风力机2第5章 风轮的基本理论
- 格式:ppt
- 大小:7.21 MB
- 文档页数:261
风力发电机风轮系统2.1.1 风力机空气动力学的基本概念1、风力机空气动力学的几何定义(1)翼型的几何参数翼型翼型本是来自航空动力学的名词,是机翼剖面的形状,风力机的叶片都是采用机翼或类似机翼的翼型,与翼型上表面和下表面距离相等的曲线称为中弧线。
下面是翼型的几何参数图1)前缘、后缘翼型中弧线的最前点称为翼型的前缘,最后点称为翼型的后缘。
2)弦线、弦长连接前缘与后缘的直线称为弦线;其长度称为弦长,用c表示。
弦长是很重要的数据,翼型上的所有尺寸数据都是弦长的相对值。
3)最大弯度、最大弯度位置中弧线在y坐标最大值称为最大弯度,用f表示,简称弯度;最大弯度点的x坐标称为最大弯度位置,用x f表示。
4)最大厚度、最大厚度位置上下翼面在y坐标上的最大距离称为翼型的最大厚度,简称厚度,用t表示;最大厚度点的x坐标称为最大厚度位置,用x t表示。
5)前缘半径翼型前缘为一圆弧,该圆弧半径称为前缘半径,用r1表示。
6)后缘角翼型后缘上下两弧线切线的夹角称为后缘角,用τ表示。
7)中弧线翼型内切圆圆心的连线。
对称翼型的中弧线与翼弦重合。
8)上翼面凸出的翼型表面。
9)下翼面平缓的翼型表面。
(2)风轮的几何参数1)风力发电机的扫风面积风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,下图是一个三叶片水平轴风力机的扫掠面积示意图。
下图是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。
根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。
按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速6m/s设计的风力机风轮会很大,虽在6m/s时运行很好,但遇大风易超速损坏电机,为抗强风时需增加结构强度使成本大大增加。
第一章、绪论1、风力发电机组的组成风力发电机组可分为风轮、机舱、塔架和基础几个部分。
(1)风轮由叶片和轮毂组成。
叶片具有空气动力外形,在气流作用下产生力矩驱动风轮转动,通过轮毂将扭矩输入到主传动系统。
(2)机舱由底盘、导流罩和机舱罩组成,底盘上安装除主控制器以外的主要部件。
机舱罩后部的上方装有风速和风向传感器,舱壁上有隔音和通风装置等,机舱底部与塔架连接。
(3)塔架支撑风轮与机舱达到所需要的高度。
塔架上安置发电机与主控制器之间的动力电缆、控制和通信电缆,还装有供操作人员上下机舱的扶梯,大型机组还设有升降机。
(4)基础为钢筋混凝土结构,根据当地地质情况设计成不同的形式。
基础中心预置有于塔架连接的基础部件,以保证将风力发电机组牢牢固定在基础上。
基础周围还设置预防雷击的接地装置。
2、变桨距、变速型的风力发电机组内部结构(1)变桨距系统:设在轮毂之中,对于电动变距系统来说,包括变距电动机、变距减速器、变距轴承、变距控制器和备用电源等。
(2)发电系统:包括发电机、变流器等。
(3)主传动系统:包括主轴及主轴承、齿轮箱、高速轴和联轴器等。
(4)偏航系统:由偏航电动机、偏航减速器、偏航轴承、制动机构等组成。
(5)控制与安全系统:包括传感器、电气设备、计算机控制与安全系统(含相应软件和控制欲安全系统执行机构等)。
此外,还设有液压系统,为高速轴上设置的制动装置、偏航制动装置提供液压动力。
液压系统包括液压站、输油管和执行机构。
为了实现齿轮箱、发电机、变流器的温度控制,设有循环油冷却系统、风扇和加热器。
3、风力发电机组的分类:(1)按功率大小:a微型(0.1~1kw);b小型(1~100kw);c中型(100~1000kw);d大型(1000kw以上)。
(2)按风轮轴方向:a水平轴风力发电机组(随风轮与塔架相对位置的不同而有上风向与下风向之分。
风轮在塔架的前面迎风旋转,叫做上风向风力发电机组;风轮安装在塔架后面,风先经过塔架,再到风轮,则称为下风向风力发电机组。
第二章 风力机的基础理论[3、4]第一节 风力机的能量转换过程一、风能的计算由流体力学可知,气流的动能为221mv E =(2-1) 式中 m ──气体的质量;v ──气体的速度。
设单位时间内气流流过截面积为S 的气体的体积为L ,则 L =S v如果以ρ表示空气密度,该体积的空气质量为 m=ρL=ρS v 这时气流所具有的动能为321Sv E ρ=(2-2) 上式即为风能的表达式。
在国际单位制中,ρ的单位是kg/m 3;L 的单位是m 3 ;v 的单位是m/s ;E 的单位是W 。
从风能公式可以看出,风能的大小与气流密度和通过的面积成正比,与气流速度的立方成正比。
其中ρ和v 随地理位置、海拔高度、地形等因素而变。
二、自由流场中的风轮风力机的第一个气动理论是由德国的Betz 于1926年建立的。
Betz 假定风轮是理想的,即它没有轮毂,具有无限多的叶片,气流通过风轮时没有阻力;此外,假定气流经过整个叶轮扫掠面时是均匀的;并且,气流通过风轮前后的速度为轴向方向。
现研究一理想 风轮在流动的大气中的情况(见图2-1),并规定:v 1──距离风力机一定距离的上游风速;v ──通过风轮时的实际风速; v 2──离风轮远处的下游风速。
设通过风轮的气流其上游截面为 S 1,下游截面为S 2。
由于风轮的机械能 图2-1叶轮的气流图量仅由空气的动能降低所致,因而 v 2必然低于 v 1,所以通过风轮的气流截面积从上游至下游是增加的,即S 2大于S 1。
如果假定空气是不可压缩的,由连续条件可得:S 1v 1=S v =S 2v 2风作用在风轮上的力可由Euler 理论写出:F =ρS v (v 1-v 2) (2-3) 故风轮吸收的功率为)(212v v Sv Fv P -==ρ (2-4) 此功率是由动能转换而来的。
从上游至下游动能的变化为 )(212221v v Sv T-=∆ρ (2-5) 令式(2-4)与式(2-5)相等,得到 221v v v +=(2-6)作用在风轮上的力和提供的功率可写为:)(212221v v Sv F -=ρ (2-7) ))((41212221v v v v Sv P +-=ρ (2-8)对于给定的上游速度v 1,可写出以v 2为函数的功率变化关系,将式(2-8)微分得)32(412221212v v v v Sv dv dP --=ρ 式02=dv dP有两个解: v 2=-v 1,没有物理意义; v 2=v 1/3,对应于最大功率。
第一章风及风能资源一、风的形成及影响因素1.风的产生:是由地球外表大气层由于太阳的辐射而引起的空气流动,大气压差是风产生的根本原因2.特性:周期性、多样性、复杂性3.风的分类:季风、山谷风、海陆风、台风、龙卷风二、风的测量1.风的测量包括风向和风速两种2.风向测量:风向测量是指测量风的来向风向测量装置:1)风向标:是测量风向最通用的装置,有单翼型、双翼型、流线型2)风向杆(安装方位指向正南)、风速仪(可测风向和风速,一般安装在离地面10米的高度)3.风向表示法:风向一般用16个方位表示,静风记为C。
4.风能密度:单位截面积的风所含的能量称为风能密度,常以W/m2表示。
三、风资源分布1.我国风资分布可划分为:风能丰富区、风能较丰富区、风能可利用区、风能贫乏区1)风能丰富区:有效风能密度>200W/m2。
2)风能较丰富区:有效风能密度为150~200W/m2,3~20m/s风速出现的全年累计时间为4000~5000h。
3)风能可利用区:有效风能密度在50~150W/m2之间,3~20m/s风速出现时数约在2000~4000h之间。
4)风能贫乏区:该区风能密度低于50W/m2,全年时间低于2000h第二章风力机的理论基础一、贝兹理论二、翼型的几何参数三、风车理论四、叶素理论气动效率五、葛劳渥漩涡理论六、葛劳渥轴线推力和扭矩计算有限长的叶片,叶片的下游存在尾迹涡,主要有两个漩涡区:一个在轮毂附近,一个在叶尖。
漩涡诱导速度可看成以下三个漩涡系叠加的合速:①中心涡,集中在转轴上②每个叶片的边界涡③每个叶片尖部形成的螺旋涡七、风力机的相似特性相似准则:所谓模型与风力机实物相似是指风轮与空气的能量传递过程以及空气在风轮内向流动过程相似,或者说它们在任一对应点的同名物理量之比保持常数。
流过风力机的气流属于不可压缩流体,理论上应满足几何相似、运动相似和雷诺数相等。
对风力机而言,后一个条件实际做不到,故一般仅以前两个条件作为模型和风力机实物的相似准则,并计及雷诺数。
风力发电基础理论风能是清洁的可再生能源,取之不尽,用之不竭。
在所有新能源、可再生能源利用技术中,风力发电是技术最成熟、最具规模开发和商业发展前景的方式。
发展风电对于改善能源结构、保护生态环境、保障能源安全和实现经济的可持续发展等方面有着极其重要的意义。
大力发展风电,这已经成为世界上的共识。
风力发电基础理论风能是清洁的可再生能源,取之不尽,用之不竭。
在所有新能源、可再生能源利用技术中,风力发电是技术最成熟、最具规模开发和商业发展前景的方式。
发展风电对于改善能源结构、保护生态环境、保障能源安全和实现经济的可持续发展等方面有着极其重要的意义。
大力发展风电,这已经成为世界上的共识。
第一章风与风力资源概述一、风的产生与特性–产生:风是地球外表大气层由于太阳的热辐射而引起的空气流动;大气压差是风产生的根本原因。
特性:周期性、多样性、复杂性。
风能是清洁的可再生能源,取之不尽,用之不竭。
在所有新能源、可再生能源利用技术中,风力发电是技术最成熟、最具规模开发和商业发展前景的方式。
发展风电对于改善能源结构、保护生态环境、保障能源安全和实现经济的可持续发展等方面有着极其重要的意义。
大力发展风电,这已经成为世界上的共识。
二、风能的利用按照不同的需要,风能可以被转化成其他不同形式的能量,如机械能、电能、热能等,以实现提水灌溉、发电、供热、风帆助航等功能。
21世纪风能利用的主要领域是风力发电。
风能是清洁的可再生能源,取之不尽,用之不竭。
在所有新能源、可再生能源利用技术中,风力发电是技术最成熟、最具规模开发和商业发展前景的方式。
发展风电对于改善能源结构、保护生态环境、保障能源安全和实现经济的可持续发展等方面有着极其重要的意义。
大力发展风电,这已经成为世界上的共识。
三、风能开发的意义风能是清洁的可再生能源,取之不尽,用之不竭。
在所有新能源、可再生能源利用技术中,风力发电是技术最成熟、最具规模开发和商业发展前景的方式。
发展风电对于改善能源结构、保护生态环境、保障能源安全和实现经济的可持续发展等方面有着极其重要的意义。
风力机原理风力机原理基本概念•风力机是一种利用风能转换为机械能或电能的设备。
•风力机的基本组件包括风轮、主轴、传动系统和发电机。
风力机工作原理1.风力机首先接受来自风的动能。
2.风轮捕捉风能并通过叶片将其转换为旋转动能。
3.旋转动能通过主轴传递给传动系统。
4.传动系统将旋转动能转换为所需功率,例如带动发电机产生电能。
风力机的组成部分风轮•风轮是风力机最重要的组成部分之一。
•风轮通常由多个叶片围绕主轴旋转。
•叶片的形状和数量会影响风轮的性能和效率。
主轴•主轴是风轮旋转的中心轴线。
•主轴将风轮转动的动能传递给传动系统。
传动系统•传动系统将风轮旋转的动能转换为所需功率。
•传动系统通常包括齿轮、联轴器和发电机。
发电机•发电机是将风能转化为电能的设备。
•发电机通过旋转的风轮和传动系统产生电流。
风力机的工作原理解析风能捕捉•风力机通过叶片的形状和角度来捕捉来自风的动能。
•当风经过叶片时,它会施加力量,使叶片转动。
转动动能传递•风轮转动的动能通过主轴传递给传动系统。
•主轴通过齿轮或联轴器与传动系统连接。
动能转换•传动系统将旋转动能转换为所需功率。
•齿轮传递能量,并根据需要增加或减少转速。
•动能转换的目的可以是带动发电机产生电能,或驱动机械设备进行工作。
电能生成•动力传递到发电机,通过旋转的风轮产生电流。
•发电机内部的磁场和电线圈之间的作用产生电能。
总结•风力机通过利用风能转换为机械能或电能。
•风轮、主轴、传动系统和发电机是风力机的基本组件。
•风力机工作原理包括风能捕捉、转动动能传递、动能转换和电能生成。
以上是对风力机原理的简单介绍,希望能使读者对风力机的基本工作原理有更深入的理解。
风力机的效率和控制风力机的效率•风力机的效率是指通过风能转换为机械能或电能的比例。
•风力机的效率受到多种因素的影响,如风速、叶片设计和传动系统的效率。
风速对效率的影响•风速是影响风力机效率的关键因素之一。
•风力机在较低风速下效率较低,而在适当的风速下效率最高。
第二章风力机的基本理论及工作原理2.1风力机基本理论 (1)2.1.1动量理论 (2)2。
1.2叶素理论 (4)2.1。
3动量-叶素理论 (4)2.2风力机空气动力设计 (6)2.2。
1风轮几何参数 (6)2。
2.2风力机空气动力设计参数 (7)2.2。
3风力机翼型的阻力和升力 (7)2。
2。
4风力机气动外形设计 (12)2。
3风力机性能 (12)2。
3。
1 风力机性能参数 (12)2.3。
2 风力机叶片三维效应 (15)2。
4风力机载荷 (15)2.4.1重力载荷 (15)2.4.2惯性载荷 (16)2。
4。
3气动载荷 (16)2。
5垂直轴风力机 (16)2。
5。
1垂直轴风力机的分类 (17)2。
5。
2垂直轴风力机的主要特点 (17)2.5。
3达里厄型垂直轴风力机 (18)2。
5。
4 S型垂直轴风力机 (21)2。
5.5 其他垂直轴风力机 (24)2.5.6 直驱式垂直轴风力发电机 (25)2.6风电场中的空气动力问题 (29)2。
6.1 风电场选址 (29)2。
6。
2 风力机尾流效应 (29)2。
6.3 风力机布置 (30)2.6。
4 风电场设计软件 (30)2。
6.5 风能预测 (30)2。
1风力机基本理论风力机是一种从风中吸取动能的装置.通过动能的转移,风速会下降,但是只有那些通过风轮圆盘的空气才会受到影响。
假设将受影响的空气从哪些没有经过风轮圆盘、没有减速的空气分离出来,那么就可以画出一个包含受到影响的空气团的边界面,该边界面分别向上游和下游延伸,从而形成一个截面为圆形的长的气管流。
如果没有空气横穿界面,那么对于所有的沿气管流流向位置的空气质量流量都相等.但是因为流管内的空气减速,而没有被压缩,所以流管的横截面积就要膨胀以适应减速的空气。
如图2.1所示。
图2.1 风力机吸收能量的流管能量虽然动能是从气流中吸取,但速度突变是不可能的,也是人们不希望发生的,由于巨大的加速度产生强大的作用力,这种速度突变又是需要的.由于压力以突变方式输出能量,所以不论风力机如何设计,都是以此方式运转.风力机的存在导致上游剖面接近风力的空气逐渐减速以至于当空气到达风轮圆盘时,其速度已经低于自由流风速了。
|龙源内蒙古风力发电有限公司风力发电基础理论题库|】第一章风力发电的历史与发展填空题1、中国政府提出的风电规划目标是 2010 年全国风电装机达到(500 万千瓦),到 2020 年风电装机达到(3000 万千瓦)。
2020 年之后风电超过核电成为第三大主力发电电源,在 2050 年前后(达到或超过 4 亿千瓦),超过水电,成为第二大主力发电电源。
》简答题1、风力发电的意义(1)提供国民经济发展所需的能源(2)减少温室气体排放(3)减少二氧化硫排放(4)提高能源利用效率,减轻社会负担(5)增加就业机会!2、风力机归纳起来,可分为哪两大类(1)水平轴风力机,风轮的旋转轴与风向平行,(2)垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,3、风电机组发展趋势(1)从定桨距(失速型)向变桨距发展(2)从定转速向可变转速发展(3)单机容量大型化发展趋势—第二章风资源与风电场设计填空题—1、风能大小与(气流通过的面积)、(空气密度)和(气流速度的立方)成(正比)。
2、风速的测量一般采用(风杯式风速计)。
3、为了描述风的速度和方向的分布特点,我们可以利用观测到的风速和风向数据画出所谓的(风向玫瑰图)。
4、风电场的机型选择主要围绕风电机组运行的(安全性)和(经济性)两方面内容,综合考虑。
简答题1、简述风能是如何的形成的在赤道和低纬度地区,太阳高度角大,日照时间长,太阳辐射强度强,地面和大气接受的热量多、温度较高;在高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量小,温度低。
这种高纬度与低纬度之间的温度差异,形成了南北之间的气压梯度,使空气作水平运动。
地球在自转,使空气水平运动发生偏向的力,所以地球大气运动除受气压梯度力外,还要受地转偏向力的影响2、"3、风能的基本特征(1)风速(2)空气密度与叶轮扫风面积(3)风能密度(4)叶轮气流模型3、测风注意事项最佳的风速测量方法是在具有风资源开发潜力的地区安装测风塔,测风高度与预装风电机组的轮毂高度尽量接近,并且测风设备安装在测风塔的顶端,这样,一方面可以减小利用风切变系数计算不同高度处的风速所带来的不确定性,另一方面也可以减小测风塔本身对测风设备造成的影响(塔影效益),如果测风设备安装在测风塔的中部,应尽量使侧风设备的支架方向与主风向保持垂直,并使侧风设备与测风塔保持足够的距离。