第三章液体的搅拌..
- 格式:ppt
- 大小:322.50 KB
- 文档页数:25
第三章液体的搅拌第一节概述化工生产中经常需要进行液体的搅拌,其目的大致可分为:一、加快互溶液体的混合;二、使一种液体以液滴形式均匀分散于另一种不互溶的液体中;三、使气体以气泡的形式分散于液体中;四、使固体颗粒在液体中悬浮;五、加强冷、热液体之间的混合以及强化液体与器壁的传热。
合,形成具有某种均匀程度的混合物的缘故。
实际操作中,一个搅拌器常常可同时起到几种作用。
例如,在气液相催化反应器中,搅拌既使固体颗粒催化剂在液体中悬浮,又使气体以小气泡形式均匀地在液体中分散,大大加快了传质和反应。
与此同时,亦强化了反应热的传递过程。
在工业上达到以上目的最常用的方法是机械搅拌。
机械搅拌的装置如图3-1所示,它由搅拌釜、搅拌器和若干附件所组成。
工业上常用的搅拌釜是一个圆筒形容器,其底部侧壁的结合处应以圆角过渡,以消除流动不易到达的死区。
搅拌釜装有一定高度的液体。
图3-1 机械搅拌的装置简图搅拌器由电机直接或通过减速装置传动,在液体中作旋转运动,其1-搅拌釜;2-搅拌器;3-加料管;4-电机作用类似于泵的叶轮,向液体提供能量,促使液体在搅拌釜中作某5-减速器;6-温度计套管;7-挡板;8-轴种循环流动。
3-1-1搅拌器的类型针对不同的物料系统和不同的搅拌目的,搅拌器的结构型式很多,表3-1列出了几种常用的结构型式。
表3-1所列的各种搅拌器,按工作原理可分为两大类。
一类是以旋桨式为代表,其工作原理与轴流泵叶轮相同,具有流量大,压头低的特点,液体在搅拌釜内主要作轴向和切向运动;另一类以涡轮式为代表,其工作原理则与离心泵叶轮相似,液体在搅拌釜内主要作径向和切向运动,与旋桨式相比具有流量较小、压头较高的特点。
平直叶桨式搅拌器的工作原理与涡轮式相近。
它的叶片较长,通常为2叶,转速较慢,液体的径向速度较小,产生的压头较低。
折叶桨式搅拌器的工作原理则与旋桨式相近,可产生轴向液流。
锚式和框式搅拌器实际上是桨式搅拌器的变型。
它们的旋转半径更大(仅略小于釜内径),转速更低,产生的压头也更小,但叶片搅动的范围很大。
化工原理第三版(陈敏恒)上下册课后思考题答案(精心整理版)第一章流体流动1、什么是连续性假定质点的含义是什么有什么条件连续性假设:假定流体是由大量质点组成的,彼此间没有间隙,完全充满所占空间的连续介质。
质点指的是一个含有大量分子的流体微团,其尺寸远小于设备尺寸,但比分子自由程却要大得多。
2、描述流体运动的拉格朗日法和欧拉法有什么不同点拉格朗日法描述的是同一质点在不同时刻的状态;欧拉法描述的是空间各点的状态及其与时间的关系。
3、粘性的物理本质是什么为什么温度上升,气体粘度上升,而液体粘度下降粘性的物理本质是分子间的引力和分子的运动与碰撞。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主,温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
4、静压强有什么特性①静止流体中,任意界面上只受到大小相等、方向相反、垂直于作用面的压力;②作用于某一点不同方向上的静压强在数值上是相等的;③压强各向传递。
7、为什么高烟囱比低烟囱拔烟效果好由静力学方程可以导出pH(冷-热)g,所以H增加,压差增加,拔风量大。
8、什么叫均匀分布什么叫均匀流段均匀分布指速度分布大小均匀;均匀流段指速度方向平行、无迁移加速度。
9、伯努利方程的应用条件有哪些重力场下、不可压缩、理想流体作定态流动,流体微元与其它微元或环境没有能量交换时,同一流线上的流体间能量的关系。
12、层流与湍流的本质区别是什么区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
13、雷诺数的物理意义是什么物理意义是它表征了流动流体惯性力与粘性力之比。
14、何谓泊谡叶方程其应用条件有哪些32lu应用条件:不可压缩流体在直圆管中作定态层流流动时的阻力损失计算。
d215、何谓水力光滑管何谓完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管。
化工原理第二章流体输送机械问题1. 什么是液体输送机械的压头或扬程?答1.流体输送机械向单位重量流体所提供的能量(J/N)。
问题2. 离心泵的压头受哪些因素影响?答2.离心泵的压头与流量,转速,叶片形状及直径大小有关。
问题3. 后弯叶片有什么优点? 有什么缺点?答3.后弯叶片的叶轮使流体势能提高大于动能提高,动能在蜗壳中转换成势能时损失小,泵的效率高。
这是它的优点。
它的缺点是产生同样理论压头所需泵体体积比前弯叶片的大。
问题4. 何谓"气缚"现象? 产生此现象的原因是什么? 如何防止"气缚"?答4.因泵内流体密度小而产生的压差小,无法吸上液体的现象。
原因是离心泵产生的压差与密度成正比,密度小,压差小,吸不上液体。
灌泵、排气。
问题5. 影响离心泵特性曲线的主要因素有哪些?答5.离心泵的特性曲线指He~qV,η~qV,Pa~qV。
影响这些曲线的主要因素有液体密度,粘度,转速,叶轮形状及直径大小。
问题6. 离心泵的工作点是由如何确定的? 有哪些调节流量的方法?答6.离心泵的工作点是由管路特性方程和泵的特性方程共同决定的。
调节出口阀,改变泵的转速。
问题7. 一离心泵将江水送至敞口高位槽, 若管路条件不变, 随着江面的上升,泵的压头He, 管路总阻力损失H f, 泵入口处真空表读数、泵出口处压力表读数将分别作何变化?答7.随着江面的上升,管路特性曲线下移,工作点右移,流量变大,泵的压头下降,阻力损失增加;随着江面的上升,管路压力均上升,所以真空表读数减小,压力表读数增加。
问题8. 某输水管路, 用一台IS50-32-200的离心泵将低位敞口槽的水送往高出3m的敞口槽, 阀门开足后, 流量仅为3m3/h左右。
现拟采用增加一台同型号的泵使输水量有较大提高, 应采用并联还是串联? 为什么?答8.从型谱图上看,管路特性曲线应该通过H=3m、qV =0点和H=13m、qV=3m3/h点,显然,管路特性曲线很陡,属于高阻管路,应当采用串联方式。
第3章液体的搅拌(一)习题旋转液体的自由液面3-1如图3-1所示。
搅拌器带动槽内全部液体以等角速度ω旋转,搅拌槽为敞口,中心处液面高度为。
试证:.图3-1(1)半径为r处的液面高度满足下式(2)设槽内液体静置时的液面高度为H,则解:(1)搅拌器带动槽内液体以等角速度ω旋转,液体中任一质点m(x,y,z)处的离心惯性力:F=mrω²式中M为质点质量,ω为角速度,r22()。
x+y 单位质量离心力F/m在x轴、y轴方向的分量为:X=rω²cosα=xω²Y=rω²sinα=yω²沿远方向的质量力分量为Z=-g将单位质量力带入等压面微分方程式有dp=ρ(xω²dx+yω²dy-gdz)=0积分有1/2x²ω²+1/2y²ω²-gz=01/2r²ω²-gz=C在自由表面上当r=0,z=0可得积分常数C=0,故自由液面方程为z=ω²r²/2g半径为r处的液面高度为:z=z0+ω²r²/2g(2)槽内液体在搅拌器的带动下液面呈抛物体状V抛=πω2R4/4g①液体体积不变πR2H-V抛=πR2z0②联立①、②可得z0=H-ω2R2/4g搅拌功率3-2某开启式平直叶涡轮搅拌装置,D/d=3,h1/d=1,d/B=5(各符号命名见图3-2)。
搅拌槽内设有挡板,搅拌器有6个叶片,直径为150mm,转速为300r/min,液体密度为970kg/m3,黏度为1.2mPa·s,试估算搅拌器的功率。
若上述搅拌装置中搅拌液体的黏度增加了10倍,密度基本不变,此时搅拌器的功率有何变化?图3-2典型的搅拌器各部比例涡轮叶片数Z=6,4块挡板D/d=3;h/d=3;B/d=1/5;l/d=1/4;h1/d=1;b/d=3/10。
解:(1)已知ρ=970㎏/m3,n=300r/min,μ=1.2mPa·S,d=150mmRe=ρnd2/μ=90937.5>104此时液体为湍流状态,由曲线3-9曲线2查得K=4.2P=Kρn3d5=38.7W(2)当μ=12mPa·S时,其他条件不变Re=ρnd2/μ=9093.75由教材图3-9曲线2查得K=4.0P=Kρn3d5=36.8W搅拌器放大3-3在小规模生产时搅拌某液体所用的搅拌釜容积为10L,采用直径为75mm 开启平直叶涡轮搅拌器,在转速为1500r/min 时获得良好的搅拌效果。
第一章流体流动1.何谓轨线?何谓流线?为什么流线互不相交?99答:轨线是同一流体质点在不同时刻所占空间位置的连线;流线是采用欧拉法考察的结果,流线上各点的切线表示该点的速度方向;因为同一点只有一个速度,由此可知,流线互不相交。
2.动能校正系数α为什么总是大于、等于1的?试说明理由?003.简述数学模型法规划实验的主要步骤。
00、03、06、10答:数学模型实验研究方法立足于对所研究过程的深刻理解,按以下主要步骤进展工作:①将复杂的真实过程本身化简成易于用数学方程式描述的物理模型;②将所得到的物理模型进展数学描述即建立数学模型;③通过实验对数学模型的合理性进展检验并测定模型参数。
4.流体流动过程中,稳定性是指什么?定态性是指什么?015.简述因次论指导下的实验研究方法的主要步骤。
01、04答:因次分析法的具体步骤:①找出影响过程的独立变量;②确定独立变量所涉及的根本因次;③构造因变量和自变量的函数式,通常以指数方程的形式表示;④用根本因次表示所有独立变量的因次,并出各独立变量的因次式;⑤依据物理方程的因次一致性原那么和π定理得到准数方程;⑥通过实验归纳总结准数方程的具体函数式。
6.层流与湍流的本质区别是什么?02答:湍流的最根本特征是出现了径向的速度脉动。
当流体在管层流时,只有轴向速度而无径向速度,牛顿型流体服从牛顿粘性定律;然而在湍流时,流体质点沿管道流动的同时还出现了径向的随机脉动,这种脉动加速了径向的动量、热量和质量的传质,动量的传递不仅起因于分子运动,而来源于流体质点的横向脉动速度。
7.非牛顿流体中,塑性流体的特点是什么?02、05、06、10答:含固体量较多的悬浮体常表现出塑性的力学特征,即只有当施加的剪应力大于某一临界值〔屈服应力〕之后才开场流动,流动发生后,通常具有剪切稀化性质,也可能在某一剪切率围有剪切增稠现象。
8.什么是流体流动的边界层?边界层别离的条件是什么?03答:由于流体粘性的作用,靠近壁面的流体将相继受阻而降速,随着流体沿壁面前流动,流体受影响的区域逐渐扩大,而流速降为未受边壁影响流速的99%以的区域即为边界层。
化工原理各章节知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)第一章?流体流动质点?含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
连续性假定?假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
拉格朗日法?选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
欧拉法?在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。
定态流动?流场中各点流体的速度u?、压强p?不随时间而变化。
轨线与流线?轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。
流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。
系统与控制体?系统是采用拉格朗日法考察流体的。
控制体是采用欧拉法考察流体的。
理想流体与实际流体的区别?理想流体粘度为零,而实际流体粘度不为零。
粘性的物理本质?分子间的引力和分子的热运动。
通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。
气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。
总势能?流体的压强能与位能之和。
可压缩流体与不可压缩流体的区别?流体的密度是否与压强有关。
有关的称为可压缩流体,无关的称为不可压缩流体。
伯努利方程的物理意义?流体流动中的位能、压强能、动能之和保持不变。
平均流速?流体的平均流速是以体积流量相同为原则的。
动能校正因子?实际动能之平均值与平均速度之动能的比值。
均匀分布?同一横截面上流体速度相同。
均匀流段?各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,?故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别?是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。
稳定性与定态性?稳定性是指系统对外界扰动的反应。