9
lxy ( xi x)( yi y) 2995 i 1
9
9
lxx ( xi x)2 6000, l yy ( yi y)2 1533.38
i 1
i 1
bˆ0
y bˆ1 x
11.6,bˆ1
l xy l xx
0.499167
即得经验回归方程: yˆ 11.6 0.499167x
被估计的回归方程所解释的变差数量,即当
自变量个数增加时,会使预测误差变小,从
而减少SSE,此时SSR变大,R2会变大,可 能因此而高估R2造成误读。因此实际中常用 修正的复决定系数(adjusted multiple cofficient of determinnation) :
Ra2
1
(1
R2 )( n
xi/0C
0
10
20
30
40
yi/mg 14.0 17.5 21.2 26.1 29.2
xi/0C
50
60
70
80
yi/mg 33.3 40.0 48.0 54.8
试估计回归参数b0,b1, σ2,给出经验回归方程:
yˆ bˆ0 bˆ1x
12
解:由数据计算:
1 9
19
x 9 i1 xi 40, y 9 i1 yi 31.56667
H0 : b1 b2 L bp 0 的假设检验步骤:
i) 提出假设: H0 : b1 b2 L bp 0
ii)给定显著性水平α=?,样本容量n=?,p=?
iii) 选择检验统计量,当H0真时:
F SSR / p ~ F ( p, n p 1) SSE / (n p 1)
iv) H0的拒绝域为: