池结构之前,明确功能需求是十分重要的。
二、测量和设计尺寸在设计水池结构之前,需要进行测量和设计尺寸。
首先,确定水池的形状和大小。
水池可以是矩形、圆形、椭圆形或自定义形状。
然后,根据水池的形状和大小,计算出所需的深度、长、宽等尺寸。
此外,还需要考虑到水池周围的景观设计和设施的摆放。
三、选择合适的材料在设计水池结构时,选择合适的材料是至关重要的。
常见的水池材料包括钢筋混凝土、玻璃纤维增强塑料(FRP)、聚氯乙烯(PVC)等。
钢筋混凝土是一种常用的材料,它在结构稳定性和耐久性方面表现出色。
玻璃纤维增强塑料具有较好的抗腐蚀性能和耐用性。
聚氯乙烯具有轻质、易安装和携带等优点。
选择合适的材料可以提高水池的使用寿命和安全性。
四、考虑水池的冷却和保温系统如果设计的是一个游泳池,那么需要考虑冷却和保温系统。
一方面,游泳池在夏季可能会受到高温的影响,因此需要冷却系统来控制水温。
另一方面,冬季时游泳池的水温会降低,需要保温系统来保持水温适宜。
冷却和保温系统可以通过水循环和加热/制冷设备来实现。
五、考虑水池的安全性水池的安全性是设计过程中不可忽视的因素。
首先,需要考虑到水池的防滑性能。
在设计水池结构时,选择具有一定抗滑性的材料用于池底和池边缘,以提供安全的脚感。
其次,可以考虑添加栅栏或其他防护措施,以防止儿童或宠物意外落入水池。
(一)蓄水池结构设计要求蓄水池结构设计除应符合前述蓄水工程设计要求外,尚应考虑下列要求:1.荷载组合:不考虑地震荷载,只考虑蓄水池自重、水压力和土压力.对开敞式蓄水池,荷载组合为池内满水,池外无土;对封闭式水池,荷载组合为池内无水,池外有土.计算时,浆砌石砌体及混凝土的容重取为2.4t/m。
地下式水池,池壁外面回填土要求夯实,计算土压力时填土容重取为1。
8t/m,内摩擦角取为30°。
2.应按地质条件推求容许地基承载力,如地基的实际承载力达不到设计要求或地基会产生不均匀沉陷,则必须先采取有效的地基处理措施才可修建蓄水池.蓄水池底板的基础要求有足够的承载力、平整密实,否则须采用碎石(或粗砂)铺平并夯实。
3.蓄水池应尽量采用标准设计,或按五级建筑物根据有关规范进行设计。
水池池底及边墙可采用浆砌石、素混凝土或钢筋混凝土.最冷月平均温度高于5℃的地区也可采用砖砌,但应采用水泥砂浆抹面.池底采用浆砌石时,应座浆砌筑,水池砂浆标号不低于M10,厚度不小于25cm。
采用混凝土时,标号不宜低于C15,厚度不小于10cm。
土基应进行翻夯处理,深度不小于40cm.池墙尺寸应按标准设计或按规范要求计算确定。
4.蓄水池的基础是非常重要的,尤其是湿陷性黄土地区,如有轻微渗漏,危及工程安全。
因而在湿陷性黄土上修建的蓄水池应优先考虑采用整体式钢筋混凝土或素混凝土蓄水池。
地基土为弱湿陷性黄土时,池底应进行翻夯处理,翻夯深度不小于50cm;如基土为中、强湿陷性黄土时,应加大翻夯深度,采取浸水预沉等措施处理。
5.蓄水池内宜设置爬梯,池底应设排污管,封闭式水池应设清淤检修孔,开敞式水池应设护栏,护栏应有足够强度,高度不低于1.1m。
(二)蓄水池结构特点1.开敞式圆形蓄水池开敞式蓄水池池体由池底和池墙两部分组成。
它多是季节性蓄水池,不具备防冻、防蒸发功效。
圆形池结构受力条件好,在相同蓄水量条件下所用建筑材料较省,投资较少。
开敞式圆形浆砌石水池地基承载力按10 t/m设计,池底板为C15混凝土,厚度10cm,池壁为M7。
水池结构设计指南工业建筑结构设计混凝土结构设计指南及规定第六册水池结构设计指南(共八册)中冶京诚工程技术有限公司工业建筑院二○○五年七月目录一.材料 (2)二.水、土压力计算 (3)三.侧壁内力计算 (4)四.底板内力计算 (6)五.配筋计算 (9)六.裂缝宽度验算 (9)七.侧壁、底板厚度拟定 (10)八.抗浮验算 (11)九.工况组合 (11)十.构造要求 (11)十一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14)十二.例题 (26)编制:李绪华审核:孙衍法编程:覃嘉仕钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。
因没有统一的设计方法,导致设计方法较为离散。
结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。
一.材料1.砼强度等级不低于C25,严寒和寒冷地区不低于C30。
2.抗渗等级,根据最大作用水头与砼厚度的比值确定一般情况下采用S6即可满足要求。
3.抗冻等级最冷月平均气温低于-3℃的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用:砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5%。
最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。
如:北京-4.5℃天津-4.0℃通化-16.1℃石家庄-2.9℃承德-9.4℃西安-0.9℃太原-6.5℃本溪-12.2℃兰州-6.7℃银川-8.9℃基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。
二.水、土压力计算1.水压力按季节最高水位计算水压力,勘察报告中一般提出勘察期间地下水位,可根据勘察的季节及水位变化幅度确定计算水位,准永久值系数为1.0。
2.土压力主动土压力系数K a可按1/3,地下水位以上土的重度取18kN/m3,地下水位以下取土的有效重度,可按10 kN/m3,准永久值系数为1.0。
水池结构设计要点:水池设计包括平面设计、立面设计、剖面设计和管线设计。
水池平面设计主要是与所在环境的气氛、建筑和道路的线型特征以及视线关系相协调统一。
水池的平面轮廓要“随曲合方”,即体量与环境相称,轮廓与广场走向、建筑外轮廓取得呼应与联系。
要考虑前景、框景和背景的因素。
不论规则式、自然式、综合式的水池,都要力求造型简洁大方而又具有个性的特点。
水池平面设计主要显示其平面位置和尺度。
标注池底、池壁顶、进水口、溢水口和泄水口、种植池的高程和所取剖面的位置。
设循环水处理的水池要注明循环线路及设施要求。
模式管线布置图如下:水池的应用:首先确定水池的用途,是用于观赏,还是嬉水或养鱼,其水池设计结构均不同。
如为嬉水,其设计水深应在30cm以下,池底作防滑处理,注意安全性。
而且,因儿童有可能误饮池水,因此尽量设置过滤装置。
养鱼池应确保水质,水深宜在30cm~50cm左右,并设置越冬用鱼巢。
另外,为解决水质问题,除安装过滤装置外,还务必作水除氯处理。
池底处理:如水深30cm以下的水池以及游泳池等,其池底清晰可见,所以应考虑对池底作相应的艺术处理。
浅水池一般可采用与池床相同的饰面处理,或贴锦砖。
普通水池常采用水洗豆砾石饰面或嵌砌卵石的方法处理。
各种池底都有其利弊。
瓷、砖石料铺砌的池底如无过滤装置,存污后会很醒目。
铺砌大卵石虽然耐脏,但不便清扫。
对游泳池而言,如要使池水显得清澈、洁净,可采用水色涂料或瓷砖装饰池底。
如想突出水深,可把池底作深色处理。
确定有水种类(自来水、地下水、雨水等)以及是否需要循环装置。
一般地下水、雨水无需循环,不必安装循环装置,让其白白排放。
确定是否需要安装过滤装置。
对养护费用有限但又需经常进行换水、清扫的小型水池,可安装氧化灭菌装置,原则上可不再安装过滤装置。
但考虑到藻类的生长繁殖会污染水质,最好还是配备为宜。
一般常用的过滤装置种类很多,从小型池常用的利用过滤材料的小型过滤器,至高尔夫球场等场所中大规模水池所用的依靠微生物进行过滤的装置。
水池构筑物结构设计要点摘要:给水排水工程中水池构筑物是整个工程结构设计的主要内容,水池构筑物和房屋建筑结构设计有明显的区别,本文从设计规范对水池结构设计的规定、结构荷载、池体选型、池壁和底板计算、构造措施的几方面论述水池结构设计的要点。
代写论文关键词:给水排水工程;水池;构筑物;结构设计给水排水工程中通常包括房屋建筑、水池构筑物、管道和附属工程,而水池构筑物往往占大部分工程量,成为整个工程结构设计的主要内容。
而水池构筑物和房屋建筑结构设计有明显的区别,结构工程师在设计时对此应有充分的认识,以保证结构设计满足工程要求。
1 执行规范钢筋混凝土水池构筑物的结构设计时,需遵循的设计规范有:(1)《混凝土结构设计规范》(GB50010-2010);(2)《建筑地基基础设计规范》(GB50007-2002);(3)《建筑结构荷载规范》(GB50009-2001)(版);(4)《建筑抗震设计规范》(GB50011-2010);(5)《室外给水排水和燃气热力工程抗震设计规范》(GB50032-2003);(6)《给水排水工程构筑物结构设计规范》(GB50069-2002);(7)《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138-2002)。
其中《给水排水工程构筑物结构设计规范》和《给水排水工程钢筋混凝土水池结构设计规程》作为水池结构设计的专用标准,对水池构筑物的基本设计规定、材料要求、结构作用、结构计算和构造要求均作出了相应的规定。
需要注意的是,水池和一般民用建筑的规范要求并不一样,比如《地下工程防水技术规范》(GB50108-2008)的有些规定并不适宜水池构筑物。
地下工程的不同防水等级的适用范围是根据人员长期滞留、经常活动或临时活动的场所,防水等级分为四级;而地上、地下水池均根据池体厚度和按水头比计算确定的抗渗等级,高于一般地下工程的要求。
《地下工程防水技术规范》要求迎水面钢筋保护层厚度不小于50mm,一般适用于建筑物地下室(人员可以经常用到的地方),此时要对保护层采取有效的构造措施(如配置防裂、防脱落的钢筋网片等);而《给水排水工程构筑物结构设计规范》对于水池砼保护层厚度的规定:板、壳:与水土接触30mm、与污水接触35 mm;梁、柱:与水土接触35 mm、与污水接触40 mm;底板:有垫层下层筋40 mm、无垫层下层筋70 mm。
给水排水工程钢筋混凝土水池结构设计规范篇一:给水排水工程构筑物结构设计规范中华人民共和国国家标准给水排水工程构筑物结构设计规范Structural design code for special structures of watersupply and waste water engineeringGB 50069-2002批准部门:中华人民共和国建设部施行日期:2003年3月1日中华人民共和国建设部公告第91号建设部关于发布国家标准《给水排水工程构筑物结构设计规范》的公告现批准《给水排水工程构筑物结构设计规范》为国家标准,编号为GB 50069—2002,自2003年3月1日起实施。
其中,第3.0.1、3.0.2、3.0.5、3.0.6、3.0.7、3.0.9、4.3.3、5.2.1、5.2.3、5.3.1、5.3.2、5.3.3、5.3.4、6.1.3、6.3.1、6.3.4条为强制性条文,必须严格执行。
原《给水排水工程结构设计规范》GBJ 69—84中的相应内容同时废止。
本规范由建设部标准定额研究所组织中国建筑工业出版社出版发行。
中华人民共和国建设部二○○二年十一月二十六日前言本规范根据建设部(92)建标字第16号文的要求,对原规范《给水排水工程结构设计规范》GBJ 69—84作了修订。
由北京市规划委员会为主编部门,北京市市政工程设计研究总院为主编单位,会同有关设计单位共同完成。
原规范颁布实施至今已15年,在工程实践中效果良好。
这次修订主要是由于下列两方面的原因:(一)结构设计理论模式和方法有重要改进GBJ 69—84属于通用设计规范,各类结构(混凝土、砌体等)的截面设计均应遵循本规范的要求。
我国于1984年发布《建筑结构设计统一标准》GBJ 68—84(修订版为《建筑结构可靠度设计统一标准》GB 50068—2001)后,1992年又颁发了《工程结构可靠度设计统一标准》GB 50153—92。
建筑工程中的建筑物水池设计要点在建筑工程中,水池是一种常见的建筑物设施,用途广泛,包括供水、排水、蓄水等。
水池的设计要点决定了其功能的实现和使用效果的质量。
本文将就建筑工程中的建筑物水池设计要点进行探讨。
一、功能定位:水池在建筑工程中扮演着不同的角色,因此首先要明确其功能定位。
根据具体的需求,水池可以用于储水、供水、调节水流、消防等多种用途。
在设计水池时,应根据功能需求来确定其容量、深度、形状以及配置相关的设备和管道。
二、结构设计:水池的结构设计直接影响其稳定性和使用寿命。
首先,需要确定水池的形状,常见的有矩形、圆形、椭圆形等。
其次,要考虑水池的容量和深度,以确保其能够满足用户的需求。
同时,还需要合理设计水池的壁厚和底部结构,以增加其承载能力。
三、材料选择:在建筑物水池的设计中,材料的选择至关重要。
常见的水池材料包括钢筋混凝土、钢材、玻璃钢等。
钢筋混凝土具有较高的强度和稳定性,适用于大型水池的建造;钢材则具有良好的韧性和耐腐蚀性,适用于地下水池的建造;玻璃钢具有耐腐蚀性强、施工方便等特点,适用于一些特殊要求的水池。
四、防水设计:在建筑物水池的设计中,防水工程至关重要。
防水的主要目的是避免水池的渗漏问题,以保证水池的正常运行。
常用的防水方式有地下防水涂料、防水卷材、防水毛细管等。
在设计防水系统时,需要考虑防水层的材料选择、厚度、施工工艺以及与周围建筑物的连接处理。
五、通风和排污设计:通风和排污是水池设计中不可忽视的部分。
在设计水池时,要确保水池有足够的通风孔,以保持空气的流动,并避免水池内湿气引发的问题。
同时,还要合理设计水池的排污系统,保证污水能够及时排出,并安装相关的过滤装置,防止杂质进入出水口。
六、水池附属设备:水池的设计除了主体结构外,还需要考虑附属设备的配置。
根据水池的实际用途,可能需要安装水泵、管道、水位监测设备、透明罩等。
这些设备的选用和布置应在设计阶段充分考虑,并与主体结构相协调,确保水池的正常运行和管理维护的便捷性。
工业建筑结构设计混凝土结构设计指南及规定第六册水池结构设计指南(共八册)目录一.材料⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2二.水、土压力计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3三.侧壁内力计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4四.底板内力计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6五.配筋计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9六.裂缝宽度验算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9七.侧壁、底板厚度拟定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10八.抗浮验算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11九.工况组合⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11十.构造要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11十一.按强度及裂缝宽度控制的最大弯矩值(附表三)⋯14十二.例题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26编制:李绪华审核:孙衍法编程:覃嘉仕钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。
因没有统一的设计方法,导致设计方法较为离散。
结合《给水排水工程钢筋混凝土水池结构设计规程》 (CECS 138:2002),对水池结构的设计方法进行一定的统一.材料1.砼强度等级不低于 C25,严寒和寒冷地区不低于 C30 2.抗渗等级,根据最大作用水头与砼厚度的比值确定一般情况下采用 S6 即可满足要求。
3.抗冻等级最冷月平均气温低于- 3℃的地区,外露的钢筋砼构筑物的砼应 具有良好的抗冻性能,按下表采用:砼抗冻等级 Fi 系指龄期为 28d 的砼试件,在进行相应要求冻融循环总次数 i 次作用, 其强度降低不大于 25%,重量损失不超过 5%最冷月平均气温在《民用建筑热工设计规范》 GB 50176-93 中查 取。
如:通化 -16.1℃ 石家庄 -2.9℃ 承德-9.4℃西安-0.9℃北京 -4.5℃ 天津 -4.0℃太原-6.5℃本溪-12.2℃兰州-6.7℃银川-8.9℃基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。
水池设计方案在生活和工作中,水池常常是不可或缺的一部分。
它可以是景观中的点缀,为环境增添一份灵动与宁静;也可以是工业生产中的重要设施,用于储存和处理液体。
一个精心设计的水池不仅能满足功能需求,还能成为一道亮丽的风景线。
下面,我们就来详细探讨一下水池的设计方案。
一、确定水池的用途和功能首先,要明确水池的用途。
是作为观赏景观,还是用于水产养殖、消防储备、工业生产等?不同的用途决定了水池的大小、形状、深度以及材质等方面的要求。
如果是景观水池,可能更注重美观和与周围环境的融合,可以设计成各种独特的形状,如心形、圆形、多边形等。
水深一般较浅,以确保安全,并便于人们欣赏水中的植物和鱼类。
而对于工业用水池,重点在于满足生产工艺的要求,保证水质、水量和水压的稳定。
其形状可能相对规整,深度和容量则根据具体的生产需求来确定。
二、选择合适的位置和场地水池的位置选择至关重要。
要考虑到地形、地质、水文等自然条件,以及周围的建筑物、道路、管道等人工设施的影响。
地形应相对平坦,便于施工和日后的维护管理。
地质条件要稳定,避免建在地质灾害频发的区域,以防止水池出现裂缝、下沉等问题。
水文方面,要了解地下水位的高低,以及周边水源的情况,确保水池的建设不会对地下水资源造成破坏,同时也能有充足的水源供应。
此外,还要考虑水池与周围环境的协调性。
如果是在居民区,要避免对居民的生活造成噪音、异味等不良影响;如果是在工业园区,要便于与其他生产设施的连接和协同工作。
三、设计水池的形状和尺寸水池的形状和尺寸应根据用途、场地条件和美观要求来综合考虑。
常见的形状有圆形、方形、长方形、椭圆形等。
圆形水池受力均匀,结构稳定性好;方形和长方形水池则更便于布置和利用空间;椭圆形水池则兼具美观和实用性。
水池的尺寸主要取决于需水量、占地面积和使用功能。
一般来说,景观水池的面积可以根据景观的整体规划来确定,深度通常在 05 15米之间。
而工业用水池的尺寸则要根据生产工艺的用水量、水质处理要求等来计算,深度可能会达到数米甚至更深。
工业建筑结构设计混凝土结构设计指南及规定第六册水池结构设计指南(共八册)中冶京诚工程技术有限公司工业建筑院二○○五年七月目录一.材料 (2)二.水、土压力计算 (3)三.侧壁内力计算 (4)四.底板内力计算 (6)五.配筋计算 (9)六.裂缝宽度验算 (9)七.侧壁、底板厚度拟定 (10)八.抗浮验算 (11)九.工况组合 (11)十.构造要求 (11)十一.按强度及裂缝宽度控制的最大弯矩值(附表三) (14)十二.例题 (26)编制:李绪华审核:孙衍法编程:覃嘉仕钢铁厂的设计中会经常遇到水池,无论是炼铁、炼钢,还是轧钢,都存在水池。
因没有统一的设计方法,导致设计方法较为离散。
结合《给水排水工程钢筋混凝土水池结构设计规程》(CECS 138:2002),对水池结构的设计方法进行一定的统一。
一.材料1.砼强度等级不低于C25,严寒和寒冷地区不低于C30。
2.抗渗等级,根据最大作用水头与砼厚度的比值确定一般情况下采用S6即可满足要求。
3.抗冻等级最冷月平均气温低于-3℃的地区,外露的钢筋砼构筑物的砼应具有良好的抗冻性能,按下表采用:砼抗冻等级Fi系指龄期为28d的砼试件,在进行相应要求冻融循环总次数i次作用,其强度降低不大于25%,重量损失不超过5%。
最冷月平均气温在《民用建筑热工设计规范》GB 50176-93中查取。
如:北京-4.5℃天津-4.0℃通化-16.1℃石家庄-2.9℃承德-9.4℃西安-0.9℃太原-6.5℃本溪-12.2℃兰州-6.7℃银川-8.9℃基本上除东北、西北和华北的大部分地区外,其他地区均不需要考虑砼抗冻要求。
二.水、土压力计算1.水压力按季节最高水位计算水压力,勘察报告中一般提出勘察期间地下水位,可根据勘察的季节及水位变化幅度确定计算水位,准永久值系数为1.0。
2.土压力主动土压力系数K a可按1/3,地下水位以上土的重度取18kN/m3,地下水位以下取土的有效重度,可按10 kN/m3,准永久值系数为1.0。
3.地面堆积荷载(作用于水池侧面)无特殊情况时,地面堆积荷载取10 kN/m2,准永久值系数为0.5。
4.汽车荷载(作用于水池侧面)等代均布荷载见下表,准永久值系数为0。
5.列车荷载(作用于水池侧面)若枕木在滑裂体(与水平面夹角55°斜面形成的滑裂体)以外,则不需考虑;否则按60 kN/m2等代均布荷载考虑,准永久值系数为0。
上述均布荷载乘以主动土压力系数K a后作为矩形分布的荷载作三.侧壁内力计算1.平长壁板所谓平长壁板,即L B/H B>2(有顶板)或L B/H B>3(无顶板)的侧壁板。
取1m宽截条按竖向单向受弯计算,下端为固接,上端为自由(无顶板时)、铰接(有顶板或局部走道板)。
此时应考虑水平角隅弯矩,即验算构造水平筋能否满足水平角隅处的强度及裂缝宽度。
水平向角隅处弯矩:M cx=m c qH B2q—均布荷载或三角形荷载的最大值(kN/m2)m c见下表:2.深长壁板所谓深长壁板,即H B/L B>2的侧壁板,按两部分计算:从底板顶面算起,2L B以上部分按水平单向受弯计算,0~2L B部分按双向板计算,从底板顶面算起2L B处视为自由边。
3.矩形水池除上述两种情况外,即介于平长、深长之间的壁板,按双向受弯计算,以计算手册或软件进行计算。
4.圆形水池池壁根据水池高度、半径及壁厚确定计算模型,见下表:计算可用水工结构手册图表人工计算,也可用SAP 2000软件进行计算。
人工计算较繁琐,最好以SAP 2000进行计算。
四.底板内力计算1.长条水池(净长/净宽>2)(1)池壁顶以上无荷载(如无冷却塔等)或荷载较小底板底面承受由侧壁传来的弯矩,分别按基本组合设计值和准永久组合设计值计算配筋和裂缝宽度。
底板顶面按构造配筋,即满足最小配筋率。
按最小配筋率确定的钢筋面积:A s=ρmin×bh,ρmin为0.20%(C25)、0.21%(C30)也可根据厚度查表,选取较小配筋,表中配筋率ρ= A s/bh0,其一定≥ρmin×h/h0,A s/bh≥ρmin,等同于A s/bh0≥ρmin×h/h0。
(2)池壁顶以上有荷载(如冷却塔等)底板以基底净反力按1m宽简支板计算,但要将壁板底部弯矩加到支座处,以降低底板跨中弯矩,M z=ql2/8-M B。
基底净反力包括壁板、顶板及上部冷却塔等设备自重,而不包括池内水重及底板自重。
采用桩基时以桩的净反力作为集中力计算跨中弯炬,板边负弯矩等于壁板底部弯炬,跨中正弯矩以负弯矩抵消一部分。
注意此处的负弯矩用作强度计算时,荷载分项系数为1.0。
2.一般矩形水池(净长/净宽≤2)(1)池壁顶以上无荷载(如无冷却塔等)或荷载较小底板底面承受由侧壁传来的弯矩,分别按基本组合设计值和准永久组合设计值计算配筋和裂缝宽度。
底板顶面按构造配筋,即最小配筋率和考虑超长时的构造纵筋。
(2)池壁顶以上有荷载(如冷却塔等)底板以基底净反力按四边简支板计算,但要将壁板底部弯矩加到支座处,以降低底板跨中弯矩。
基底净反力包括壁板、顶板及上部冷却塔等设备自重,而不包括池内水重及底板自重。
跨中弯矩的计算采用下述方法:先根据静力计算手册按双向板计算跨中短向、长向弯矩M x、M y,假定底板的长边与短边由壁板所传弯矩为M x0、M y0,则考虑支座负弯矩后的跨中弯矩按下式计算M xx=M x-m xx M x0-m xy M y0M yy=M y-m yx M x0-m yy M y0m xx——长边负弯矩在短向跨中的弯矩系数m xy——短边负弯矩在短向跨中的弯矩系数m yx——长边负弯矩在长向跨中的弯矩系数m yy——短边负弯矩在长向跨中的弯矩系数上述系数见下表:采用桩基时,以桩的净反力作为集中力计算跨中弯矩,板边负弯矩等于壁板底部弯矩,跨中正弯矩以负弯矩抵消一部分。
5.圆形底板五.配筋计算1.弯矩计算中,水、土压力乘以荷载分项系数1.27,地面堆积及车辆荷载产生的侧压力乘以荷载分项系数1.4。
池内有水,考虑池外土压力时,强度计算时的池外土压力荷载分项系数取1.0;计算底板跨中弯矩时,若考虑侧壁弯矩的有力影响,则侧壁弯矩荷载分项系数取1.0。
2.以基本组合的设计值弯矩计算配筋面积,可人工计算,也可以构件计算软件计算,应注意保护层厚度问题,即钢筋合力点至壁边缘距离a s,见下表:六.裂缝宽度验算1.先按配筋计算结果选配出钢筋的直径及间距,然后验算裂缝宽度。
2.裂缝宽度验算采用准永久组合值弯矩,水、土压力按标准值,地面堆积荷载按标准值的0.5,汽车、列车荷载不考虑。
3.裂缝宽度限值轧钢、炼钢、炼铁等水处理设施:0.25mm污水处理设施:0.20mm4.裂缝宽度计算按《给水排水工程构筑物结构设计规范》(GB 50069-2002)附录A进行,现有Excel计算表格可用。
5.受力钢筋的保护层厚度:侧壁取30mm,与污水接触取35mm,当表面有水泥砂浆或涂料时可减少10mm;底板取40mm。
受力筋可能是水平筋或竖筋。
七.侧壁、底板厚度拟定1.侧壁厚度可参考下列表格初步拟定注1)壁厚按50 mm的倍数取值,水池较深时应采用变厚度形式,壁厚在任何情况下不小于250 mm。
2)按假定厚度试算,按强度或裂缝宽度确定的配筋率应在0.3~0.8%之间,最好在0.4~0.6%之间。
若配筋率<0.3%,应减小厚度;若配筋率>0.8%,应加大厚度。
3)控制裂缝宽度最好用提高配筋率的方法,而不用加大厚度的方法。
2.底板厚度底板厚度按壁厚的1.2~1.5倍,以1.2倍起算,与壁板类似,以配筋率控制。
采用桩基时,为使桩与池壁中心线一致,应将底板外挑。
八.抗浮验算按最高地下水位计算底板底面的浮托力,不计池内水重,以池壁、底板自重抵抗地下水浮托力,抗浮系数≥1.05。
采用桩基时,可考虑加上桩的抗拔承载力特征值来抵抗浮托力。
九.工况组合1.地下水池在池外水、土压力(包括地面荷载)作用下的计算,此时不考虑池内水压力;在池内水压力作用下的计算,此时不考虑地面荷载及池外地下水的作用,但应以池外土压力抵消一部分池内水压力产生的弯矩,强度计算时,此时的土压力荷载分项系数取1.0。
2.地上水池地上水池指埋深较小的水池,底板顶面位于地面以下≤1m,这种情况可只作在池内水压力作用下的计算。
十.构造要求1.伸缩缝间距(m)注:超出上表限值时,以留后浇带或掺膨胀剂措施解决。
2.水平构造筋、敞口水池池顶构造筋见附表一、二;转角处钢筋构造见构造附图;3.受力筋及构造筋尽可能采用直径较小的钢筋,钢筋间距尽可能≦100(转角处因钢筋搭接而加密除外),也≧200。
4.水平筋一般置于竖筋内侧,水池长度超过伸缩缝间距时水平筋置于竖筋外侧,这两种情况竖筋保护层厚度均为30mm。
当水平筋为主要受力筋时,水平筋置于竖筋外侧,此时水平筋保护层厚度为30mm。
附表一水池水平构造配筋:附表二敞口水池池壁顶面水平配筋:构造附图:侧壁转角处侧壁交接处侧壁、底板转角处侧壁、底板交接处图中l按下列取值:相邻壁水平较小净跨长/4或中间壁水平净跨长/4 两者取较小值,并不小于500侧壁净高/4十一.按强度及裂缝宽度控制的最大弯矩值(附表三)1.受力钢筋保护层厚度按30 mm,当>30mm时,将强度弯矩值M乘以折减系数0.95(h≤600)、0.98(h>600)进行折减;将裂缝宽度弯矩值M q乘以折减系数0.90(h≤700)、0.95(h>700)。
2.强度控制的最大弯矩M系指按表中给定的配筋推算出的最大弯矩设计值,应与在水、土压力及地面活荷载、车辆荷载作用下的基本组合弯矩值对应,即考虑荷载分项系数。
3.裂缝控制的最大弯矩M q系指裂缝宽度为0.25 mm时,按表中给定的配筋推算出的最大弯矩值,应与在水、土压力及地面活荷载作用下的准永久组合弯矩值对应,不计车辆荷载,并考虑地面活荷载的准永久值系数0.5。
4.设计人计算出两种弯矩后,先核实强度对应的弯矩值,满足后再核实裂缝对应的弯矩值,两项必须都满足,即计算出的两项弯矩值必须都小于表中数值。
5.计算弯矩值应按钢筋直径从小到大顺序与表中最接近的弯矩值对应,查看配筋率,若<0.3%或>0.8%,则应考虑减小或加大侧壁或底板厚度。
查表时,应首优先选用直径较小的钢筋,这样可在相同裂缝宽度下降低钢筋用量。
6.未列入表中的配筋,小直径钢筋属不满足最小配筋率,大直径钢筋属配筋率过大,前者不得采用,后者一般也不采用。
7.转角处钢筋间距可能变为@50、75,可按@100、150的强度及裂缝控制的弯矩值分别乘以1.5、1.8。
附表三按强度及裂缝宽度控制的最大弯矩值注:1. 配筋率带下划线者为较适宜的配筋率。
2. 较适宜的配筋率必须以计算弯矩值与表中弯矩值较接近为前提,即壁厚或底板厚较合适。