人工智能导论:状态空间搜索实验—八数码问题求解
- 格式:doc
- 大小:139.93 KB
- 文档页数:14
人工智能作业八数码问题一、题目八数码问题:初始状态图:目标状态图:二、算符与状态空间算符:左、上、右、下状态空间:状态:A=(X0,X1,X2,X3,X4,X5,X6,X7,X8) 初始状态:S0=(0,4,1,5,2,8,3,6,7);目标状态:Sg=(0,1,7,5,2,8,3,6,4)。
三、搜索树22求解:四、Open 表,Closed 表Open 表: Closed 表:五、程序代码/* 3_13.pro eight puzzle */traceDOMAINSstate=st(in,in,in,in,in,in,in,in,in)in=integerDATABASE-mydatabaseopen(state,integer)closed(integer,state,integer)res(state)mark(state)fail_PREDICATESsolvesearch(state,state)resultsearchingstep4(integer,state)step56(integer,state)equal(state,state)repeatresulting(integer)rule(state,state)GOALsolve.CLAUSESsolve:-search(st(0,4,1,5,2,8,3,6,7),st(0,1,7,5,2,8,3,6,4)),result. search(Begin,End):-retractall(_,mydatabase),assert(closed(0,Begin,0)),assert(open(Begin,0)),assert(mark(End)),repeat,searching,!.result:-not(fail_),retract(closed(0,_,0)),closed(M,_,_),resulting(M), !.result:-beep,write("sorry don't find a road!").searching:-open(State,Pointer),retract(open(State,Pointer)),closed(No,_,_),No2=No+1,asserta(closed(No2,State,Pointer)),!,step4(No2,State).searching:-assert(fail_).step4(_,State):-mark(End),equal(State,End).step4(No,State):-step56(No,State),!,fail.step56(No,StateX):-rule(StateX,StateY),not(open(StateY,_)),not(closed(_,StateY,_)),assertz(open(StateY,No)),fail.step56(_,_):-!.equal(X,X).repeat.repeat:-repeat.resulting(N):-closed(N,X,M),asserta(res(X)),resulting(M).resulting(_):-res(X),write(X),nl,fail.resulting(_):-!.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X8,X1,X2,X3,X4,X5,X6,X7,X0)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X2,X1,X0,X3,X4,X5,X6,X7,X8)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X4,X1,X2,X3,X0,X5,X6,X7,X8)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X6,X1,X2,X3,X4,X5,X0,X7,X8)):-X0=0.rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),st(X0,X2,X1,X3,X4,X5,X6,X7,X8)):-X1=0.st(X0,X2,X8,X3,X4,X5,X6,X7,X1)):-X1=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X2,X1,X3,X4,X5,X6,X7,X8)):-X2=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X3,X2,X4,X5,X6,X7,X8)):-X2=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X2,X1,X0,X3,X4,X5,X6,X7,X8)):-X2=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X3,X2,X4,X5,X6,X7,X8)):-X3=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X4,X3,X5,X6,X7,X8)):-X3=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X4,X1,X2,X3,X0,X5,X6,X7,X8)):-X4=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X4,X3,X5,X6,X7,X8)):-X4=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X5,X4,X6,X7,X8)):-X4=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X6,X5,X7,X8)):-X5=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X5,X4,X6,X7,X8)):-X5=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X5,X7,X6,X8)):-X6=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X6,X1,X2,X3,X4,X5,X0,X7,X8)):-X6=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X6,X5,X7,X8)):-X6=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8),rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X5,X7,X6,X8)):-X7=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X8,X2,X3,X4,X5,X6,X7,X1)):-X8=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X8,X1,X2,X3,X4,X5,X6,X7,X0)):-X8=0. rule(st(X0,X1,X2,X3,X4,X5,X6,X7,X8), st(X0,X1,X2,X3,X4,X5,X6,X8,X7)):-X8=0.六、运行结果截图编译后:运行后:。
八数码问题实验报告八数码问题实验报告引言:八数码问题是一种经典的数学难题,在计算机科学领域有着广泛的研究和应用。
本实验旨在通过探索八数码问题的解法,深入理解该问题的本质,并通过实验结果评估不同算法的效率和准确性。
一、问题描述:八数码问题是一个在3×3的棋盘上,由1至8的数字和一个空格组成的拼图问题。
目标是通过移动棋盘上的数字,使得棋盘上的数字排列按照从小到大的顺序排列,最终形成如下的目标状态:1 2 34 5 67 8二、解法探索:1. 深度优先搜索算法:深度优先搜索算法是一种经典的解决拼图问题的方法。
该算法通过不断尝试所有可能的移动方式,直到找到目标状态或者无法再继续移动为止。
实验结果显示,该算法在八数码问题中能够找到解,但由于搜索空间庞大,算法的时间复杂度较高。
2. 广度优先搜索算法:广度优先搜索算法是另一种常用的解决八数码问题的方法。
该算法通过逐层扩展搜索树,从初始状态开始,逐步扩展所有可能的状态,直到找到目标状态。
实验结果显示,该算法能够找到最短路径的解,但同样面临搜索空间庞大的问题。
3. A*算法:A*算法是一种启发式搜索算法,结合了深度优先搜索和广度优先搜索的优点。
该算法通过使用一个估价函数来评估每个搜索状态的优劣,并选择最有希望的状态进行扩展。
实验结果显示,A*算法在八数码问题中表现出色,能够高效地找到最优解。
三、实验结果与分析:通过对深度优先搜索、广度优先搜索和A*算法的实验,得出以下结论:1. 深度优先搜索算法虽然能够找到解,但由于搜索空间庞大,时间复杂度较高,不适用于大规模的八数码问题。
2. 广度优先搜索算法能够找到最短路径的解,但同样面临搜索空间庞大的问题,对于大规模问题效率较低。
3. A*算法在八数码问题中表现出色,通过合理的估价函数能够高效地找到最优解,对于大规模问题具有较好的效果。
四、结论与展望:本实验通过对八数码问题的解法探索,深入理解了该问题的本质,并评估了不同算法的效率和准确性。
八个数字问题实验报告. 《八数码问题》实验报告首先,实验的目的:熟悉启发式搜索算法。
二、实验内容:启发式搜索算法用于解决8位数问题。
编制了程序,实现了解决8位数问题的算法。
采用评估功能,其中:是搜索树中节点的深度;在节点数据库中放错位置的件数;这是每个棋子与其在节点数据库中的目标位置之间距离的总和。
三、实验原理:1.问题描述:八位数问题也被称为九宫问题。
在3×3的棋盘上,有八个棋子,每一个棋子都标有一定的1到8的数字,不同棋子上标的数字是不同的。
棋盘上还有一个空格(用数字0表示),与空格相邻的棋子可以移动到空格中。
要解决的问题是: 给定初始状态和目标状态,找出从初始状态到目标状态移动次数最少的移动步骤。
所谓问题的一种状态是棋盘上棋子的排列。
解决八位数问题实际上是找出一系列从初始状态到目标状态的中间过渡状态。
2.原则描述:启发式搜索(1)原理启发式搜索是评估每个搜索在状态空间中的位置以获得最佳位置,然后从这个位置搜索到目标。
这样,可以省略大量不必要的搜索路径,并且提高了效率。
在启发式搜索中,位置的评估非常重要。
不同的评估会产生不同的效果。
(2)评估函数计算节点的评估函数,可分为两部分:1.成本已经支付(从开始节点到当前节点);2.要支付的价格(当前节点到目标节点)。
节点n的评估函数被定义为从初始节点通过n到目标节点的路径的最小成本的估计值,即=。
是从初始节点到达当前节点n的实际成本;是从节点n到目标节点的最佳路径的估计开销。
比例越大,它越倾向于先搜索宽度或同等成本。
相反,比例越大,启发式性能越强。
(3)算法描述:(1)将起始节点S放入OPEN表中,计算节点S的值;(2)如果OPEN为空表,则无法退出且没有解决方案;(3)从OPEN表中选择具有最小值的节点。
如果多个节点具有相同的值,当其中一个节点是目标节点时,选择目标节点;否则,任意一个节点被选为节点;(4)从OPEN表中移除节点,并将其放入CLOSED扩展节点表中;(5)如果它是目标节点,它成功退出并获得解决方案;⑥扩展节点以生成其所有后续节点。
C语言解八数码问题之人工智能实验报告《人工智能》上机实验基于人工智能的状态空间搜索策略研究——八数码问题求解(一)实验软件TC2.0 或 VC6.0 编程语言或其它编程语言(二)实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
(三)需要的预备知识1. 熟悉TC2.0 或 VC6.0 编程语言或者其它编程语言;2. 熟悉状态空间的宽度优先搜索、深度优先搜索和启发式搜索算法;3. 熟悉计算机语言对常用数据结构如链表、队列等的描述应用;4. 熟悉计算机常用人机接口设计。
(四)实验数据及步骤1. 实验内容八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
2 5 4 1 2 33 7 8 41 8 6 7 6 5(a) 初始状态 (b) 目标状态图1 八数码问题示意图请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或 A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。
2. 实验步骤(1)分析算法基本原理和基本流程;程序采用宽度优先搜索算法,基本流程如下:2起始把s放入open表是是否open表为失败空表,否把open表中的第一个节点n移入close表扩展节点n,把其后裔放入open表的前头是否是否有后继节点成功为目标节点,3(2)确定对问题描述的基本数据结构,如 Open 表和 Closed 表等;OPEN CLOSED SA,B,C SB,C,D,E,F S,AC,D,E,F,G S,A,B D,E,F,G,H S,A,B,C E,F,G,H,I,J S,A,B,C,D F,G,H,I,J K,L S,A,B,C,D,E G,H,I,J K,L,M,N S,A,B,C,D,E,F H,I,J K,L,M,N,O,PS,A,B,C,D,E,F,G(3)编写算符运算、目标比较等函数;(4)编写输入、输出接口;(5)全部模块联调;(6)撰写实验报告。
西安郵電大学人工智能实验报告书(三)学院:自动化学院专业:智能科学与技术班级:智能1403姓名:刘忠强时间:2016—3-29一、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索策略;3。
掌握盲目收索算法,重点是宽度优先收索和深度优先收索。
二、实验算法广度优先收索是一种先生成的节点先扩展的策略。
它的过程是:从初始节点开始逐层向下扩展,再第n层节点还没有完全搜索之前,不进如第n+1层节点.Open表中的节点总是按进入的先后排序,先进入的节点排在前面,够进入的排在后面.三、程序框图四、实验结果及分析初始状态:目标状态:2 83 2 1 61 6 4 4 0 87 0 5 7 5 3五、源程序及注释#include <iostream〉#include 〈ctime>#include <vector>using namespace std;const int ROW = 3;const int COL = 3;const int MAXDISTANCE = 10000;const int MAXNUM = 10000;int abs(int a){if (a〉0) return a;else return —a;}typedef struct _Node{int digit[ROW][COL];int dist; // 距离int dep; // 深度int index; // 索引值} Node;Node src, dest;vector〈Node〉 node_v; // 储存节点bool isEmptyOfOPEN() { //判断Open表是否空for (int i = 0; i < node_v.size(); i++) {if (node_v[i].dist != MAXNUM)return false;}return true;}bool isEqual(int index, int digit[][COL]) { //判断节点是否与索引值指向的节点相同for (int i = 0; i 〈 ROW; i++)for (int j = 0; j < COL; j++){if (node_v[index].digit[i][j]!= digit[i][j])return false;}return true;}ostream& operator〈<(ostream& os, Node& node) {for (int i = 0; i < ROW; i++) {for (int j = 0; j < COL; j++)os 〈< node。
人工智能实验报告八数码
人工智能实验报告:八数码
引言
人工智能(AI)是当今世界上最热门的领域之一,它已经在许多领域取得了巨大的成功,包括医疗保健、金融、交通和娱乐等。
在这篇实验报告中,我们将探讨人工智能在解决八数码问题上的应用。
八数码问题是一个经典的智力游戏,它要求玩家将一个3x3的方格中的数字1-8和一个空白格按照一定的规则进行移动,最终达到特定的排列顺序。
这个问题看似简单,但实际上是一个复杂的组合优化问题,需要大量的搜索和计算才能找到最优解。
实验目的
本实验旨在使用人工智能技术解决八数码问题,通过比较不同算法的表现,评估它们在解决这一问题上的效率和准确性。
实验方法
我们使用了两种经典的人工智能算法来解决八数码问题,分别是深度优先搜索(DFS)和A*搜索算法。
我们编写了相应的程序,并在相同的硬件环境下进行了实验。
实验结果
通过实验我们发现,深度优先搜索算法在解决八数码问题上存在着局部最优解的问题,容易陷入死循环。
而A*搜索算法则能够更快地找到最优解,并且在解决问题时所需的搜索次数更少。
结论
本实验结果表明,A*搜索算法在解决八数码问题上表现更优秀,具有更高的效率和准确性。
这为我们在实际应用中选择合适的人工智能算法提供了重要的参考。
未来展望
随着人工智能技术的不断发展,我们相信在解决类似的组合优化问题上会出现更多更高效的算法。
我们将继续深入研究,探索更多的人工智能算法,并将其应用于更广泛的领域,为人类社会带来更多的便利和创新。
人工智能实验一报告题目:采用A*算法解决八数码问题姓名: XXX学号: 10S003028专业:计算机科学与技术提交日期: 2011-05-04目录1问题描述........................................................................................................................... - 2 -1.1待解决问题的解释............................................................................................... - 2 -1.2问题的搜索形式描述............................................................................................ - 2 -1.3解决方案介绍(原理)........................................................................................ - 3 -2算法介绍........................................................................................................................... - 4 -2.1A*搜索算法一般介绍............................................................................................ - 4 -2.2 算法伪代码........................................................................................................... - 4 -3算法实现........................................................................................................................... - 5 -3.1 实验环境与问题规模........................................................................................... - 5 -3.2 数据结构............................................................................................................... - 5 -3.3 实验结果............................................................................................................... - 6 -3.4系统中间及最终输出结果.................................................................................... - 6 -4参考文献........................................................................................................................... - 7 - 5附录—源代码及其注释................................................................................................... - 7 -1问题描述所谓八数码问题是指这样一种游戏:将分别标有数字1,2,3,…,8 的八块正方形数码牌任意地放在一块3×3 的数码盘上。