中考数学专题:例+练——第10课时 综合型问题(含答案)
- 格式:doc
- 大小:876.00 KB
- 文档页数:11
2024中考数学常见几何模型归纳总结—三角形中的倒角模型-高分线模型、双(三)垂直模型近年来各地考试中常出现一些几何倒角模型,该模型主要涉及高线、角平分线及角度的计算(内角和定理、外角定理等)。
熟悉这些模型可以快速得到角的关系,求出所需的角。
本专题高分线模型、双垂直模型、子母型双垂直模型(射影定理模型)进行梳理及对应试题分析,方便掌握。
模型1:高分线模型条件:AD 是高,AE 是角平分线结论:∠DAE=2B C∠∠-例1.(2023秋·浙江·八年级专题练习)如图,在ABC 中,30A ∠=︒,50B ∠=︒,CD 为ACB ∠的平分线,CE AB ⊥于点E ,则ECD ∠度数为()A .5︒B .8︒C .10︒D .12︒【答案】C 【分析】依据直角三角形,即可得到40BCE ∠=︒,再根据30A ∠=︒,CD 平分ACB ∠,即可得到BCD ∠的度数,再根据DCE BCD BCE ∠=∠-∠进行计算即可.【详解】解:50,B CE AB ∠=︒⊥ ,40BCE ∴∠=︒,又30A ∠=︒ ,CD 平分ACB ∠,1118050305022()BCD BCA ∴∠=∠=⨯︒-︒-︒=︒,504010DCE BCD BCE ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键.例2.(2023春·河南南阳·七年级统考期末)如图,在△ABC 中,∠1=∠2,G 为AD 的中点,BG 的延长线交AC 于点E ,F 为AB 上的一点,CF 与AD 垂直,交AD 于点H ,则下面判断正确的有()①AD 是△ABE 的角平分线;②BE 是△ABD 的边AD 上的中线;③CH 是△ACD 的边AD 上的高;④AH 是△ACF 的角平分线和高A .1个B .2个C .3个D .4个【答案】B【详解】解:①根据三角形的角平分线的概念,知AG 是△ABE 的角平分线,故此说法错误;②根据三角形的中线的概念,知BG 是△ABD 的边AD 上的中线,故此说法错误;③根据三角形的高的概念,知CH 为△ACD 的边AD 上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH 是△ACF 的角平分线和高线,故此说法正确.故选:B .【点睛】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.例3.(2023·安徽合肥·七年级统考期末)如图,已知AD 、AE 分别是Rt △ABC 的高和中线,AB =9cm ,AC =12cm ,BC =15cm ,试求:(1)AD 的长度;(2)△ACE 和△ABE 的周长的差.【答案】(1)AD 的长度为365cm ;(2)△ACE 和△ABE 的周长的差是3cm .【分析】(1)利用直角三角形的面积法来求线段AD 的长度;(2)由于AE 是中线,那么BE =CE ,再表示△ACE 的周长和△ABE 的周长,化简可得△ACE 的周长﹣△ABE 的周长=AC ﹣AB 即可.【详解】解:(1)∵∠BAC =90°,AD 是边BC 上的高,∴S △ACB =12AB•AC =12BC•AD ,∵AB =9cm ,AC =12cm ,BC =15cm ,∴AD =AB AC CB ⋅=91215⨯=365(cm ),即AD 的长度为365cm ;(2)∵AE 为BC 边上的中线,∴BE =CE ,∴△ACE 的周长﹣△ABE 的周长=AC+AE+CE ﹣(AB+BE+AE )=AC ﹣AB =12﹣9=3(cm ),即△ACE 和△ABE 的周长的差是3cm .【点睛】此题主要考查了三角形的面积,关键是掌握直角三角形的面积求法.例4.(2023·广东东莞·八年级校考阶段练习)如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30B ∠=︒,50C ∠=︒.(1)求DAE ∠的度数.(2)试写出DAE ∠与C B ∠-∠关系式,并证明.(3)如图,F 为AE 的延长线上的一点,FD BC ⊥于D ,这时AFD ∠与C B ∠-∠的关系式是否变化,说明理由.【答案】(1)10︒(2)()12DAE C B ∠=∠-∠(3)不变,理由见解析【分析】(1)根据三角形内角和求出BAC ∠,根据角平分线的定义得到50BAE ∠=︒,根据高线的性质得到90ADE ∠=︒,从而求出60BAD ∠=︒,继而根据角的和差得到结果;(2)根据角平分线的定义得到12BAE BAC ∠=∠,根据三角形内角和求出119022EAC B C ∠=︒-∠-∠,根据角的和差得到结果;(3)过A 作AG BC ⊥于G ,结合(2)知1()2EAG C B ∠=∠-∠,证明FD AG ∥,得到AFD EAG ∠=∠,即可证明.【详解】(1)解:∵30B ∠=︒,50C ∠=︒,∴1805030100BAC ∠=︒-︒-︒=︒,∵AE 平分BAC ∠,∴1502BAE CAE BAC ∠=∠=∠=︒,∵AD 是高,∴90ADE ∠=︒,∵30B ∠=︒,∴60BAD ∠=︒,∴10DAE BAD BAE ∠=∠-∠=︒;(2)()12DAE C B ∠=∠-∠,证明如下:∵AE 平分BAC ∠,∴12EAC BAC ∠=∠,∵180BAC B C ∠=︒-∠-∠,∴()11101902822B C B C EAC ︒-∠-∠-∠︒-==∠∠,∴EAD EAC DAC ∠=∠-∠()11090922B C C =︒∠---∠︒-∠()12C B =∠-∠;(3)不变,理由是:如图,过A 作AG BC ⊥于G ,由(2)可知:1()2EAG C B ∠=∠-∠,AG BC ⊥ ,90AGB ∠=︒,FD BC ⊥ ,90FDC ∴∠=︒,AGD FDC ∴∠=∠,FD AG ∴∥,AFD EAG ∴∠=∠,1()2AFD C B ∴∠=∠-∠.【点睛】本题主要考查三角形的内角和定理、角平分线的性质、直角三角形的性质和平行线的判定与性质,熟练掌握三角形的内角和定理和角平分线的性质是解题的关键.模型2:双垂直模型结论:①∠A =∠C ;②∠B =∠AFD =∠CFE ;③AB CD AE BC ⋅=⋅。
第10课时分式方程(66分)一、选择题(每题4分,共20分)1.解分式方程2x-1+x+21-x=3时,去分母后变形为(D)A.2+(x+2)=3(x-1) B.2-x+2=3(x-1) C.2-(x+2)=3(1-x) D.2-(x+2)=3(x-1)2.[2017·孝感]分式方程2x+3=1x-1的解是(B)A.x=53B.x=5C.x=4 D.x=-53.分式方程2x-2+3x2-x=1的解为(A)A.x=1 B.x=2C.x=13D.x=0【解析】去分母,得2-3x=x-2,解得x=1,经检验,x=1是分式方程的解.4.[2016·十堰]用换元法解方程x2-12x-4xx2-12=3时,设x2-12x=y,则原方程可化为(B)A.y-1y-3=0 B.y-4y-3=0C.y-1y+3=0 D.y-4y+3=05.[2017·德州]某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的(D)A.240x -20-120x =4 B.240x +20-120x =4 C.120x -240x -20=4 D.120x -240x +20=4 【解析】 根据题意可知,第一次购买的资料的单价为120x 元,第二次购买的资料的单价为240x +20元,∵比第一次购买时的单价少4元,∴有120x -240x +20=4.二、填空题(每题4分,共20分)6.[2017·常德]分式方程2x +1=4x的解为__x =2__. 【解析】 去分母,方程两边同时乘以x ,得2+x =4;移项,解方程得x =2;检验,原方程成立,故方程的解为x =2.7.[2017·泰安]分式7x -2与x 2-x的和为4,则x 的值为__3__. 【解析】 根据题意得7x -2+x 2-x=4,方程两边同乘以(x -2),得7-x =4(x -2),解这个整式方程,得x =3,检验:当x =3时,x -2=1,∴x =3是原方程的根,∴x 的值为3.8.[2017·温州]甲、乙工程队分别承接了160 m ,200 m 的管道铺设任务,已知乙比甲每天多铺设5 m ,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x m ,根据题意可列出方程 160x =200x +5. 9.[2016·济宁]已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,这辆汽车原来的速度是__80__km/h.【解析】 设这辆汽车原来的速度是x km/h ,则原来从A 地到B 地用时160x h ,速度提高25%后用时160(1+25%)xh ,由提速后比原来提前0.4 h 到达,列方程160x -160(1+25%)x=0.4,解得x =80. 经检验,x =80是方程的解,即原来的速度是80 km/h.10.若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程,得x =21-a ,∴21-a >0,解得a <1,当x -1=0时,x =1,代入x =21-a,得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1. 三、解答题(共26分)11.(10分)解分式方程:(1)[2017·无锡]52x -1=3x +2; (2)[2017·济宁]2x x -2=1-12-x . 解:(1)方程两边都乘以(2x -1)(x +2),化为整式方程5(x +2)=3(2x -1).解这个整式方程,得x =13.经检验,x =13是原分式方程的解,∴原分式方程的解是x =13;(2)方程两边乘(x -2),得2x =x -2+1,解得x =-1.检验:当x =-1时,x -2≠0,所以原分式方程的解为x =-1.12.(8分)[2017·宜宾]用A ,B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A ,B 型机器人每小时分别搬运多少袋大米.解:设A 型机器人每小时搬运x 袋大米,则B 型机器人每小时搬运大米(x -20)袋,依题意得700x =500x -20,解得x =70, 经检验,x =70是方程的根,则x -20=50(袋).答:A 型机器人每小时搬大米70袋,B 型机器人每小时搬大米50袋.13.(8分)[2017·扬州]星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1 800 m 的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6 min 到达,求小芳的速度.解:设小芳的速度为x m/min ,由题意可得1 800 x-1 8001.2x=6,解得x=50.经检验,x=50是原方程的解且符合实际.答:小芳的速度为50 m/min.(15分) 14.(6分)[2017·聊城]如果解关于x的分式方程mx-2-2x2-x=1时出现增根,那么m的值为(D) A.-2 B.2 C.4 D.-4【解析】mx-2-2x2-x=1,去分母,方程两边同时乘以(x-2),得m+2x=x-2,由分母可知,分式方程的增根是x=2,当x=2时,m+4=2-2,则m =-4.15.(9分)[2016·广东]某工程队修建一条长1 200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?解:(1)设这个工程队原计划每天修建道路x m,得1 200 x=1 200(1+50%)x+4,解得x=100,经检验,x=100是原方程的解,且符合题意.答:这个工程队原计划每天修建道路100 m;(2)设实际平均每天修建道路的工效比原计划增加y,依题意,得1 200100=1 200100(1+y)+2,解得y=20%,经检验,y=20%是原方程的解,且符合题意.答:实际平均每天修建道路的工效比原计划增加20%.(19分)16.(9分)宁波火车站北广场投入使用后,计划在广场内种植A,B两种花木共6 600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解析】(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得等量关系:种植A,B两种花木共6 600棵,根据等量关系列出方程;(2)设安排a人种植A花木,由题意得等量关系:a人种植A花木所用时间=(26-a)人种植B花木所用时间,根据等量关系列出方程.解:(1)设B花木数量为x棵,则A花木数量是(2x-600)棵,由题意得x+(2x -600)=6 600,解得x=2 400,2x-600=4 200.答:B花木数量是2 400棵,A花木数量是4 200棵;(2)设安排a人种植A花木,由题意得4 200 60a=2 40040(26-a),解得a=14,经检验,a=14是原分式方程的解,且符合题意.26-a=26-14=12.答:安排14人种植A花木,12人种植B花木.17.(10分)[2017·盐城]某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3 500元购进了这种礼盒且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2 400元购进了与2014年相同数量的礼盒也全部售完.礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?【解析】(1)根据“用2 400元购进了与2014年相同数量的礼盒”列分式方程求解;(2)先求出2014年、2016年所获利润,再利用“基础量×(1+增长率)2=结果量”列一元二次方程求解.解:(1)设2014年礼盒的进价为x元/盒.根据题意,得3 500x=2 400x-11,解得x=35.经检验,x=35是分式方程的解.答:2014年礼盒的进价是35元/盒;(2)2014年所获利润为100×(60-35)=2 500(元).2016年所获利润为100×(60-24)=3 600(元).设该商店每年销售礼盒所获利润的年增长率是y.根据题意,得2 500(1+y)2=3 600.解得y1=0.2,y2=-2.2(不合题意,舍去).答:该商店每年销售礼盒所获利润的年增长率是20%.。
2020年九年级数学典型中考压轴题综合专项训练:《圆的综合》1.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM 的值.2.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC平分∠BAD,过C点作CE⊥AD 延长线于E点.(1)求证:CE是⊙O的切线;(2)若AB=10,AC=8,求AD的长.3.已知,如图1,AB为⊙O直径,△ACD内接于⊙O,∠D+∠ACE=90°,点E在线段AD上,连接CE.(1)若CE⊥AD,求证:CA=CD;(2)如图2,连接BD,若AE=DE,求证:BD平行CE;(3)如图,在(2)的条件下,过点C作AB的垂线交AB于点K,交AD于点L,4AK =9BK,若OL=,求BD的值.4.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,点D在⊙O上,BD=BC,DE⊥AC,垂足为点E,DE与⊙O和AB分别交于点M、F.连接BO、DO、AM.(1)证明:BD是⊙O的切线;(2)若tan∠AMD=,AD=2,求⊙O的半径长;(3)在(2)的条件下,求DF的长.5.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.6.如图,在△ABC中,I是内心,AB=AC,O是AB边上一点,以点O为圆心,OB为半径的⊙O经过点I.(1)求证:AI是⊙O的切线;(2)已知⊙O的半径是5.①若E是BI的中点,OE=,则BI=;②若BC=16,求AI的长.7.[教材呈现]图是华师版九年级上册数学教材第103页的部分内容.已知:如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.通过该问题的证明,得出了直角三角形的一条性质:直角三角形斜边上的中线等于斜边的一半.请根据教材内容,结合图①,写出完整的解题过程.[结论应用](1)如图②,在Rt△ABC中,F是AD中点,∠ACB=90°,∠BAC=60°,点D在BC上(点D不与B、C重合),DE⊥AB于点E,连结CE、CF、EF.当AD=4时,S=.△CEF(2)如图③,AD是⊙O直径,点C、E在⊙O上(点C、E位于直径AD两侧),在⊙O 上,且sin∠DAC=,CD=2.当四边形OCDE有一组对边平行时,直接写出AE的长.8.已知正方形ABCD内接于⊙O,点E为上一点,连接BE、CE、DE.(1)如图1,求证:∠DEC+∠BEC=180°;(2)如图2,过点C作CF⊥CE交BE于点F,连接AF,M为AE的中点,连接DM并延长交AF于点N,求证:DN⊥AF;(3)如图3,在(2)的条件下,连接OM,若AB=10,tan∠DCE=,求OM的长.9.如图,AB为⊙O的直径,点C、D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线.(2)若∠CAB=36°,⊙O的半径为12,求的长.10.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若EA=EF=2,求⊙O的半径;11.已知AB是⊙O的直径,C为⊙O上一点,∠OAC=58°.(Ⅰ)如图①,过点C作⊙O的切线,与BA的延长线交于点P,求∠P的大小;(Ⅱ)如图②,P为AB上一点,CP延长线与⊙O交于点Q.若AQ=CQ,求∠APC的大小.12.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F.(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=9.求sin∠ADB的值.13.如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.(1)求证:DC是⊙O的切线;(2)若AE=1,ED=3,求⊙O的半径.(3)在(2)中的条件下,∠ABD=30°,将△ABD以点A为中心逆时针旋转120°,求BD扫过的图形的面积(结果用π表示).14.如图,△AOB中,A(﹣8,0),B(0,),AC平分∠OAB,交y轴于点C,点P 是x轴上一点,⊙P经过点A、C,与x轴交于点D,过点C作CE⊥AB,垂足为E,EC 的延长线交x轴于点F.(1)求证:EF为⊙P的切线;(2)求⊙P的半径.15.已知,AB为⊙O的直径,弦BC、AF相交于点E,过点E作ED⊥AB,∠AEC=∠BED.(1)如图1,求证:=;(2)如图2,当∠BAF=45°时,OC交AF于点H,作FG⊥BH于点Q,交AB于点G,连接GH,求证:∠AGH=∠BGF;(3)如图3,在(2)的条件下,射线BG与⊙O交于点P,过点P作PK⊥BH交AB于点M,垂足为点K,点N为B的中点,MN=,求⊙O的半径.参考答案1.解:(1)连接OE,则∠OCB=∠OBC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.2.解:(1)连接OC,∵OC=OA,∴∠OAC=∠OCA,又∵AC平分∠BAD,∴∠CAD=∠CAO=∠OCA,∴OC∥AE,∵CE⊥AD,即可得OC⊥CE,∴CE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴BC===6,∵∠BAC=∠DAC,∴=,∴BC=CD=6,延长BC交AE的延长线于F,∵∠BAC=∠FAC,AC=AC,∠ACB=∠ACF=90°,∴△ACB≌△ACF(ASA),∴FC=BC=6,AF=AB=10,∵∠CDF=180°﹣∠ADC,∠ABF=180°﹣∠ADC,∴∠CDF=∠ABF,∵∠CFD=∠AFB,∴△CFD∽△AFB,∴=,∴=,∴AD=.3.解:(1)∵CE⊥AD,∴∠D+∠ECD=90°,∠AEC=∠DEC=90°,∵∠D+∠ACE=90°,∴∠ACE=∠DCE,在△ACE和△DCE中,,∴△ACE≌△DCE(ASA),∴CA=CD;(2)∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠BDC=90°,∵∠ADC+∠ACE=90°,∴∠BDC=∠ACE,∵∠BDC=∠BAC,∴∠BAC=∠ACE,设AB与CE的交点为M,则MA=MC,∴M在AC的垂直平分线上,∵弦的垂直平分线过圆心O,即弦的垂直平分线与直径的交点是圆心,∴M与点O重合,即CE过圆心O,∵AE=DE,∴CE⊥AD,∴∠AEC=∠ADB=90°,∴CE∥BD;(3)∵4AK=9BK,∴AK:BK=9:4,设BK=4m,则AK=9m,∴AB=13m,∴OA=OB=6.5m,∴OK=OB﹣BK=2.5m,∵AK⊥CL,∴∠AKC=90°=∠AEO,在△OAE和△OCK中,,∴△OAE≌△OCK(AAS),∴OE=OK=2.5m,∵OA=OB,AE=DE,∴BD=2OE=5m,∴AD=,∵∠AKL=∠ADB=90°,∠LAK=∠BAD,∴△AKL∽△ADB,∴,即,∴LK=,∵OK2+LK2=OL2,∴,解得,m=0.8,∴BD=5m=4.4.解:(1)在△BDO和△BCO中,BD=BC,OD=OC,BO=BO,故△BDO≌△BCO(SSS),∴∠BDO=∠ABC=90°,BD是⊙O的切线;(2)连接CD,则∠AMD=∠ACD,AB是直径,故∠ADC=90°,在Rt△ADC中,tan∠ACD=tan∠AMD==,∵AD=2,∴CD=4,故圆的半径为5;(3)在Rt△ADC中,DE⊥AC,则DE==4,则AE=2,由(1)知△BDO≌△BCO,∴∠BOC=∠BOD=∠DOC,∵∠DAE=∠DOC,∴∠DAE=∠BOC,∵ED⊥AC,∴∠AED=∠OCB=90°,∴△DAE∽△BOC,∴,即,解得:BC=10,∴∠BAC=∠ABC=45°,∴∠FAE=∠AFE=45°,∴FE=AE=2,DF=DE﹣EF=2.5.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.6.(1)证明:延长AI交BC于D,连接OI.∵I是△ABC的内心,∴BI平分∠ABC,AI平分∠BAC.∴∠1=∠3.∵AB=AC,∴AD⊥BC.又∵OB=OI,∴∠3=∠2.∴∠1=∠2.∴OI∥BD.∴OI⊥AI.∴AI为⊙O的切线.(2)①解:∵E是BI的中点,∴OE⊥BI.在直角△OBE中,OB=5,OE=,则由勾股定理知:BE===2.∴BI=2BE=.故答案是:;②解:由(1)知OI∥BC,∴△AOI~△ABD.∴,∴=.∴.∴.∴AI=•AD=×=.7.解:[教材呈现]已知:△ABC中,∠ACB=90°,CD是中线,求证:CD=AB.证明:作DE⊥BC于E,DF⊥AC于F,则DF∥BC,DE∥AC,∵CD是中线,∴AF=FC,BE=EC,∴直线DE是线段AC的垂直平分线,直线DE是线段BC的垂直平分线,∴DA=DC,DB=DC,∴CD=DA=DB=AB;[结论应用](1)CF、FE分别是Rt△ACD、Rt△ADE的中线,则CF=EF=AD=2,设:∠CAF=α=∠ACF,∠FAE=β=∠AEF,∠CAB=α+β=60°,∠CFE=∠FCA+∠FAC+∠FEA+∠FAE=2α+2β=120°,故△CEF为腰长为2,顶角为120°的等腰三角形,过点F作FH⊥CE,则S=×CE×FH=2×1=,△CEF故答案为:;(2)设sin∠DAC==sinα,CD=2,则AD=6,OC=OE=AD=3,①当CD∥OE时,如图③(左侧图),则∠ADC=∠DOE=∠β,sin=cosβ,过点D作DH⊥OE交OE于点H,OH=OD cosβ=3×=1,则HE=3﹣1=2,同理DH=2,DE==2,AE===2;②当OC∥DE时,如图③(右侧图),则∠COD=∠ODE=2α,过点O作ON⊥DE于点N,则DN=EN,DE=2DN=2×OD cos2α=2×3×=(注:cos2α的求法见备注),AE===;综上,AE=2或;备注:等腰三角形ABC,AB=AC,作AD⊥BC于点D,过点C作CE⊥AB于点E,设∠BAD=∠CAD=α,设sin,设BD=CD=a,则AB=AC=3a,则AD=2a,S=AD×BC=AB×CE,△ABC即2a×2a=3a×CE,则CE=,sin2α==,则cos2α=.8.(1)证明:连接BD,OC,∵四边形ABCD为正方形,∴∠A=90°,BC=CD,∴BD为⊙O的直径,∵OB=OD,∴OC⊥BD,∴∠BOC=90°,∴∠BEC=∠BOC=45°,∵正方形ABED是圆O的内接四边形,∴∠A+∠DEB=180°,∴∠DEB=90°,∴∠DEC+∠BEC=∠DEB+∠BEC+∠BEC=180°;(2)证明:如图2,延长ED至G,使ED=DG,连接AG,∵CE⊥CF,∴∠ECF=90°,∵∠CEF=45°,∴∠CEF=∠CFE=45°,∴CE=CF,∵∠BCD=∠ECF=90°,∴∠BCF=∠DCF,∵BC=CD,∴△BFC≌△DEC(SAS),∴BF=DE,∵DE=DG,∴BF=DG,∵四边形ABED为圆O的内接四边形,∴∠ABE+∠ADE=180°,∵∠ADE+∠ADG=180°,∴∠ABE=∠ADG,∵AB=AD,∴△ABF≌△ADG(SAS),∴∠BAF=∠DAC,∵∠BAF+∠FAD=∠BAD=90°,∴∠DAG+∠FAD=90°,∴∠FAG=90°,∵M为AE的中点,∴DM为△AEG的中位线,∴DM∥AG,∴∠DNF=∠FAG=90°,∴DN⊥AF,(3)解:如图3,连接BD,OC,过点B作BK⊥CF交CF的延长线于点K,过点B作BT⊥AE于点T,由(1)知∠BOC=90°,∴OB=OC=,由(1)知BD为⊙O的直径,在Rt△ABD中,BD=AB=10,∵,∴∠DBE=∠DCE,∴tan∠DCE=tan∠DBE=,∴,设DE=x,则BE=7x,在Rt△BDE中,BD==5x,∴,∴x=2,∴DE=2,∴BF=2,∵∠EFC=45°,∴∠BFK=∠EFC=45°,∴∠KBF=∠BFK=45°,∴,由(2)知∠BCF=∠DCE,∴tan∠BCF=tan∠DCE=,∴,∴,∴,在Rt△ECF中,EF=CF=12,∴BE=EF+BF=14,∵∠AEB=∠AEC﹣∠BEC=90°﹣45°=45°,∴∠TBE=∠TEB,∴TB=TE=,∴=,∴,∴,∵M为AE的中点,∴OM⊥AE,在Rt△OME中,OM==3.9.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)连接OD,∵∠BOC=2∠CAB=2×36°=72°,∵,∴∠BOD=2∠BOC=144°,∴的长==π.10.解:(1)连接OD,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是⊙O的切线;(2)设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+2,∴BD=CD=DE=r+2,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+2,∴AF=AB﹣BF=2OB﹣BF=2r﹣(2+r)=r﹣2,∵∠BFD=∠EFA,∠B=∠E,∴△BFD∽△EFA,∴,即=解得:r1=1+,r2=1﹣(舍),综上所述,⊙O的半径为1+.11.解:(I)如图①,∵OA=OC,∠OAC=58°,∴∠OCA=58°∴∠COA=180°﹣2×58°=64°∵PC是⊙O的切线,∴∠OCP=90°,∴∠P=90°﹣64°=26°;(II)∵∠AOC=64°,∴∠Q=∠AOC=32°,∵AQ=CQ,∴∠QAC=∠QCA=74°,∵∠OCA=58°,∴∠PCO=74°﹣58°=16°,∵∠AOC=∠QCO+∠APC,∴∠APC=64°﹣16°=48°.12.(1)证明:如图1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=90°,∴∠DAH+∠ADH=90°,∠DBE+∠BDE=90°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF.(2)证明:连接OA、OB.∵OB=OC=OA,AC=BC∴△OCB≌△OCA(SSS),∴OBC=∠OCA,∴OC平分∠ACB;(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q.则四边形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=90°,∴BN是直径,则OP=DN=,∴HQ=OP=,设AH=x,则AQ=x+,AC=2AQ=2x+9,BC=AC=2x+9,∴CH=AC﹣AH=2x+9﹣x=x+9在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+9)2=()2﹣x2+(x+9)2,整理得2x2+9x﹣45=0,(x﹣3)(2x+15)=0解得x=3(负值舍去),BC=2x+9=15,CH=x+9=12∵∠ADB=∠BCH,∴sin∠ADB=sin∠BCH===.即sin∠ADB的值为.13.证明:(1)连接DO,如图,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∴△COD≌△COB(SAS),∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CDO=90°,∴OD⊥CE,又∵点D在⊙O上,∴CD是⊙O的切线;(2)设圆O的半径为R,则OD=R,OE=R+1,∵CD是圆O的切线,∴∠EDO=90°,∴ED2+OD2=OE2,∴9+R2=(R+1)2,∴R=4,∴圆O的半径为4;(3)∵∠ABD=30°,AB=2R=8,∴AD=4,∴BD扫过的图形的面积==16π.14.(1)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(2)∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴=,∵A(﹣8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5.15.(1)证明:如图1,连接AC、BF、CF,∵AB为⊙O的直径,∴∠AFB=90°,∵∠AEC=∠BED,∠AEC=∠BEF,∴∠BEF=∠BED,∵ED⊥AB,∴∠BDE=∠AFB=90°,又∵BE=BE,∴△BDE≌△BFE(AAS),∴∠ABC=∠FBC,∵,∴∠ABC=∠AFC,∵,∴∠CAF=∠FBC,∴∠CAF=∠AFC,∴AC=CF,∴;(2)证明:如图2,连接OF、BF,作AS⊥AF于点A,交FG的延长线于点S,∵,∴AOC=∠FOC,∵AO=OF,∴OC⊥AF,∴AH=HF=AF,∵∠BAF=45°,∴AF=BF,∵FG⊥BH,AS⊥AF,∴∠S=∠BHF,又∵∠SAF=∠HFB=90°,∴△FSA≌△BHF(AAS),∴AS=HF=AH,∵∠SAG=∠GAH=45°,AG=AG,∴△SAG≌△HAG(SAS),∴∠SGA=∠AGH,∴∠AGH=∠BGF;(3)解:如图3,过点O作OR⊥HP于点R,OT⊥BH于点T,∵△SAG≌△HAG,∴∠AHG=∠S=∠BHF,∵OH⊥AF,∴∠OHG=∠OHB,∵∠ORH=∠OTH=90°,OH=OH,∴△ORH≌△OTH(AAS),∴RH=TH,OR=OT,又∵OP=OB,∠ORP=∠OTB=90°,∴Rt△ORP≌Rt△OTB(HL),∴PR=BT,∴PR+RH=BT+TH,即PH=BH,∴∠HPB=∠HBP,设∠OPR=∠OBT=α,∵∠AOH=∠A=45°,∴∠PHO=∠BHO=∠AOH﹣∠OBH=45°﹣α,∴∠PHB=90°﹣2α,∴∠HPB=∠HBP=45°+α,∴∠PBO=45°,∵PO=BO,∴∠OPB=∠OBP=45°,∴PO⊥AB,∵PK⊥BH,GF⊥BH,∴PK∥GF,∴∠PMG=∠BGF,∵∠PGM=∠AGH,∴∠PGM=∠PMG,∴PG=PM,∴OG=OM,过点M作ML⊥BP于点L,∵∠PBH=∠BHF=45°+α,∴tan∠PBH=tan∠BHF==2,∵∠MPL=∠BPK,∴∠PML=∠PBH,∴tan∠PML=tan∠PBH=2,设BM=4a,则BL=ML=2a,∴PL=4a,∴PB=6a,∴PO=BO=6a,∴OM=OG=2a,∴GM=4a,∴GM=BM,∵N为BH的中点,∴MN为中位线,∴GH=2MN=,过点G作GU⊥OH于点U,则tan∠GHO=tan∠OHB=tan∠FBH=,在Rt△GUH中,设GU=b,则UH=2b,GH=b,∴GU=,∴GO=2=2a,∴a=1,∴OB=6a=6,即⊙O的半径为6.。
2020-2021中考数学专题复习分类练习圆的综合综合解答题含答案解析一、圆的综合1.图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α= °时,BA′与半圆O相切.当α= °时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.【答案】(1)A′C与半圆O相切;理由见解析;(2)45;30;(3)0°<α<30°或45°≤α<90°.【解析】试题分析:(1)过O作OD⊥A′C于点D,交A′B于点E,利用含30°角的直角三角形的性质可求得DE+OE=A′B=AB=OA,可判定A′C与半圆相切;(2)当BA′与半圆相切时,可知OB⊥A′B,则可知α=45°,当O′在上时,连接AO′,则可知BO′=AB,可求得∠O′BA=60°,可求得α=30°;(3)利用(2)可知当α=30°时,线段O′B与圆交于O′,当α=45°时交于点B,结合题意可得出满足条件的α的范围.试题解析:(1)相切,理由如下:如图1,过O作OD过O作OD⊥A′C于点D,交A′B于点E,∵α=15°,A′C∥AB,∴∠ABA′=∠CA′B=30°,∴DE=A′E ,OE=BE ,∴DO=DE+OE=(A′E+BE )=AB=OA ,∴A′C 与半圆O 相切;(2)当BA′与半圆O 相切时,则OB ⊥BA′,∴∠OBA′=2α=90°,∴α=45°,当O′在上时,如图2,连接AO′,则可知BO′=AB ,∴∠O′AB=30°,∴∠AB O′=60°,∴α=30°,(3)∵点P ,A 不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段BO′与半圆只有一个公共点B ;当α增大到45°时BA′与半圆相切,即线段BO′与半圆只有一个公共点B .当α继续增大时,点P 逐渐靠近点B ,但是点P ,B 不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B .综上所述0°<α<30°或45°≤α<90°.考点:圆的综合题.2.已知O e 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______o ;()2如图②,若m 6=.①求C ∠的正切值;②若ABC V 为等腰三角形,求ABC V 面积.【答案】()130;()2C ∠①的正切值为34;ABC S 27=V ②或43225. 【解析】【分析】 ()1连接OA ,OB ,判断出AOB V 是等边三角形,即可得出结论;()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.【详解】()1如图1,连接OB ,OA ,OB OC 5∴==,AB m 5==Q ,OB OC AB ∴==,AOB ∴V 是等边三角形,AOB 60∠∴=o ,1ACB AOB 302∠∠∴==o , 故答案为30;()2①如图2,连接AO 并延长交O e 于D ,连接BD ,AD Q 为O e 的直径,AD 10∴=,ABD 90∠=o ,在Rt ABD V 中,AB m 6==,根据勾股定理得,BD 8=, AB 3tan ADB BD 4∠∴==, C ADB ∠∠=Q ,C ∠∴的正切值为34; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,AC BC =Q ,AO BO =,CE ∴为AB 的垂直平分线,AE BE 3∴==,在Rt AEO V 中,OA 5=,根据勾股定理得,OE 4=,CE OE OC 9∴=+=,ABC 11S AB CE 692722∴=⨯=⨯⨯=V ; Ⅱ、当AC AB 6==时,如图4,连接OA 交BC 于F ,AC AB =Q ,OC OB =,AO ∴是BC 的垂直平分线,过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=Q ,ACF AOG ∠∠∴=,在Rt AOG V 中,AG 3sin AOG AC 5∠==, 3sin ACF 5∠∴=, 在Rt ACF V 中,3sin ACF 5∠=, 318AF AC 55∴==, 24CF 5∴=, ABC 111824432S AF BC 225525∴=⨯=⨯⨯=V ; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25=V .【点睛】圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.3.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,∠APB=60°,连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(Ⅰ)求∠ACB 的大小;(Ⅱ)若⊙O 半径为1,求四边形ACBP 的面积.【答案】(Ⅰ)60°;(Ⅱ)33【解析】分析:(Ⅰ)连接AO,根据切线的性质和切线长定理,得到OA⊥AP,OP平分∠APB,然后根据角平分线的性质和三角形的外角的性质,30°角的直角三角形的性质,得到∠ACB的度数;(Ⅱ)根据30°角的直角三角形的性质和等腰三角形的性质,结合等底同高的性质求三角形的面积即可.详解:(Ⅰ)连接OA,如图,∵PA、PB是⊙O的切线,∴OA⊥AP,OP平分∠APB,∴∠APO=12∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACO=12AOP=30°,同理可得∠BCP=30°,∴∠ACB=60°;(Ⅱ)在Rt△OPA中,∵∠APO=30°,∴33,OP=2OA=2,∴OP=2OC,而S△OPA=123∴S△AOC=12S△PAO=34,∴S△ACP=33,4∴四边形ACBP的面积=2S△ACP=33.点睛:本题考查了切线的性质,解直角三角形,等腰三角形的判定,熟练掌握切线的性质是解题的关键.4.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.5.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
中考数学复习《综合实践题》经典题型及测试题(含答案)题型解读此类题考查形式多样,但都与实际问题结合,且解决实际问题时一般会用到前面的结论,解题时要多结合前面的问题,大胆猜想.综合性较强,入手简单,但要得满分较难,此类题型是今后中考命题的方向,应引起重视.1.如图①,△ABC 和△DEF 中,AB =AC ,DE =DF ,∠A =∠D. (1)求证:BC AB =EFDE;(2)由(1)中的结论可知,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的对边(即底边BC)与邻边(即腰AB 或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)=∠A的对边(底边)∠A的邻边(腰)=BCAB .如T(60°)=1.①理解巩固:T(90°)=________,T (120°)=________,若α是等腰三角形的顶角,则T(α)的取值范围是________;②学以致用:如图②,圆锥的母线长为9,底面直径PQ =8,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长(精确到0.1).(参考数据:T(160°)≈1.97,T (80°)≈1.29,T (40°)≈0.68)2. (1)如图①,已知△ABC,以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE、CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;(2)如图②,已知△ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连接BE、CD,猜想BE与CD有什么数量关系?并说明理由;(3)运用(1),(2)解答中所积累的经验和知识,完成下题:如图③,要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).3.问题:如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图①证明上述结论.【类比引申】如图②,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足__________关系时,仍有EF=BE+FD.【探究应用】如图③,在某公园的同一水平面上,四条道路围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC =120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且A E⊥AD,DF=40(3-1)米,现要在E、F 之间修一条笔直的道路,求这条道路EF的长.(结果取整数,参考数据:2≈1.41,3≈1.73)4.理解:数学兴趣小组在探究如何求tan 15°的值,经过思考、讨论、交流,得到以下思路: 思路一 如图①,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB 至点D ,使BD =BA ,连接AD.图① 设AC =1,则BD =BA =2,BC = 3.tan D =tan 15°=12+3=2-3(2+3)(2-3)=2- 3. 思路二 利用科普书上的和.(.差.).角正切公式.....:tan (α±β)=tan α±tan β1∓tan αtan β. 假设α=60°,β=45°代入差角正切公式:tan 15°=tan (60°-45°)=tan 60°-tan 45°1+tan 60°tan 45°=3-11+3=2- 3.思路三 在顶角为30°的等腰三角形中,作腰上的高也可以… 思路四 …请解决下列问题(上述思路仅供参考). (1)类比:求出tan 75°的值;(2)应用:如图②,某电视塔建在一座小山上,山高BC 为30米,在地平面上有一点A ,则得A 、C 两点间距离为60米,从A 测得电视塔的视角(∠CAD)为45°,求这座电视塔CD 的高度;(3)拓展:如图③,直线y =12x -1与双曲线y =4x 交于A 、B 两点,与y 轴交于点C ,将直线AB 绕点C 旋转45°后,是否仍与双曲线相交?若能,求出交点P 的坐标;若不能,请说明理由.图②图③备用图5.【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k ,再加上常数b”的运算,有什么规律? 【分析问题】我们可用框图表示这种运算过程:也可用图象描述:如图①,在x 轴上表示出x 1,先在直线y =kx +b 上确定点(x 1,y 1),再在直线y =x 上确定纵坐标为y 1的点(x 2,y 1),然后在x 轴上确定对应的数x 2,…,依次类推. 【解决问题】研究输入实数x 1时,随着运算次数n 的不断增加,运算结果x n 怎样变化. (1)若k =2,b =-4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究; (2)若k>1,又得到什么结论?请说明理由;(3)①若k =-23,b =2,已在x 轴上表示出x 1(如图②所示),请在x 轴上表示x 2,x 3,x 4,并写出研究结论;②若输入实数x 1时,运算结果x n 互不相等,且越来越接近常数m ,直接写出k 的取值范围及m 的值(用含k ,b 的代数式表示).6.问题提出(1)如图①,已知△ABC.请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2.是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米.现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=5米,∠EHG=45°.经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件.试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.1. (1)证明:∵AB=AC,DE=DF,∴ABDE=ACDF,又∵∠A =∠D ,∴△ABC ∽△DEF ,∴BC EF =ABDE ,∴BC AB =EF DE. (2)解:①2,3,0<T (α)<2.【解法提示】①如解图①,在Rt △ABC 中,∠A =90°,∠B =∠C =45°, ∴设AB =AC =x ,由勾股定理得BC =2x , ∴T(90°)=BC AB =2x x=2;第1题解图①第1题解图②如解图②,在△ABC 中,∠A =120°,AB =AC , 过点A 作AD ⊥BC , ∴∠BAD =60°,BD =12BC ,设AD =y ,在Rt △ABD 中,∠BAD =60°, ∴BD =AD·tan 60°=3y ,AB =2AD =2y , ∴BC =2BD =23y , ∴T(120°)=23y2y=3; ∵∠A<180°,当∠A =180°时,此时AB =AC =12BC 即T(A)=BC AB =BC 12BC =2,∵要构成三角形,∴T(A)<2, ∵T(A)>0,∴0<T (α)<2.第1题解图②如解图,设圆锥的底面半径为r ,母线长为l ,∵圆锥的底面圆周长=圆锥展开图扇形的弧长,即2πr =n πl180,∴rl=n360,∵r=4,l=9,∴n=160.∵T(80°)≈1.29,∴蚂蚁爬行的最短距离=T(80°)×l≈1.29×9≈11.6.2. 解:(1)作图如解图①,第2题解图①证明:∵△ABD和△ACE为等边三角形,则AB=AD,AE=AC,∠DAB=∠EAC=60°,又∵∠DAC=∠DAB+∠BAC=∠EAC+∠BAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD.(2)BE=CD.理由如下:∵四边形ABFD和四边形ACGE为正方形,∴AB=AD,AC=AE,∠DAB=∠EAC=90°,又∵∠DAC=∠DAB+∠BAC=∠EAC+∠BAC=∠BAE,∴△DAC≌△BAE(SAS),∴BE=CD.(3)如解图②,以AB为边,作等腰直角三角形ABD,∠BAD=90°,第2题解图②则AD=AB=100米,∠ABD=45°,∴BD=100 2 米,连接CD,则由(2)可得,BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100 2 米,由勾股定理得CD=1002+(1002)2=100 3 米,则BE=CD=100 3 米.3. 【发现证明】证明:如解图①,将△ABE绕点A逆时针旋转90°到△ADG,则AB与AD重合,第3题解图①∴∠BAE =∠DAG ,∠B =∠ADG ,BE =GD , AE =AG ,∴∠GAF =∠DAF +∠GAD =∠BAE +∠DAF =45°, 在正方形ABCD 中,∠B =∠ADC =90°, ∴∠ADG +∠ADF =180°,即G 、D 、F 在一条直线上, ∵∠EAF =45°,在△EAF 和△GAF 中,AE =AG ,∠EAF =∠GAF =45°,AF =AF , ∴△EAF ≌△GAF(SAS ), ∴EF =GF ,∴EF =FG =FD +DG =FD +BE. 【类比引申】∠EAF =12∠BAD.【解法提示】如解图②,延长CB 至M ,使BM =DF ,连接AM , ∵∠ABC +∠D =180°,∠ABC +∠ABM =180°, ∴∠D =∠ABM , 在△ABM 和△ADF 中, ⎩⎪⎨⎪⎧AB =AD ∠ABM =∠D BM =DF,第3题解图②∴△ABM ≌△ADF(SAS ),∴AF =AM ,∠DAF =∠BAM , ∵∠BAD =2∠EAF , ∴∠DAF +∠BAE =∠EAF =12∠BAD , ∴∠EAB +∠BAM =∠EAM =∠EAF , 在△FAE 和△MAE 中,⎩⎪⎨⎪⎧AE =AE ∠FAE =∠MAE AF =AM, ∴△FAE ≌△MAE(SAS ), ∴EF =EM ,又∵EM =BE +BM =BE +DF , ∴EF =BE +DF.【探究应用】解:如解图③,连接AF ,延长BA 、CD 交于点O , ∵∠BAD =150°,∠ADC =120°, ∴∠OAD =30°,∠ODA =60°, ∴△OAD 是直角三角形. ∵AD =80,∴AO =403,OD =40,∵OF =OD +DF =40+40(3-1)=403, ∴AO =OF ,第3题解图③∴∠OAF =45°, ∵∠OAD =30°, ∴∠DAF =15°, ∵∠EAD =90°,∴∠EAF =∠EAD -∠DAF =75°=12∠BAD ,又∠B +∠ADC =180°,由(2)知EF =BE +DF.∠BAE =∠BAD -∠EAD =150°-90°=60°=∠B , ∴△ABE 为等边三角形, ∴BE =AB =80,∴EF =BE +DF =80+40(3-1)≈109(米). 4. 解:(1)如解图①,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB 至点D ,使BD =BA ,连接AD.第4题解图①设AC =1,则BD =BA =2,BC =3,tan ∠DAC =tan 75°=DC AC =BD +BC AC =2+31=2+ 3.【一题多解】tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°·tan 30°=1+331-33=3+33-3=2+ 3.第4题解图②(2)如解图②,在Rt △ABC 中,AB =AC 2-BC 2=602-302=303, sin ∠BAC =BC AC =3060=12,即∠BAC =30°,∵∠DAC =45°,∴∠DAB =45°+30°=75°.在Rt △ABD 中,tan ∠DAB =DBAB =2+3,∴DB =AB·tan ∠DAB =303·(2+3)=603+90, ∴DC =DB -BC =603+90-30= 603+60.(米)答:这座电视塔CD 的高度为(603+60)米.第4题解图③(3)直线AB 能与双曲线相交, 点P 的坐标为(-1,-4)或(43,3),理由如下:若直线AB 绕点C 逆时针旋转45°后,与双曲线相交于点P 1、P 2,如解图③,过点C 作CD ∥x 轴,过点P 1作P 1E ⊥CD 于点E ,过点A 作AF ⊥CD 于点F.解方程组⎩⎨⎧y =12x -1y =4x,得⎩⎪⎨⎪⎧x =4y =1,或⎩⎪⎨⎪⎧x =-2y =-2, ∴点A(4,1),点B(-2,-2).对于y =12x -1,当x =0时,y =-1,则C(0,-1),OC =1,∴CF =4,AF =1-(-1)=2, ∴tan ∠ACF =AF CF =24=12, ∴tan ∠P 1CE =tan (∠ACP 1+∠ACF)=tan (45°+∠ACF)=tan 45°+tan ∠ACF 1-tan 45°·tan ∠ACF=1+121-12=3,即P 1ECE =3.设点P 的坐标为(a ,b), 则有⎩⎪⎨⎪⎧ab =4b +1a =3,解得⎩⎪⎨⎪⎧a =-1b =-4,或⎩⎪⎨⎪⎧a =43b =3, ∴点P 的坐标为(-1,-4)或(43,3);(ii )若直线AB 绕点C 顺时针旋转45°后,与x 轴相交于点G ,如解图④. 由(i )可知∠ACP =45°,P(43,3),则CP ⊥CG .过点P 作PH ⊥y 轴于H , 则∠GOC =∠CHP =90°,∠GCO =90°-∠HCP =∠CPH ,第4题解图④∴△GOC ∽△CHP , ∴GO CH =OCHP. ∵CH =3-(-1)=4,PH =43,OC =1,∴GO 4=143=34, ∴GO =3,G(-3,0).设直线CG 的解析式为y =kx +b ,则有⎩⎪⎨⎪⎧-3k +b =0b =-1,解得⎩⎪⎨⎪⎧k =-13b =-1,∴直线CG 的解析式为y =-13x -1.联立⎩⎨⎧y =-13x -1y =4x,消去y ,得4x =-13x -1,整理得x 2+3x +12=0,∵b 2-4ac =32-4×1×12=-39<0, ∴方程没有实数根,∴直线绕点C 顺时针旋转45°,与双曲线无交点.(综上所述,直线AB 绕点C 逆时针旋转45°后,能与双曲线相交,交点P 的坐标为(-1,-4)或(43,3).5. 解:(1)若k =2, b =-4,①x 1=3时,x 2=2×3-4=2,x 3=2×2-4=0,x 4=2×0-4=-4,x 5=2×(-4)-4=-12; ②x 1=4时,x 2=2×4-4=4,x 3=2×4-4=4,x 4=2×4-4=4,x 5=2×4-4=4; ③x 1=5时,x 2=2×5-4=6,x 3=2×6-4=8,x 4=2×8-4=12,x 5=2×12-4=20, 由上面的特殊值可得,y =2x -4与y =x 交点的横坐标为4, 所以当输入的值x>4时,x n 的值会随着运算次数的增大而增大; 当输入的值x =4时,x n 的值不变;当输入的值x<4时,x n 的值会随着运算次数的增大而减小.(2)当k>1时,y =kx +b 与y =x 的交点坐标横坐标为x =-bk -1,所以当输入的值x>-bk -1时,x n 的值会随着运算次数的增大而增大;当输入的值x =-bk -1时,x n 的值不变;当输入的值x<-bk -1时,x n 的值会随着运算次数的增大而减小.理由如下:直线y =kx +b 与直线y =x 的交点坐标为(b 1-k ,b 1-k ),当x >b 1-k时,对于同一个x 的值,kx +b >x ,∴y 1>x 1,∵y 1=x 2,∴x 1<x 2,同理x 2<x 3<…<x n ,∴当x 1>b1-k 时,随着运算次数n的增加,x n 越来越大,同理,当x 1<b 1-k 时,随着运算次数n 的增加,x n 越来越小,当x =b1-k 时,随着运算次数n 的增加,x n 保持不变.(3)①画如解图,第5题解图结论:通过画图可得,x n 的值越来越靠近两个函数图象交点的横坐标即65;②|k|<1且k ≠0时,m =-bk -1.即-1<k <1且k ≠0, 【解法提示】两个函数图象的交点的横坐标满足kx +b =x ,解得x =-bk -1,且k ≠0,由(1)得|k|<1.6. (1)【思路分析】要作对称图形,先要考虑对称的性质,即对应点关于对称轴对称,只需作出点B 关于直线AC 的对称点D ,连接AD ,CD 即可.第6题解图①解:如解图①,△ADC 即为所求作三角形.【作法提示】(1)过点B 作直线AC 的垂线,垂足为点O ;(2)在垂线上截取OD =OB ,连接AD ,CD ,则△ADC 即为所要求作的三角形.(2)【思路分析】四边形EFGH 的周长=EF +FG +GH +HE ,由题意可知AF 和AE 的长均为定值,利用勾股定理可求得EF 的长为定值,所以要求四边形周长的最小值,只需令FG +GH +HE 最小即可,利用作对称线段将所求线段和转化到三角形中进行求解,进而利用直角三角形三边关系求出线段和最小值.第6题解图②解:存在.理由如下:如解图②,作点E 关于CD 的对称点E′,作点F 关于BC 的对称点F′,连接E′F′,交BC 于点G ,交CD 于点H ,连接FG 、EH ,则F ′G =FG ,E ′H =EH ,所以此时四边形EFGH 的周长最小.这是因为:在BC 上任取一点G′,在CD 上任取一点H′,则FG′+G′H′+H′E =F′G′+G′H′+H ′E ′≥E ′F ′.由题意得:BF′=BF =AF =2,DE ′=DE =2,∠A =90°, ∴AF ′=6,AE ′=8.∴E ′F ′=10,EF =2 5.∴四边形EFGH 周长的最小值为EF +FG +GH +HE =EF +E ′F ′=25+10.∴在BC、CD上分别存在满足条件的点G、H,使四边形EFGH的周长最小,最小值是25+10.(3)【思路分析】要使四边形EFGH面积最大,因为E、F、G的位置确定,即△EFG的面积是固定的,只要求以EG为底边的△EGH最大面积即可,且∠EHG为45°,作△EFG关于EG的对称图形,以点F 的对称点O为圆心,作以EG为弦的圆,根据圆的基本性质,即EG的中垂线与圆的交点即为所求的点H′,然后再由对称的性质和勾股定理求解即可.解:能裁得.∵∠EFG=∠A=90°,∴∠2+∠AFE=∠1+∠AFE=90°,∴∠1=∠2,∵EF=FG=5,∴△AEF≌△BFG(AAS),∴AF=BG,AE=BF.设AF=x,则AE=BF=3-x,∴x2+(3-x)2=(5)2解得x1=1或x2=2,∵AF<BF,∴x2=2舍去,∴AF=BG=1,AE=BF=2,∴DE=4,CG=5.如解图③,连接EG,作△EFG关于EG的对称图形△EOG,则四边形EFGO为正方形,∠EOG=90°.以点O为圆心,OE长为半径作⊙O,则∠EHG=45°的点H在⊙O上.连接FO,并延长交⊙O于点H,则点H在EG中垂线上.第6题解图③连接EH、GH,则∠EHG=45°.此时,四边形EFGH就是想要裁得的四边形EFGH中面积最大的.连接CE,则CE=CG=DE2+CD2=5.∴点C在线段EG的中垂线上,连接HC,∴点F、O、H、C在一条直线上,又∵EG=EF2+FG2=10,∴FO=EG=10.又∵CF=BF2+BC2=210,∴OC=10.又∵OH=OE=FG=5,∴OH<OC,∴点H 在矩形ABCD 的内部,∴可以在矩形板材ABCD 中,裁得符合条件的面积最大的四边形EFGH 部件,这个部件的面积即S 四边形EFGH=12EG·FH =12×10×(10+5)=(5+522)m 2. ∴所裁得的四边形部件EFGH 是符合条件的面积最大的部件,这个部件的面积为(5+522) m 2.难点突破本题的难点在于第(3)问点H 位置的确定,题中已知点E 、F 、G 的位置,即解决本题的实质是求以EG 为底边的△EGH 的面积最大时点H 的位置,由于∠EHG =45°,想到作直角△EFG 关于EG 的对称图形,则以点F 的对称点为圆心、EG 为弦的圆在矩形ABCD 内的点H 满足题意,根据圆的基本性质,则点H 为EG 的中垂线与所作圆的交点.。
中考数学《圆的综合》专题训练(含有答案)1.如图,:AB 是O 的直径:BC 是O 弦,OD CB ⊥于点E ,交BC 于点D .(1)请写出三个不同类型的正确结论(2)连结CD ,设BCD α∠= ABC β∠= 试找出α与β之间的一种关系式并给予证明.2.如图,,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D 交CA 的延长线于点E .(1)求证点D 为线段BC 的中点.(2)若63BC = 3AE = 求O 的半径及阴影部分的面积.3.如图,AB 为O 的直径 点C 在O 上 延长BC 至点D 使DC CB =.延长DA 与O 的另一个交点为E 连结AC CE ,.(1)求证D E ∠=∠(2)若42AB BC AC =-=, 求CE 的长.4.请仅用无刻度的直尺完成下列作图 不写作法 保留作图痕迹(1)如图1, ABC 与ADE 是圆内接三角形 AB AD = AE AC = 画出圆的一条直径.(2)如图2 , AB CD 是圆的两条弦 AB CD =且不相互平行 画出圆的一条直径. 5.如图,AB 是O 的直径 点D 在AB 的延长线上 点C 在O 上 ,30CA CD CDA =∠=︒.(1)求证CD 是O 的切线(2)若O 的半径为6 求点A 到CD 所在直线的距离.6.如图, 点C 在以AB 为直径的O 上 过C 作O 的切线交AB 的延长线于E AD CE ⊥于D 连接AC .(1)求证ACD ABC ∠=∠(2)若3tan 4CAD ∠= 8AD = 求O 直径AB 的长.7.如图, 已知以Rt ABC 的直角边AC 为直径作O 交斜边AB 于点E 连接EO 并延长交BC 的延长线于点D 连接AD 点F 为BC 的中点 连接EF .(1)求证EF 是O 的切线(2)若O 的半径为6 8CD = 求AB 的长.8.如图, AB 是半圆O 的直径 D 为半圆O 上的点(不与A B 重合) 连接AD 点C 为BD 的中点 过点C 作CF AD ⊥ 交AD 的延长线于点F 连接BF AC 交于点E .(1)求证FC 是半圆O 的切线(2)若3AF = 23AC = 求半圆O 的半径及AE 的长.9.如图, AB 为O 的直径 C 为BA 延长线上一点 CD 是O 的切线 D 为切点 OF AD ⊥于点E 交CD 于点F .(1)求证ADC AOF ∠=∠ (2)若53OC OB = 24BD = 求EF 的长. 10.如图,所示 AB 是O 的直径 点D 在AB 上 点C 在O 上 AD AC =CD 的延长线交O 于点E .(1)在CD 的延长线上取一点F 使BF BC = 求证BF 是O 的切线 (2)若2AB = 2CE 求图中阴影部分的面积.11.如图, ABC 内接于O AB 为O 的直径 D 为BA 延长线上一点 连接CD 过O 作OF BC ∥交AC 于点E 交CD 于点F ACD AOF ∠=∠.(1)求证CD 为圆O 的切线 (2)若1sin 4D =10BC = 求EF 的长. 12.如图, 四边形ABCD 是O 的内接四边形 AD CD = 70BAC ∠=︒ 50∠=°ACB .(1)求ABD ∠的度数 (2)求BAD ∠的度数.13.如图, 四边形ABCD 是O 的内接四边形 且对角线BD 为O 的直径 过点A 作AE CD ⊥ 与CD 的延长线交于点E 且DA 平分BDE ∠.(1)求证AE 是O 的切线(2)若O 的半径为5 6CD = 求DA 的长.14.如图, 在正方形ABCD 中有一点P 连接AP BP 旋转APB △到CEB 的位置.(1)若正方形的边长是8 4BP =.求阴影部分面积 (2)若4BP = 7AP = 135APB ∠=︒ 求PC 的长.15.如图, AB 是O 的直径 OD 垂直于弦AC 于点E 且交O 于点D F 是BA 延长线上一点 若CDB BFD ∠=∠.(1)求证 FD 是O 的一条切线(2)若15AB = 9BC = 求DF 的长. 16.如图,O 是ABC ∆的外接圆 AE 切O 于点A AE 与直径BD 的延长线相交于点E .(1)如图,① 若70C ∠=︒ 求E ∠的大小 (2)如图,① 若AE AB = 求E ∠的大小.17.已知 如图, 直线MN 交O 于A B 两点 AC 是直径 AD 平分CAM ∠交O 于D 过D 作DE MN ⊥于E .(1)求证DE 是O 的切线(2)若8cm DE = 4cm AE = 求O 的半径.18.已知四边形ABCD 内接于O C 是DBA 的中点 FC AC ⊥于C 与O 及AD 的延长线分别交于点,E F 且DE BC =.(1)求证~CBA FDC(2)如果9,4AC AB == 求tan ACB ∠的值.参考答案与解析1.(1)见解析(2)关系式为2=90αβ+︒ 证明见解析【分析】(1)AB 是O 的直径 BC 是弦 OD BC ⊥于E 本题满足垂径定理. (2)连接,CD DB 根据四边形ACDB 为圆内接四边形 可以得到290αβ+=︒. 【解析】(1)解不同类型的正确结论有 ①BE CE = ①BD CD = ①90BED ∠=︒ ①BOD A ∠=∠ ①AC OD ∥ ①AC BC ⊥ ①222OE BE OB += ①ABC S BC OE =⋅△ ①BOD 是等腰三角形 ①BOE BAC △∽△等等. (2)如图, 连接,CD DBα与β之间的关系式为290αβ+=︒证明AB 为圆O 的直径90A ABC ∴∠+∠=︒①又四边形ACDB 为圆内接四边形180A CDB ∠∠∴+=︒①∴①-①得90CDB ABC ∠∠-=︒①18021802CDB BCD α∠=︒-∠=︒- 即180290αβ︒--=︒ ①2=90αβ+︒.【点评】本题考查了圆的一些基本性质 且有一定的开放性 垂径定理 圆内接四边形的性质掌握圆的相关知识. 2.(1)见解析 (2)半径为3 39π324S =阴【分析】(1)连结AD 可得90ADB ∠=︒ 已知AB AC = 根据等腰三角形三线合一的性质即可得证点D 为线段BC 的中点(2)根据已知条件可证ABC DEC ∽△△ 得到ED ECAB BC= 22BD AB EC =⋅ 且EDC △是等腰三角形 进而得到ED DC BD == 设AB x = 则(()22333x x =+ 解方程即可求得O 的半径连接OE 可证AOE △是等边三角形 再根据AOEAOE S S S =-阴扇形即可求出阴影部分的面积【解析】(1)连结AD①AB 为O 的直径 ①90ADB ∠=︒ ①AB AC = ①BD CD =即点D 为线段BC 的中点. (2)①B E ∠=∠ C C ∠=∠ ①ABC DEC ∽△△ ①ED ECAB BC= ①AB AC = ①B C ∠=∠ ①C E ∠=∠ ①ED DC BD == ①22BD AB EC =⋅ 设AB x = 则 (()22333x x =+解得19x =-(舍去) 26x = ①O 的半径为3 连接OE ①60AOE =︒∠ ①AOE △是等边三角形 ①AE 33①AOEAOE S S S=-阴扇形260313333602π⨯⨯=-⨯ 39π324=【点评】本题主要考查等腰三角形的性质 相似三角形的判定和性质 不规则图形面积的计算 熟练掌握相关知识点是解题的关键. 3.(1)见解析 (2)CE 的长为17【分析】(1)由AB 为O 的直径得90ACB ∠=︒ 通过证明()ACD ACB ≌SAS 得到D B ∠=∠ 又由B E ∠=∠ 从而得到D E ∠=∠(2)设BC x = 则2AC x =- 在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+= 解一元二次方程得到BC 的长 由(1)知D E ∠=∠ 从而得到CD CE = 又由DC CB = 得到17CE CB ==【解析】(1)证明AB 为O 的直径90ACB ∴∠=︒180ACD ACB ∠+∠=︒90ACD ∴∠=︒在ACD 和ACB △中AC AC ACD ACB DC BC =⎧⎪∠=∠⎨⎪=⎩()ACD ACB ∴≌SASD B ∴∠=∠ BE ∠=∠D E ∴∠=∠(2)解设BC x =2BC AC -=∴2AC x =-在Rt ABC 中 由勾股定理可得222AC BC AB += 即()22224x x -+=解得117x = 217x = 17BC ∴=由(1)得D E ∠=∠ CD CE ∴= DC CB =17CE CB ∴==∴ CE 的长为17【点评】本题主要考查了圆周角定理 三角形全等的判定与性质 等腰三角形的性质 勾股定理解直角三角形 熟练掌握圆周角定理 三角形全等的判定与性质 等腰三角形的性质是解题的关键. 4.(1)见解析 (2)见解析【分析】(1)设BC DE 交于点G 连接AG 交圆于点F 即可作答(2)连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N 即可作答.【解析】(1)如图, 设BC DE 交于点G 连接AG 并延长 交圆于点F线段AF 即为所求证明如图, BC AE 交于点Q DE AC 交于点P 连接DB 交AF 于点H①AB AD = AE AC = ①C E ∠=∠ ADE ABC =∠∠ ①DAE BAC ∠=∠①DAE BAC ≌ ①BC DE = ①DAE BAC ∠=∠ ①BAE DAC ∠=∠①AB AD = ADE ABC =∠∠ ①DAP BAQ ≌ ①AQ AP = ①AE AC = ①QE PC =①QGE PGC ∠=∠ C E ∠=∠ ①QGE PGC ≌ ①QG PG =①AG AG = AQ AP = ①QAG PAG ≌ ①QAG PAG ∠=∠ ①BAE DAC ∠=∠ ①BAG DAG ∠=∠ ①AH AH = AB AD = ①BAH DAH ≌①BH DH = 90AHB AHD ∠=∠=° ①AF 垂直平分弦DB ①AF 是圆的直径(2)如图, 连接BC AD 交于点F 延长BA DC 两线交于点E 作直线EF 交圆于点M N线段MN 即为所求. 证明方法同(1).【点评】本题主要考查了垂径定理 圆周角定理以及全等三角形的判定与性质等知识 掌握圆周角定理以及垂径定理是解答本题的关键. 5.(1)见解析 (2)9【分析】(1)已知点C 在O 上 先连接OC 由已知CA CD = 30CDA ∠=︒ 得30CAO ∠=︒ 30ACO ∠=︒ 所以得到60COD ∠=︒ 根据三角形内角和定理得90DCO ∠=︒ 即能判断直线CD 与O 的位置关系.(2)要求点A 到CD 所在直线的距离 先作AE CD ⊥ 垂足为E 由30CDA ∠=︒ 得12AE AD = 在Rt OCD △中 半径6OD = 所以212OD OC == 18AD OA OD =+= 从而求出AE .【解析】(1)①ACD 是等腰三角形 30D ∠=︒①30CAD CDA ∠=∠=︒.连接OC①AO CO =①AOC 是等腰三角形①30CAO ACO ∠=∠=︒①60COD ∠=︒在COD △中 又①30CDO ∠=︒①90DCO ∠=︒①CD 是O 的切线 即直线CD 与O 相切.(2)过点A 作AE CD ⊥ 垂足为E .在Rt OCD △中 ①30CDO ∠=︒①212OD OC ==61218AD AO OD =+=+=在Rt ADE △中①30EDA ∠=︒①点A 到CD 边的距离为92AD AE ==. 【点评】此题考查的知识点是切线的判定与性质 解题的关键是运用直角三角形的性质及30°角所对直角边的性质.6.(1)见解析 (2)252AB =.【分析】(1)连接OC 由DE 为O 的切线 得到OC DE ⊥ 再由AD CE ⊥ 得到AD OC ∥ 得到OCA CAD ∠=∠ 根据OA OC = 利用等边对等角得到OCA CAB ∠=∠ 等量代换得到CAD CAB ∠=∠ 由AB 为O 的直径 可知90ACB ∠=︒ 最后根据等角的余角相等可得结论 (2)在Rt CAD △中 利用锐角三角函数定义求出CD 的长 根据勾股定理求出AD 的长 由(1)易证ADC ACB 得到AD AC AC AB= 即可求出AB 的长. 【解析】(1)解连接OC由题意可知DE 与O 的相切于COC DE ∴⊥AD CE ⊥AD OC ∴∥OCA CAD ∴∠=∠OA OC =OCA CAB ∴∠=∠CAD CAB ∴∠=∠ AB 为O 的直径90ACB ∴∠=︒90CAD ACD CAB ABC ∴∠+∠=∠+∠=︒ACD ABC ∴∠=∠(2)在Rt CAD △中3tan 4CDCAD AD ∠== 8AD =364CD AD ∴==22226810AC CD AD ∴+=+=由(1)可知CAD CAB ∠=∠90D ACB ∠=∠=︒ADC ACB ∴ADACAC AB ∴=81010AB∴= 252AB ∴=【点评】此题考查了切线的性质 以及解直角三角形 熟练掌握切线的判定与性质是解本题的关键. 7.(1)证明见解析 (2)125AB =【分析】(1)连接FO 可根据三角形中位线的性质可判断OF AB ∥ 然后根据直径所对的圆周角是直角 可得CE AE ⊥ 进而知OF CE ⊥ 然后根据垂径定理可得FEC FCE ∠=∠OEC OCE ∠=∠ 再通过Rt ABC 可知90OEC FEC ∠+∠=︒ 因此可证EF 为O 的切线(2)根据题意可先在Rt OCD △中求出OD 然后在Rt EFD 中求出FC 最终在Rt ABC 中求解AB 即可.【解析】(1)证连接FO 则由题意OF 为Rt ABC 的中位线①OF AB ∥①AC 是O 的直径①CE AE ⊥①OF AB ∥①OF CE ⊥①由垂径定理知 OF 所在直线垂直平分CE①FC FE = OE OC =①FEC FCE ∠=∠ OEC OCE ∠=∠①90ACB ∠=︒即90OCE FCE ∠+∠=︒①90OEC FEC ∠+∠=︒即90FEO ∠=︒①EF 是O 的切线(2)解①O 的半径为6 8CD = 90ACB ∠=︒①OCD 为直角三角形 6OC OE == 8CD = ①2210OD OC CD += 10616ED OD OE =+=+=由(1)知 EFD △为直角三角形 且FC FE =①设FC FE x == 则8FD FC CD x =+=+①由勾股定理 222EF ED FD +=即()222168x x +=+ 解得12x =即12FC FE ==①点F 为BC 的中点①224BC FC ==①212AC OC ==①在Rt ABC 中 22125AB BC AC +①125AB =【点评】本题考查切线的证明 圆的基本性质 以及勾股定理解三角形等 掌握切线的证明方法 熟练运用圆中的基本性质是解题关键.8.(1)见解析(2)半径为2 123AE =【分析】(1)根据点C 为弧BD 的中点 得出FAC CAB ∠∠= 然后得出FAC ACO ∠∠= 根据平行线的性质得出CF OC ⊥ 进而即可求解(2)连接BC 设OC 与BF 相交于点P 证明AFC ACB ∽ 得出4AB = 证明BOP BAF ∽得出1322OP AF == 进而证明ECP EAF ∽ 根据相似三角形的性质列出比例式 进而即可求解. 【解析】(1)证明连接OC 如图,点C 为弧BD 的中点∴CD CB =FAC CAB ∠∠∴=又OA OC =CAB ACO ∠∠∴=FAC ACO ∠∠∴=∴OC AF ∥又CF AD ⊥CF OC ∴⊥FC ∴是半圆O 的切线.(2)解连接BC 如图,AB 是半圆O 的直径90ACB ∠∴=︒90AFC ACB ∠∠∴==︒又FAC CAB ∠∠=AFC ACB ∴∽ ∴AFACAC AB = 23234AB ∴=∴半圆O 的半径为2.设OC 与BF 相交于点POC AF ∥BOP BAF ∴∽ ∴12OPOB AF AB == ∴1322OP AF == ∴12PC OC OP =-=OC AF ∥ECP EAF ∴∽ ∴EC PCAE AF = 即123AC AEAE -= 2316AE-=∴123AE = 【点评】本题考查了切线的性质与判定 相似三角形的性质与判定 掌握切线的判定以及相似三角形的性质与判定是解题的关键.9.(1)见解析(2)3【分析】(1)连接DO 根据CD 是O 的切线 OF AD ⊥ 证明ADC DOF ∠∠= 利用等腰三角形三线合一性质 证明ADC AOF ∠∠=.(2) 利用平行线分线段成比例定理 计算OE 证明CFO CDB △∽△ 计算OF两线段作差即可求解.【解析】(1)如图, 连接DO CD 是O 的切线OD DF ∴⊥90ADC ADO ∠∠∴+=︒OF AD ⊥ OA OD =90DOF ADO ∠∠∴+=︒ DOF AOF ∠∠=ADC DOF ∠∠∴=ADC AOF ∠∠∴=.(2)如图, 连接DO CD 是O 的切线OD DF ∴⊥90CDO ∠∴=︒53OC OB =设5(0)CO k k => 则3DO OB AO k ===4CD k ∴=538CB CO OB k k k ∴=+=+= AB 是O 的直径 24BD =AD DB ∴⊥OF AD ⊥∴OF BD ∥ ∴AO AE OB ED = CFO CDB △∽△ ∴OF CO BD CB= AE ED ∴=5524538OF k k k ==+ ∴1122OE BD == 15OF = 3EF OF OE ∴=-=.【点评】本题考查了切线的性质 等腰三角形的三线合一性质 平行线分线段成比例定理 相似三角形的性质与判定 熟练掌握切线的性质 相似三角形的性质与判定是解题的关键.10.(1)证明过程见解析 (2)142π-【分析】(1)AB 是O 的直径 AC AD = BF BC = 可求出90FBD ∠=︒ AB BF ⊥ 由此即可求证(2)如图,所示(见解析)连接,CO EO 可得1OC OE == 可证222CO O CE += 90COE ∠=︒ 根据扇形面积的计算方法即可求解.【解析】(1)证明①AB 是O 的直径①90ACB ∠=︒①90ACD BCD ∠+∠=︒①AC AD =①ACD ADC ∠=∠①ADC BDF ∠=∠①ACD BDF ∠=∠①BC BF =①BCD F ∠=∠①90BDF F ∠+∠=︒①180()90FBD FDB F ∠=︒-∠+∠=︒①AB BF ⊥ 且OB 是O 的半径①BF 是O 的切线.(2)解如图,所示 连接,CO EO①2AB =①1OC OE == ①2CE ①222CO EO += 2222CE == ①222CO O CE +=①90COE ∠=︒ ①29011111360242ππS ⨯=-⨯⨯=-阴影 ①图中阴影部分的面积为142π-. 【点评】本题主要考查圆的基础知识 掌握圆的切线的证明方法 扇形面积的计算方法是解题的关键.11.(1)见解析(2)3【分析】(1)连接CO 根据OF BC ∥可得B AOF ∠=∠ 根据直径所对的圆周角为直角可得90B CAB ∠+∠=︒ 再根据AO CO =得出CAB ACO ∠=∠ 最后证明90ACD ACO ∠+∠=︒即可 (2)根据中位线定理得出152OE BC == 证明DBC DOF ∽ 根据相似三角形对应边成比例 即可求解.【解析】(1)证明连接CO①OF BC ∥①B AOF ∠=∠①AB 为O 的直径①90ACB ∠=︒ 则90B CAB ∠+∠=︒①90AOF CAB ∠+∠=︒①AO CO =①CAB ACO ∠=∠①ACD AOF ∠=∠①90ACD ACO ∠+∠=︒ 即OC CD ⊥①CD 为圆O 的切线(2)①AB 为O 的直径①点O 为AB 中点①OF BC ∥①OE 为ABC 中位线 ①152OE BC == ①1sin 4D = OC CD ⊥ ①4OD OC = 则5BD OD OB OC =+=①OF BC ∥①DBC DOF ∽ ①OF OF BC BD = 即4510OC OF OC = 解得8OF =①853EF OF OE =-=-=.【点评】本题主要考查了切线的判定和性质 圆周角定理 相似三角形的判定和性质以及解直角三角形 解题的关键是掌握切线的判定和性质以及相似三角形的判定和性质.12.(1)30︒(2)100︒【分析】(1)根据三角形内角和定理可得60ABC ∠=︒ 再由AD CD = 可得ABD CBD ∠=∠ 即可求解(2)根据圆周角定理可得30ABD ACD ∠∠==︒ 从而得到80BCD ∠=︒ 再由圆内接四边形的性质 即可求解.【解析】(1)解①70,50BAC ACB ∠=︒∠=︒①18060ABC BAC ACB ∠=︒-∠-∠=︒①AD CD = ①1302ABD CBD ABC ∠=∠=∠=︒ (2)解由圆周角定理得30ABD ACD ∠∠==︒①80BCD ACB ACD ∠=∠+∠=︒①四边形ABCD 是O 的内接四边形①180100BAD BCD ∠=︒-∠=︒.【点评】本题主要考查了圆内接四边形的性质 圆周角定理等知识 熟练掌握圆内接四边形的性质 圆周角定理是解题的关键.13.(1)见解析(2)AD 的长是25【分析】(1)连接OA 根据已知条件证明OA AE ⊥即可解决问题(2)作OF CD ⊥ 则四边形OAEF 是矩形 且132DF CD ==由此可求得DE 的长 在Rt OFD △中 勾股定理求出OF 即AE 的长 在Rt AED △中利用勾股定理求DA . 【解析】(1)证明如图, 连接OA①AE CD ⊥①90DAE ADE ∠+∠=︒.①DA 平分BDE ∠①ADE ADO ∠=∠又①OA OD =①OAD ADO ∠=∠①90DAE OAD ∠+∠=︒①OA AE ⊥①AE 是O 的切线(2)解过点O 作OF CD ⊥于F .①90OAE AEF OFE ∠︒=∠=∠=①四边形OAEF 是矩形①5EF OA AE OF ===,.①OF CD ⊥ ①132DF FC CD ===①532DE EF DF =-=-=在Rt OFD △中 2222534OF OD DF --=①4AE OF ==在Rt AED △中 22224225AD AE DE ++=①AD 的长是25【点评】本题考查了切线的判定与性质 垂径定理 圆周角定理 勾股定理 解决本题的关键是掌握切线的判定与性质.14.(1)12π(2)9【分析】(1) 根据题意 CEB APB ABC PBE S S S S S =+--阴影扇形扇形 根据公式计算即可.(2) 连接PE 根据题意 45,135,90PEB CEP PEC ∠=︒∠=︒∠=︒ 根据勾股定理计算即可.【解析】(1)如图, ①正方形ABCD 旋转APB △到CEB 的位置①APB CEB ≌ 90ABC PBE ∠=∠=︒ =CEB APB S S ①CEB APB ABC PBE S S S S S =+--阴影扇形扇形①ABC PBE S S S =-阴影扇形扇形①48BP AB ==, ①9064901612360360S πππ︒⨯⨯︒⨯⨯=-=︒︒阴影. (2)连接PE根据题意 45,135PEB APB CEP ∠=︒∠=∠=︒ AP CE =①90PEC ∠=︒①4BP = 7AP =①2227,4432CE PE ==+=①222273281PC CE PE =+=+=解得9PC =.【点评】本题考查了正方形的性质 旋转的性质 阴影面积的计算 扇形面积公式 勾股定理 熟练掌握旋转的性质 阴影面积的计算 扇形面积公式 勾股定理是解题的关键.15.(1)证明见解析(2)10DF =【分析】(1)因为CDB CAB ∠=∠ CDB BFD ∠=∠ 所以CAB BFD ∠=∠ 即可得出FD ①AC 可得得出OD FD ⊥ 进而得出结论(2)利用勾股定理先求解AC 再利用垂径定理得出AE 的长 可得OE 的长 证明AEO FDO ∽ 再利用相似三角形的判定与性质得出DF 的长.【解析】(1)①CDB CAB ∠=∠ CDB BFD ∠=∠①CAB BFD ∠=∠①FD AC ∥①OD 垂直于弦AC 于点E①OD FD ⊥①FD 是O 的一条切线(2)①AB 为O 的直径①90ACB ∠=︒①15AB = 9BC = ①2215912AC -= 7.5AO OB OD ===①DO AC ⊥①6AE CE == ①227.56 4.5OE -①AC FD ∥①AEO FDO ∽ ①AE EO FD DO = ①4.567.5FD= 解得10DF =.经检验符合题意.【点评】本题主要考查了相似三角形的判定与性质 垂径定理 圆周角定理 切线的判定 以及平行线的判定 掌握相似三角形的判定与性质 垂径定理 圆周角定理以及平行线的判定是解题的关键.16.(1)50︒(2)30︒【分析】(1)连接OA 先由切线的性质得OAE ∠的度数 求出2142AOB C ∠=∠=︒ 进而得AOE ∠ 则可求出答案(2)连接OA 根据等腰三角形的性质及切线的性质列方程求解即可.【解析】(1)连接OA .如图,①AE 切O 于点AOA AE ∴⊥90OAE ∴∠=︒70C ∠=︒2270140AOB C ∴∠=∠=⨯︒=︒又180AOB AOE ∠+∠=︒40AOE ∴∠=︒90AOE E ∠+∠=︒904050E ∴∠=︒-︒=︒.(2)连接OA 如图,①设E x ∠=.AB AE =ABE E x ∴∠=∠=OA OB =OAB ABO x ∴∠=∠=2AOE ABO BAO x ∴∠=∠+∠=. AE 是O 的切线OA AE ∴⊥ 即90OAE ∠=︒在OAE ∆中 90AOE E ∠+∠=︒即290x x +=︒解得30x =︒30E ∴∠=︒.【点评】本题主要考查了切线的性质 等腰三角形的性质 圆周角的性质 三角形内角和的性质 用方程思想解决几何问题 关键是熟悉掌握这些性质.17.(1)见解析(2)10cm【分析】(1)连接OD 根据平行线的判定与性质可得90ODE DEM ∠=∠=︒ 又点D 在O 上 即可证得DE 是O 的切线(2)首先根据勾股定理可得AD 的长 再由ACD ADE ∽ 根据相似三角形的性质列出比例式 代入数据即可求得圆的半径.【解析】(1)证明如图,连接ODOA OD =OAD ODA ∠=∠∴ AD 平分CAM ∠OAD DAE ∴∠=∠ODA DAE ∴∠=∠DO MN ∴∥DE MN ⊥90ODE DEM ∴∠=∠=︒ 即OD DE ⊥ 又点D 在O 上 OD 为O 的半径DE ∴是O 的切线(2)解90AED ∠=︒ 8cm DE = 4cm AE =22228445AD DE AE ∴++如图,连接CDAC 是直径90ADC AED ∴∠=∠=︒CAD DAE ∠=∠ACD ADE ∴△∽△AD AC AE AD ∴= 4545=解得20AC =O ∴的半径为10cm .【点评】本题考查圆了切线的判定;等边对等角 平行线的判定与性质 圆周角定理 勾股定理 相似三角形的判定和性质等知识 在圆中学会正确添加辅助线是解决问题的关键.18.(1)见解析 (2)49【分析】(1)欲证~CBA FDC ,只要证明两个角对应相等就可以.可以转化为证明DE BC =就可以 (2)由~CBA FDC 可得814CF = ACB F ∠=∠ 进而即可得到答案. 【解析】(1)证明①四边形ABCD 内接于O①CBA CDF ∠=∠.①DE BC =①BCA DCE ∠=∠.①~CBA FDC(2)解①C 是DBA 的中点①9CD AC ==①~CBA FDC 4AB = ①AB AC CD CF = 即499CF= ①814CF = ①~CBA FDC ①94tan tan 8194AC ACB F CF ∠=∠===.【点评】本题考查的是圆的综合题;涉及弧、弦的关系;等腰三角形的性质;相似三角形的判定与性质;锐角三角函数;掌握相似三角形的判定和性质是解答此题的关键.。
第9讲《一元二次方程》培优训练专题一元二次方程的应用一、传播问题1.要组织一场排球邀请赛,参赛的每两个队员之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织应邀请x个队参赛,则x满足的关系式为(B)A.1 2x(x+1)=28B.12x(x-1)=28C.x(x+1)=28D.x(x-1)=282.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后会有81台电脑被感染,请你用学过的一元二次方程模型分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效地控制,3轮感染后,被感染的电脑会不会超过700台?解:设平均一台电脑会感染x台电脑,根据题意得1+x+(1+x)x=81,解得x1=8,x2=-10(舍去),即平均一台电脑会感染8台电脑,3轮感染后,被感染电脑台数为81+81×8=729>700,即3轮感染后,被感染的电脑会超过700台二、增长率与利润问题3.据报道,某省农作物秸秆的资源巨大,但合理利用量十分有限,去年的利用率只有30%,大部分秸秆被直接焚烧了.假定该省每年产出的农作物秸秆总量不变,且合理利用量的增长率相同,要使明年的利用率提高到60%,求每年的增长率.(取2≈1.41)解:设每年的增长率为x,秸杆总量为a,则有30%a(1+x)2=60%a,解得x1≈0.41=41%,x2≈-2.41(不合题意,舍去).答:每年的增长率为41%4.某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为__2.6(1+x)2__万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.解:由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=-2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%5.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃要想平均每天获得2240元的利润,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?解:(1)设每千克核桃应降价x元,根据题意得(60-x-40)(100+x2×20)=2240.化简得x2-10x+24=0,解得x1=4,x2=6,则每千克核桃应降价4元或6元(2)∵要尽可能让利于顾客,∴每千克核桃应降价6元,此时,售价为60-6=54(元),5460×100%=90%,则该店应按原售价的九折出售。
第10课时综合型问题综合型试题是将所学的知识在一定的背景下进行优化组合,找到解决问题的方案,在解决问题的时候所用到的知识不再是单一的知识点,而是相关的知识,可能同时用到方程、函数,也有可能是三角形与多边形,也有可能是相关学科的知识,这类题目对学生综合能力的要求较高,同时这类题目有相对新颖的背静环境,数学综合题是初中数学中覆盖面最广、综合性最强的题型.解数学综合题必须要有科学的分析问题的方法,要善于总结解数学综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程的思想等,要结合实际问题加以领会与掌握,这是学习解综合题的关键.类型之一代数类型的综合题代数综合题是指以代数知识为主的或以代数变形技巧为主的一类综合题.主要包括方程、函数、不等式等内容,用到的数学思想方法有化归思想、分类思想、数形结合思想以及代人法、待定系数法等.解代数综合题要注意各知识点之间的联系和数学思想方法、解题技巧的灵活运用,要抓住题意,化整为零,层层深人,各个击破.1.(·安徽省)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。
一分队出发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。
⑴若二分队在营地不休息,问二分队几小时能赶到A镇?⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。
2.(沈阳市)一辆经营长途运输的货车在高速公路的A处加满油后,以每小时80千米的速度匀速行驶,前往与A处相距636千米的B地,下表记录的是货车一次加满油后油箱内余油量y(升)与行驶时间x(时)之间的关系:(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达C处,求此时油箱内余油多少升?(3)在(2)的前提下,C处前方18千米的D处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D处至少加多少升油,才能使货车到达B地.(货车在D处加油过程中的时间和路程忽略不计)类型之二几何类型的综合题几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.解决几何型综合题的关键是把代数知识与几何图形的性质以及计算与证明有机融合起来,进行分析、推理,从而达到解决问题的目的.3.(龙岩市)如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D 在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.(1)判断直线DC与⊙O的位置关系,并给出证明;(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.4.(益阳) △ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.Ⅰ.证明:△BDG≌△CEF;Ⅱ. 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在..................... .如果...Ⅱ.a.和.Ⅱ.b.的两个问题中选择一个你喜欢的问题解答两题都解,只以.............Ⅱ.a.的解答记分Ⅱa. 小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了. 设△ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .Ⅱb. 小明想:不求正方形的边长也能画出正方形. 具体作法是:①在AB边上任取一点G’,如图作正方形G’D’E’F’;②连结BF’并延长交AC于F;③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G’D’交BC于D,则四边形DEFG即为所求.你认为小明的作法正确吗?说明理由.类型之三 几何与代数相结合的综合题几何与代数相结合的综合题是初中数学中涵盖广、综合性最强的题型.它可以包含初中阶段所学的代数与几何的若干知识点和各种数学思想方法,还能有机结合探索性、开放性等有关问题;它既突出考查了初中数学的主干知识,又突出了与高中衔接的重要内容,如函数、方程、不等式、三角形、四边形、相似形、圆等.它不但考查学生数学基础知识和灵活运用知识的能力还可以考查学生对数学知识迁移整合能力;既考查学生对几何与代数之间的内在联系,多角度、多层面综合运用数学知识、数学思想方法分析问题和解决问题的能力,还考查学生知识网络化、创新意识和实践能力.5.(·恩施自治州)如图1,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC =∠AGF =90°,它们的斜边长为2,若∆ABC 固定不动,∆AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE =m ,CD =n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m 与n 的函数关系式,直接写出自变量n 的取值范围.(3)以∆ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D ,使BD =CE ,求出D 点的坐标,并通过计算验证BD 2+CE 2=DE 2.(4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证明,若不成立,请说明理由.6.(茂名)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c ,经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.7.(嘉兴市)如图,直角坐标系中,已知两点(00)(20)O A ,,,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .(1)求B C ,两点的坐标;(2)求直线CD 的函数解析式;(3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长.试探究:AEF △的最大面积?参考答案1.【解析】本题是一道包含着分类思想的应用综合应用题。
解题前先认真阅读弄清题意,把握好时间信息,二分队在营地不休息,几小时能赶到A 镇,途中考虑到在塌方地点的停留,解题时不能忽视;在考虑图像时,同样也要分不同的情况去研究。
【答案】解:(1)若二分队在营地不休息,则a =0,速度为4千米/时,行至塌方处需10 2.54=(小时) 因为一分队到塌方处并打通道路需要10135+=(小时),故二分队在塌方处需停留0.5小时,所以二分队在营地不休息赶到A 镇需2.5+0.5+204=8(小时) (2)一分队赶到A 镇共需305+1=7(小时) (Ⅰ)若二分队在塌方处需停留,则后20千米需与一分队同行,故4+a =5,即a=1,这与二分队在塌方处停留矛盾,舍去;(Ⅱ)若二分队在塌方处不停留,则(4+a )(7-a)=30,即a 2-3a+2=0,,解得a 1=1,a 2=2均符合题意。
答:二分队应在营地休息1小时或2小时。
(其他解法只要合理即给分)(3)合理的图像为(b )、(d )图像(b )表明二分队在营地休息时间过长(2<a≤3),后于一分队赶到A 镇;图像(d )表明二分队在营地休息时间恰当(1<a≤2),先于一分队赶到A 镇。
2.【解析】从表格中的数据我们可以看出当x 增加1时,对应y 的值减小20,所以y 与x 之间可能是一次函数的关系,然后设出一次函数关系式,求出其关系式,然后进行验证.【答案】(1)设y 与x 之间的关系为一次函数,其函数表达式为y=kx+b将(0,100),(1,80)代入上式得,10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩ 20100y x ∴=-+ 验证:当x=2时,20210060y =-⨯+=,符合一次函数;当x=2.5时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律.∴y 与x 之间的关系是一次函数,其函数表达式为20100y x =-+(2)当x=4.2时,由20100y x =-+可得y=16即货车行驶到C 处时油箱内余油16升.(3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升,设在D 处至少加油a 升,货车才能到达B 地. 依题意得,63680 4.220101680a -⨯⨯+=+, 解得,a=69(升) 方法二:由(1)得,货车行驶中每小时耗油20升,汽车行驶18千米的耗油量:1820 4.580⨯=(升)D 、B 之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) 70.510(16 4.5)+--=(升) 方法三:由(1)得,货车行驶中每小时耗油20升,设在D 处加油a 升,货车才能到达B 地. 依题意得,63680 4.220101680a -⨯⨯++≤, 解得,69a ≥ ∴在D 处至少加油69升,货车才能到达B 地.3.【解析】此题考查圆的切线的判定方法及一次函数解析式的判定,(1)切线的判定要从定义上去判定:过半径的外端,且垂直于半径的直线为圆的切线,所以此题要连接OM,然后证明OM ⊥DC,这里平行线对角的转化起到了关键的作用; (2) MC 的长借助于勾股定理建立方程而求出,要求直线DC 的解析式需要再求出点C 的坐标根据MC 的长即可以求出点C 的坐标(103,0),从而求出直线DC 的解析式. 【答案】(1)答:直线DC 与⊙O 相切于点M .证明如下:连OM , ∵DO ∥MB ,∴∠1=∠2,∠3=∠4 .∵OB=OM ,∴∠1=∠3 .∴∠2=∠4 .在△DAO 与△DMO 中,24AO OM DO DO =⎧⎪∠=∠∠⎨⎪=⎩∴△DAO ≌△DMO .∴∠OMD=∠OAD . 由于FA ⊥x 轴于点A ,∴∠OAD=90°.∴∠OMD=90°. 即OM ⊥DC .∴DC 切⊙O 于M.(2)解:由D (-2,4)知OA=2(即⊙O 的半径),AD=4 .由(1)知DM=AD=4,由△OMC ∽△DAC ,知MC AC = OM AD = 24 = 12,∴AC=2MC.在Rt △ACD 中,CD=MC+4.由勾股定理,有(2MC)2+42=(MC+4)2,解得MC= 83或MC=0(不合,舍去). ∴MC 的长为83 ,∴点C (103,0). 设直线DC 的解析式为y = kx+b . 则有⎪⎩⎪⎨⎧+-=+=.b k b k 243100 解得⎪⎪⎩⎪⎪⎨⎧=-=.b k 2543 ∴直线DC 的解析式为 y =-34 x+52. 4.【答案】 Ⅰ.证明:∵DEFG 为正方形,∴GD=FE ,∠GDB=∠FEC=90∵△ABC 是等边三角形,∴∠B=∠C=60°∴△BDG ≌△CEF(AAS)Ⅱa.解法一:设正方形的边长为x ,作△ABC 的高AH , 求得3=AH ,由△AGF ∽△ABC 得:332x x -=解之得:3232+=x (或634-=x )解法二:设正方形的边长为x ,则22x BD -=在Rt △BDG 中,tan ∠B=BD GD , ∴322=-x x 解之得:3232+=x (或634-=x ) 解法三:设正方形的边长为x ,则x GB x BD -=-=2,22 由勾股定理得:222)22()2(x x x -+=- 解之得:634-=x Ⅱb.解: 正确 由已知可知,四边形GDEF 为矩形 ∵FE ∥F’E’ , ∴B F FB E F FE '='',同理B F FB G F FG '='',∴G F FG E F FE ''='' 又∵F’E’=F’G’, ∴FE=FG 因此,矩形GDEF 为正方形5.【解析】解决问题(1)(2)的关键是利用图中的相似三角形;解决问题(3)时利用(2)中的m 、n 的关系求出点D 的坐标,进而分别求出BD 2、CE 2、DE 2的值;解决问题(4)时,通常方法是先猜想其结论成立,根据结论的特征,尝试构造直角三角形,则问题可轻松获解.【答案】解:(1)∆ABE ∽∆DAE , ∆ABE ∽∆DCA∵∠BAE =∠BAD +45°,∠CDA =∠BAD +45°∴∠BAE =∠CDA 又∠B =∠C =45°∴∆ABE ∽∆DCA(2)∵∆ABE ∽∆DCA ,∴CDBA CA BE =由依题意可知CA =BA =2 ∴nm22 ,∴m=n 2 自变量n 的取值范围为1<n<2. (3)由BD =CE 可得BE =CD ,即m=n ∵m=n 2,∴m=n=2 ∵OB =OC =21BC =1,∴OE =OD =2-1,∴D (1-2, 0) ∴BD =OB -OD =1-(2-1)=2-2=CE , DE =BC -2BD =2-2(2-2)=22-2∵BD 2+CE 2=2 BD 2=2(2-2)2=12-82, DE 2=(22-2)2= 12-82∴BD 2+CE 2=DE 2(4)成立证明:如图,将∆ACE 绕点A 顺时针旋转90°至∆ABH 的位置,则CE =HB ,AE =AH ,∠ABH =∠C =45°,旋转角∠EAH =90°.连接HD ,在∆EAD 和∆HAD 中∵AE =AH , ∠HAD =∠EAH -∠FAG =45°=∠EAD , AD =AD .∴∆EAD ≌∆HAD ∴DH =DE又∠HBD =∠ABH +∠ABD =90° ∴BD 2+HB 2=DH 2即BD 2+CE 2=DE 26.【答案】(1)解法一:∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=49b 2-24 ∴ 49b 2-24=25 ,解得b =±314 当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去. ∴b =-314. 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.∴x =4969b 32-±b , ∴x 2-x 1=2969b 2-=5, 解得 b =±314(以下与解法一相同.) (2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上,又y =-32x 2-314x -4=-32(x +27)2+625 ∴抛物线的顶点(-27,625)即为所求的点D . (3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4, ∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形.四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上.7.【答案】(1)(20)A ,,2OA ∴=. 作BG OA ⊥于G ,OAB △为正三角形,1OG ∴=,3BG =.(13)B ∴,.连AC ,90AOC ∠= ,60ACO ABO ∠=∠= ,23tan 303OC OA ∴== .2303C ⎛⎫∴ ⎪ ⎪⎝⎭,. (2)90AOC ∠= ,AC ∴是圆的直径,又CD 是圆的切线,CD AC ∴⊥.30OCD ∴∠= ,2tan 303OD OC == . 203D ⎛⎫∴- ⎪⎝⎭,. 设直线CD 的函数解析式为(0)y kx b k =+≠, 则233203b k b ⎧=⎪⎪⎨⎪=-+⎪⎩,解得3233k b ⎧=⎪⎨=⎪⎩. ∴直线CD 的函数解析式为2333y x =+.(3)2AB OA == ,23OD =, 423C D O D ==,233BC OC ==, ∴四边形ABCD 的周长2363+. 设AE t =,AEF △的面积为S , 则333AF t =+-, 133sin 603243S AF AE t t ⎛⎫==+- ⎪ ⎪⎝⎭. 233393733434632S t t t ⎡⎤⎛⎫⎛⎫+⎢⎥=+-=--++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ∴当936t +=时,max 733128S =+. 点E F ,分别在线段AB AD ,上, 023203233t t ⎧⎪∴⎨+-+⎪⎩≤≤≤≤, 解得1323t +≤≤. 936t += 满足1323t +≤≤, AEF ∴△的最大面积为733128+.。