八年级数学上册单元测试题3
- 格式:doc
- 大小:174.00 KB
- 文档页数:9
部编版八年级上册数学第三单元测试卷(带答案)部编版八年级上册数学第三单元测试卷(带答案)一、选择题1. 甲、乙两车同时出发,甲车以每小时60千米的速度向前行,乙车以每小时70千米的速度向前行。
若两车同时出发后,若干小时后两车的距离为180千米,则此时距离两车的相遇还需多少小时?A. 1B. 2C. 3D. 42. 若a、b、c都是过负数,且a > b > c,则以下运算错误的是:A. a - b < a - cB. c - a > b - aC. c + b > c + aD. a - c > b - c3. 若a、b、c都是正数,则a/b < c/b 的条件是:A. a > cB. a < cC. a = cD. a ≠ c二、填空题1. 一本书原价100元,现在打8折出售,则售价为\_____元。
2. 如果三个数的平均数是10,这三个数的和是\_____。
3. 用一根长40cm的铁丝制作一个正方形,这个正方形的面积是\_____平方厘米。
三、解答题1. 求下列各式的值:(1) 18 + 28 + 38(2) 168 ÷ 122. 某地有棵苹果树,每年的果实数量比上一年增加40%,第一年结出100个苹果,请问第三年会结出多少个苹果?四、应用题某店打折出售书,原价85元的书打8折,原价120元的书打75折。
请计算:1. 购买一本85元的书需要支付的钱数是多少?2. 购买一本120元的书需要支付的钱数是多少?3. 如果小明买了一本85元的书和一本120元的书,他需要支付的总金额是多少?答案一、选择题1. C2. B3. A二、填空题1. 802. 303. 400三、解答题1.(1) 84(2) 142. 第三年会结出140个苹果。
四、应用题1. 68元2. 90元3. 总金额为158元。
一、选择题1.在平面直角坐标系中,下列说法正确的是( ) A .点P (3,2)到x 轴的距离是3 B .若ab =0,则点P (a ,b )表示原点C .若A (2,﹣2)、B (2,2),则直线AB ∥x 轴D .第三象限内点的坐标,横纵坐标同号 2.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2)C .(3,1)D .(0,4)4.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上5.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA .1275B .2500C .1225D .12506.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1) 7.在平面直角坐标系中,若0a <,则点(﹣2,﹣a )的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位9.在平面直角坐标系中,下列各点在第三象限的是( ) A .()1,2B .()2,1-C .()2,1-D .()1,2--10.已知(4,2)P a +在第一象限内,且点P 到两坐标轴的距离相等,则a 的值为( ) A .2B .3C .-6D .2或-611.点M 在x 轴上方,y 轴左侧,距离x 轴1个单位长度,距离y 轴4个单位长度,则点M 的坐标为( ) A .(1,4) B .(﹣1,﹣4)C .(4,﹣1)D .(﹣4,1)12.平面直角坐标系中,点 A (-2,-1) ,B (1,3) ,C (x ,y ) ,若 AC ∥ x 轴,则线段BC 的最小值为( ) A .2B .3C .4D .5二、填空题13.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到1A ,第2次移动到2A ,第3次移动到3A ,……,第n 次移动到n A ,则22020OA A ∆的面积是__________.14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.15.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .16.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.17.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.18.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.则点2019A 的坐标是_________.19.已知平面直角坐标系中,A (3,0),B (0,4),C (0,c ),且△ABC 的面积是△OAB 面积的3倍,则c =__.20.已知点(,4)M a -与点(6,)N b 关于直线2x =对称,那么-a b 等于______.三、解答题21.作图题,如图,△ABC 为格点三角形(不要求写作法)(1)请在坐标系内用直尺画出△111A B C ,使△111A B C 与△ABC 关于y 轴对称; (2)请在坐标系内用直尺画出△222A B C ,使△222A B C 与△ABC 关于x 轴对称;22.如图,在平面直角坐标系中,△ABC 的位置如图所示(每个方格的边长均为1个单位长度).(1)写出下列点的坐标:A ( , ),B ( , ) C ( , )(2)若△ABC 各顶点的纵坐标不变,横坐标都乘﹣1,请在同一直角坐标系中找出对应的点A′,B′,C′,并依次连接这三个点,从图象可知△ABC 与△A′B′C′有怎样的位置关系?23.如图,在平面直角坐标系xoy 中,(15)A -,,()10B -,,(43)C -,.(1)在图中作出ABC 关于y 轴的对称图形111A B C △;(2)若以线段AB 为一边作格点△ABD ,使所作的△ABD 与△ABC 全等,则所有满足条件的点D 的坐标是 .24.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE , 我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.25.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △; (2)点1A ,1B ,1C 的坐标分别是______,______,______; (3)ABC 的面积为______.26.如图,在平面直角坐标系中,直线l 过点M (1,0)且与y 轴平行,△ABC 的三个顶点的坐标分别为A (-2,5),B (-4,3),C (-1,1). (1)作出△ABC 关于x 轴对称111A B C △;(2)作出△ABC 关于直线l 对称222A B C △,并写出222A B C △三个顶点的坐标.(3)若点P 的坐标是(-m ,0),其中m >0,点P 关于直线l 的对称点P 1,求PP 1的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】根据点的坐标的几何意义逐一进行判断即可得答案.【详解】A.点P(3,2)到x轴的距离是2,故本选项不符合题意.B.若ab=0,则点P(a,b)表示原点或坐标轴上的点,故本选项不符合题意.C.若A(2,﹣2)、B(2,2),则直线AB∥y轴,故本选项不符合题意.D.第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意.故选:D.【点睛】本题考查点的坐标的几何意义,由坐标平面内的一点P分别向x轴,y轴作垂线,垂足M,N在x轴,y轴上的坐标分别为x和y,我们则说P点的横坐标为x,纵坐标是y,记作P(x,y);熟练掌握相关定义是解题关键.2.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),A6(0,4)…,所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2), 故选:B 【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.4.B解析:B 【分析】根据点的坐标特点判断即可. 【详解】在平面直角坐标系中,点P (-5,0)在x 轴上, 故选B . 【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.5.A解析:A 【分析】根据图形计算发现:第一个三角形的面积是11212⨯⨯=,第二个三角形的面积是12332⨯⨯=,第三个图形的面积是13462⨯⨯=,即第n 个图形的面积是1(1)2n n +,即可求得,△n 的面积. 【详解】由题意可得规律:第n 个图形的面积是1(1)2n n +, 所以当n 为50时,n 的面积()15050112752=⨯⨯+=.故选:A . 【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.6.C解析:C 【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可. 【详解】 解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A .故选C . 【点睛】本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.7.B解析:B 【分析】根据各象限的点的坐标特征解答. 【详解】 解:∵a <0, ∴-a >0,∴点(-2,-a )在第二象限. 故选:B . 【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.A解析:A 【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x 轴对称. 【详解】解:∵纵坐标乘以﹣1, ∴变化前后纵坐标互为相反数, 又∵横坐标不变,∴所得三角形与原三角形关于x 轴对称. 故选:A . 【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.D解析:D 【分析】根据各象限内点的坐标特征解答对各选项分析判断后利用排除法求解即可.【详解】解:A、(1,2)在第一象限,故本选项不符合题意;B、(-2,1)在第二象限,故本选项不符合题意;C、(2,-1)在第四象限,故本选项不符合题意;D、(-1,-2)在第三象限,故本选项符合题意.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.A解析:A【分析】本题可通过横坐标为4确定点P到纵轴距离,继而根据点P到坐标轴距离相等列方程求解.【详解】a+=,由已知得:24a+=,因为点P在第一象限,故:24a=.解得:2故选:A.【点睛】本题考查平面直角坐标系、一元一次方程、绝对值的化简,易错点在于若坐标含有未知数,考查距离问题时需要加绝对值或者分类讨论,确保结果不重不漏.11.D解析:D【分析】由点M在x轴的上方,在y轴左侧,判断点M在第二象限,符号为(-,+),再根据点M 到x轴的距离决定纵坐标,到y轴的距离决定横坐标,求M点的坐标.【详解】解:∵点M在x轴上方,y轴左侧,∴点M的纵坐标大于0,横坐标小于0,点M在第二象限;∵点M距离x轴1个单位长度,距离y轴4个单位长度,∴点的横坐标是-4,纵坐标是1,故点M的坐标为(-4,1).故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.C解析:C【分析】由垂线段最短可知点BC ⊥AC 时,BC 有最小值,从而可确定点C 的坐标.【详解】解:如图所示:由垂线段最短可知:当BC ⊥AC 时,BC 有最小值.∴点C 的坐标为(1,-1),∴线段的最小值为4.故选:C【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题13.505【分析】由图可得分别表示246通过找规律可得表示1010进而可得的长根据三角形的面积公式计算即可求解;【详解】由题意得分别表示246∴表示1010∴=1010∴△的面积为=故答案为:505【点解析:505【分析】由图可得2348121A A A A A ,,, 分别表示2,4,6,通过找规律可得2020A 表示1010,进而可得23A A ,2020OA 的长,根据三角形的面积公式计算即可求解;【详解】由题意得2348121A A A A A =,,,分别表示2,4,6,∴ 2020A 表示1010,∴ 2020OA =1010,∴ △22020OA A 的面积为=111010=5052⨯⨯ , 故答案为:505.【点睛】本题主要考找规律,三角形的面积,找规律求解2020OA 是解题的关键. 14.(10100)【分析】这是一个关于坐标点的周期问题先找到蚂蚁运动的周期蚂蚁每运动4次为一个周期题目问点的坐标即相当于蚂蚁运动了505个周期再从前4个点中找到与之对应的点即可求出点的坐标【详解】通过观解析:(1010,0)【分析】这是一个关于坐标点的周期问题,先找到蚂蚁运动的周期,蚂蚁每运动4次为一个周期,题目问点2020A 的坐标,即20204=505÷,相当于蚂蚁运动了505个周期,再从前4个点中找到与之对应的点即可求出点2020A 的坐标.【详解】通过观察蚂蚁运动的轨迹可以发现蚂蚁的运动是有周期性的,蚂蚁每运动4次为一个周期,可得:20204=505÷,即点2020A 是蚂蚁运动了505个周期,此时与之对应的点是4A ,点4A 的坐标为(2,0),则点2020A 的坐标为(1010,0)【点睛】本题是一道关于坐标点的规律题型,解题的关键是通过观察得到其中的周期,再结合所求点与第一个周期中与之对应点,即可得到答案.15.(62)或(42)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标从而得解【详解】∵点A (12)AC ∥x 轴∴点C 的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,∴点C 的纵坐标为2,∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4,此时,点C 的坐标为(-4,2),点C 在点A 的右边时横坐标为1+5=6,此时,点C 的坐标为(6,2)综上所述,则点C 的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x 轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.16.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.17.【分析】观察发现每6个点形成一个循环再根据点A6的坐标及2020÷6所得的整数及余数可计算出点A2020的横坐标再根据余数对比第一组的相应位置的数可得其纵坐标【详解】解:观察发现每6个点形成一个循环解析:()2020,2-【分析】观察发现,每6个点形成一个循环,再根据点A 6的坐标及2020÷6所得的整数及余数,可计算出点A 2020的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵()66,0A ,∴OA 6=6,∵2020÷6=336…4,∴点A 2020的位于第337个循环组的第4个,∴点A 2020的横坐标为6×336+4=2020,其纵坐标为:﹣2,∴点A 2020的坐标为()2020,2-.故答案为:()2020,2-.【点睛】本题考查点的坐标规律,确定每6个点形成一个循环且点A 2020的位于第337个循环组的第4个是解题的关键.18.【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解题的关键 解析:()20191009,0A .【分析】根据图象可得移动4次图形完成一个循环,从而可得出点2019A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,201945043,20204505,∴÷=÷=()()()48122,0,4,0,6,0,,A A A()20205052,0,A ∴⨯即()20201010,0,A所以:()20191009,0.A故答案为:()20191009,0.A【点睛】本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.19.﹣8或16【分析】根据AB 两点坐标可求解△OAB 面积利用△ABC 的面积是△OAB 面积的3倍可求出c 的值【详解】∵A (30)B (04)∴OA=3OB=4∴S △OAB=OA•OB=×3×4=6∵△ABC解析:﹣8或16【分析】根据A ,B 两点坐标可求解△OAB 面积,利用△ABC 的面积是△OAB 面积的3倍可求出c 的值.【详解】∵A (3,0),B (0,4),∴OA =3,OB =4,∴S △OAB =12OA •OB =12×3×4=6, ∵△ABC 的面积是△OAB 面积的3倍,C (0,c ), ∴S △ABC =12OA •BC =12×34c -=18, ∴4c -=12,即412c -=±,∴c =﹣8或16.故答案为:﹣8或16.【点睛】本题主要考查了图形与坐标,三角形的面积,利用△ABC 的面积得到4c -=12是解题的关键.20.2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线且在坐标系内关于x 对称则y 相等所以【详解】点与点关于直线对称∴解得∴故答案为2【点睛】本题考察了坐标和轴对称变换轴对称图形的性质是对称轴垂直平分 解析:2【分析】轴对称图形的性质是对称轴垂直平分对应点的连线,且在坐标系内关于x 对称,则y 相等,所以622a +=,4b -=. 【详解】点(,4)M a -与点(6,)N b 关于直线2x =对称 ∴622a +=,4b -= 解得2a =-,∴2(4)2-=---=a b故答案为2.【点睛】本题考察了坐标和轴对称变换,轴对称图形的性质是对称轴垂直平分对应点的连线,此类题是轴对称相关考点中重要的题型之一,掌握对轴对称图形的性质是解决本题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)利用关于y轴对称的点的坐标特征写出点A1和点B1、点C1的坐标,然后描点即可;(2)利用关于x轴对称的点的坐标特征写出点A2和点B2、点C2的坐标,然后描点即可.【详解】解:如图所示,△A1B1C1和△A2B2C2即为所求:【点睛】本题考查轴对称变换,解题的关键是熟练掌握轴对称的性质,属于中考常考题型.22.(1)A(3,4),B(1,2)C(5,1);(2)△ABC与△A′B′C′关于y轴对称;见解析【分析】(1)根据直角坐标系即可依次写出坐标;(2)根据△ABC各顶点的纵坐标不变,横坐标都乘﹣1,得到对应点的坐标,再顺次连接,根据对称性即可判断.【详解】(1)点的坐标为:A(3,4),B(1,2)C(5,1);故答案为:(3,4),(1,2),(5,1);(2)△A′B′C′即为所求,△ABC与△A′B′C′关于y轴对称.【点睛】此题主要考查了作图−−轴对称变换,关键是掌握几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也就是要确定一些特殊的对称点,然后再连接即可.23.(1)见解析;(2)作图见解析;点D坐标为(-4,2)、(2,3)、(2,2).【分析】(1)分别作出点A、B、C关于y轴的对称点,再顺次连接即可;(2)根据网格特点和全等三角形的判定可以找到满足条件的点D.【详解】(1)画出图形如图所示;(2)如图,满足条件的点D有三个,则点D坐标(-4,2)、(2,3)、(2,2),故答案为:(-4,2)、(2,3)、(2,2).【点睛】本题考查了基本作图-轴对称变换、坐标与图形、全等三角形的判定,利用格点判断三角形全等,熟练掌握轴对称变换的画法是解答的关键.24.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D作DM⊥AM交AG于点M,过点E作EN⊥AG于点N.根据“K字模型”即可证明AH=DM 和AH=EN,即EN=DM,再根据全等三角形的判定和性质即可证明DG=EG,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90 ,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1 .在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理 △ACH ≅△EAN (AAS ),∴ AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE 的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=, 解得32x =, ∴32AC =,35122DE =+=. 即点A 坐标为(32,52).②当A 点在OB 的下方时,如图,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .根据①同理可得:52AP =,32MQ =. 即点A 坐标为(52,32-).【点睛】本题考查了三角形全等的判定和性质.熟练利用三角形的判定方法是解答本题的关键.25.(1)见解析;(2)(2,4)-;(3,1)-;(2,1)-;(3)172. 【分析】(1)首先作出A 、B 、C 三点关于x 轴的对称点,再顺次连接即可;(2)根据(1)得出对应点位置进而得出答案;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示,(2)点1A ,1B ,1C 的坐标分别是(2,4)-;(3,1)-;(2,1)-;故答案为:(2,4)-;(3,1)-;(2,1)-;(3)S △ABC =5×5-12×4×5-12×1×3-12×2×5=172; 故答案为:172. 【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键. 26.(1)答案见解析;(2)答案见解析,点A 2(4,5),点B 2(6,3),点C 2(3,1);(3)PP 1=2+2m【分析】(1)分别作出点A 、B 、C 关于x 轴对称的点,然后顺次连接;(2)分别作出点A 、B 、C 关于直线l 对称的点,然后顺次连接,并写出△A 2B 2C 2三个顶点的坐标(3)根据对称的性质即可得出答案.【详解】解:(1)如图所示,111A B C ∆即为所求;(2)如图所示,△A2B2C2即为所求,由图可知,点A2的坐标是(4,5),点B2的坐标是(6,3),点C2的坐标是(3,1);(3)PP1=2(1+m)=2+2m.【点睛】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.。
一、选择题1.在平面直角坐标系中,下列说法正确的是( ) A .点P (3,2)到x 轴的距离是3 B .若ab =0,则点P (a ,b )表示原点C .若A (2,﹣2)、B (2,2),则直线AB ∥x 轴D .第三象限内点的坐标,横纵坐标同号2.在平面直角坐标系中,若干个半径为1个单位长度、圆心角为60︒的扇形组成一条连续的曲线,点P 从原点O 出发,向右沿这条曲线做上下起伏运动(如图),点P 在直线上运动的速度为每秒1个单位长度,点P 在弧线上运动的速度为每秒π3个单位长度,则2021秒时,点P 的坐标是( )A .(3B .(2021,3C .20213,22⎛⎝⎭D .20213,22⎛-⎝⎭3.已知点P (a ,3)、Q (﹣2,b )关于y 轴对称,则a ba b+-的值是( ) A .15-B .15C .﹣5D .54.在平面直角坐标系中,点A (m ,2)与点B (3,n )关于y 轴对称,则( ) A .m =3,n =2 B .m =﹣3,n =2 C .m =2,n =3 D .m =﹣2,n =﹣3 5.若点P (﹣m ,﹣3)在第四象限,则m 满足( ) A .m >3B .0<m≤3C .m <0D .m <0或m >36.在平面直角坐标系中,点()25,1N a -+一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.如果a 是任意实数,则点(1,1)P a a -+,一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,一个点在第一、四象限及x 轴上运动,第1次,它从原点运动到点1,P 第次2运动到点2P ,再按图中箭头所示方向运动,即点的坐标变化是()()()()0,01,12,03,1→-→→→······,那么点2020P 所在的位置的坐标是( )A .()2020,1-B .()2020,1C .()2019,0D .()2020,09.如图,平面直角坐标系中,一蚂蚁从A 点出发,沿着···A B C D A →→→→循环爬行,其中A 点的坐标为()2,2-,B 点的坐标为()2,2--,C 点的坐标为()2,6-,D 点的坐标为()2,6,当蚂蚁爬了2020个单位时,蚂蚁所处位置的坐标为( )A .()2,2--B .()2,2-C .()2,6-D .()0,2-10.在平面直角坐标中,点(2,5)M --在( ) A .第一象限B .第二象限C .第三象限D .第四象限11.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,312.平面直角坐标系中,点 A (-2,-1) ,B (1,3) ,C (x ,y ) ,若 AC ∥ x 轴,则线段BC 的最小值为( ) A .2B .3C .4D .5二、填空题13.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 平分CAB ∠交BC 于点D ,E ,F 分别是AD ,AC 边上的动点,则CE EF +的最小值为__________.14.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.15.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.16.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.17.已知平面直角坐标系中,A (3,0),B (0,4),C (0,c ),且△ABC 的面积是△OAB 面积的3倍,则c =__.18.已知平面直角坐标系内不同的两点A (3a+2,4)和B (3,2a+2)到x 轴的距离相等,则a 的值为_____.19.为了培养学生社会主义核心价值观,张老师带领学生去 参观天安门广场的升旗仪式.如图是张老师利用平面直角坐标系画出的天安门附近的部分建筑分布图,若这个坐标系分别以正东、正北方向为 x 轴、 y 轴的正方向,表示金水桥的点的坐标为(1,﹣2),表示本仁殿的点的坐标为(3,﹣1),则表示乾清门的点的坐标是______.20.已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.三、解答题21.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.22.在平面直角坐标系中,点P(2﹣m ,3m +6). (1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标. 23.如图,ABC 的三个顶点的坐标分别是()3,3A ,()1,1B ,()4,1C -.(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1A (______,_______)、1B (______,_______)、1C (______,_______) (2)在图中作出ABC 关于y 轴对称的图形222A B C △. (3)求ABC 的面积.24.已知点()5,12A a a --,解答下列问题: (1)若点A 到x 轴和y 轴的距离相等,求点A 的坐标;(2)若点A 向右平移若干个单位后,与点()2,3B --关于x 轴对称,求点A 的坐标. 25.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于x 轴成轴对称的图形△A 1B 1C 1,并写出A 1、B 1、C 1的坐标; (2)在y 轴上找一点P ,使PA+PB 的值最小,请画出点P 的位置.26.如图,ABC 的坐标分别是()0,2A -、()2,5B -、()5,3C -. (1)如图1,画出ABC 关于x 轴对称的图形111A B C △;(2)如图2,在x 轴上找出点P ,使PA PC +最小,并直接写出P 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据点的坐标的几何意义逐一进行判断即可得答案.【详解】A.点P(3,2)到x轴的距离是2,故本选项不符合题意.B.若ab=0,则点P(a,b)表示原点或坐标轴上的点,故本选项不符合题意.C.若A(2,﹣2)、B(2,2),则直线AB∥y轴,故本选项不符合题意.D.第三象限内点的坐标,横纵坐标都是负号,故本选项符合题意.故选:D.【点睛】本题考查点的坐标的几何意义,由坐标平面内的一点P分别向x轴,y轴作垂线,垂足M,N在x轴,y轴上的坐标分别为x和y,我们则说P点的横坐标为x,纵坐标是y,记作P(x,y);熟练掌握相关定义是解题关键.2.C解析:C【分析】设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律,依此规律即可得出结论.【详解】解:设第n 秒运动到Pn (n 为自然数)点,观察,发现规律:112P ⎛ ⎝⎭,()210P , ,33-22P ⎛⎫ ⎪ ⎪⎝⎭, ,()42,0P ,5522P ⎛⎫ ⎪ ⎪⎝⎭, ,…,∴412n n P +⎛ ⎝⎭,42,02n n P +⎛⎫⎪⎝⎭ ,43,-22n n P +⎛ ⎝⎭,44,02n n P +⎛⎫⎪⎝⎭,∵2021=4×505+1,∴2021P 为202122⎛⎫ ⎪ ⎪⎝⎭, . 故选:C . 【点睛】本题主要考查了规律型中的点的坐标,解题的关键是找出变化规律.3.C解析:C 【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案. 【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称, ∴2a =,3b =,则23523a b a b ++==---. 故选:C . 【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.4.B解析:B 【分析】直接利用关于y 轴对称点的性质得出答案. 【详解】解:∵点A (m ,2)与点B (3,n )关于y 轴对称, ∴m=-3,n=2. 故选:B . 【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.C解析:C 【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可. 【详解】解:根据第四象限的点的横坐标是正数,可得﹣m >0,解得m <0. 故选:C . 【点睛】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.6.B解析:B 【分析】根据点的坐标特征求解即可. 【详解】横坐标是50-<,纵坐标是210a +>, ∴点N (5-,21a +)一定在第二象限, 故选:B . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).7.D解析:D 【分析】根据点P 的纵坐标一定大于横坐标和各象限的点的坐标进行解答. 【详解】解:∵11a a +>-,即点P 的纵坐标一定大于横坐标, 又∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P 一定不在第四象限. 故选:D . 【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.8.D解析:D 【分析】先根据运动图得出426,,P P P 的坐标,再归纳类推出一般规律,由此即可得出答案. 【详解】由运动图得:点2P 的坐标为(2,0), 点4P 的坐标为(4,0),点6P 的坐标为(6,0),归纳类推得:点n P 的坐标为(,0)n (其中2n ≥,且为偶数), 因为20202>,且为偶数,所以点2020P 所在的位置的坐标是(2020,0), 故选:D . 【点睛】本题考查了点坐标规律探索,依据运动图,正确归纳类推出一般规律是解题关键.9.A解析:A 【分析】根据蚂蚁的爬行规律找到蚂蚁爬行一循环的长度是24,∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A 左边4个单位长度处,即可解题. 【详解】解:∵A 点坐标为(2,﹣2),B 点坐标为(﹣2,﹣2),C 点坐标为(﹣2,6), ∴AB =2﹣(﹣2)=4,BC =6﹣(﹣2)=8, ∴从A→B→C→D→A 一圈的长度为2(AB+BC )=24. ∵2020=84×24+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A 左边4个单位长度处,即(-2,﹣2). 故选:A 【点睛】本题考查了点的运动规律问题,属于简单题,确定蚂蚁爬行的循环规律是解题关键.10.C解析:C 【分析】由于点M 的横坐标为负数,纵坐标为负数,根据各象限内点的坐标的符号特征即可求解. 【详解】解:∵-2<0,-5<0, ∴点M (-2,-5)在第三象限. 故选:C . 【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11.D解析:D【分析】由经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.12.C解析:C【分析】由垂线段最短可知点BC⊥AC时,BC有最小值,从而可确定点C的坐标.【详解】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(1,-1),∴线段的最小值为4.故选:C【点睛】本题主要考查的是垂线段的性质、点的坐标的定义,掌握垂线段的性质是解题的关键.二、填空题13.【分析】在上取点使连接过点作垂足为利用角的对称性可知则EC +EF 的最小值即为点C 到AB 的垂线段CH 的长度进而即可求解【详解】解:如图在上取点使连接过点作垂足为平分根据对称可知当点共线且点与点重合时的 解析:125【分析】在AB 上取点F ',使AF AF '=,连接EF ',过点C 作CH AB ⊥,垂足为H .利用角的对称性,可知EF EF '=,则EC +EF 的最小值即为点C 到AB 的垂线段CH 的长度,进而即可求解.【详解】解:如图,在AB 上取点F ',使AF AF '=,连接EF ',过点C 作CH AB ⊥,垂足为H . AD 平分CAB ∠,∴根据对称可知EF EF '=.1122ABC S AB CH AC BC =⋅=⋅△, 125AC BC CH AB ⋅∴==. EF CE EF EC '+=+,∴当点C 、E 、F '共线,且点F '与点H 重合时,FE EC +的值最小,最小值为CH=125, 故答案为125.【点睛】本题考查了轴对称-线段和最小值问题,添加辅助线,把两条线段的和的最小值化为点到直线的距离问题,是解题的关键.14.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=, 右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 15.【分析】作AD ⊥OB 于D 则∠ADB =90°OD =1AD =3OB =3得出BD =2由勾股定理求出AB 即可;由题意得出AC+BC 最小作A 关于y 轴的对称点连接交y轴于点C点C即为使AC+BC最小的点作轴于E解析:513+【分析】作AD⊥OB于D,则∠ADB=90°,OD=1,AD=3,OB=3,得出BD=2,由勾股定理求出AB即可;由题意得出AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,'⊥轴于E,由勾股定理求出A B',即可得出结果.点C即为使AC+BC最小的点,作A E x【详解】解:作AD⊥OB于D,如图所示:则∠ADB=90°,OD=1,AD=3,OB=3,∴BD=3﹣1=2,∴AB222+3=13要使△ABC的周长最小,AB一定,则AC+BC最小,作A关于y轴的对称点A',连接A B'交y轴于点C,点C即为使AC+BC最小的点,'⊥轴于E,作A E x由对称的性质得:AC=A C',则AC+BC=A B',A E'=3,OE=1,∴BE=4,由勾股定理得:A B'22+=,345∴△ABC13+5.13+5.【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可.16.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.17.﹣8或16【分析】根据AB 两点坐标可求解△OAB 面积利用△ABC 的面积是△OAB 面积的3倍可求出c 的值【详解】∵A (30)B (04)∴OA=3OB=4∴S △OAB=OA•OB=×3×4=6∵△ABC解析:﹣8或16【分析】根据A ,B 两点坐标可求解△OAB 面积,利用△ABC 的面积是△OAB 面积的3倍可求出c 的值.【详解】∵A (3,0),B (0,4),∴OA =3,OB =4,∴S △OAB =12OA •OB =12×3×4=6, ∵△ABC 的面积是△OAB 面积的3倍,C (0,c ), ∴S △ABC =12OA •BC =12×34c -=18, ∴4c -=12,即412c -=±,∴c =﹣8或16.故答案为:﹣8或16.【点睛】=12是解题的本题主要考查了图形与坐标,三角形的面积,利用△ABC的面积得到4c关键.18.1或-3【分析】由AB两点到x轴的距离相等即可得出关于a的含绝对值符号的一元一次方程解之即可得出结论【详解】∵平面直角坐标系内不同的两点A(3a+24)和B(32a+2)到x轴的距离相等∴|2a+2解析:1或-3.【分析】由A、B两点到x轴的距离相等,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【详解】∵平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,∴|2a+2|=4,解得:a1=1,a2=-3.故答案为1或-3.【点睛】本题考查了两点间的距离公式以及解含绝对值符号的一元一次方程.由A、B两点到x轴的距离相等找出关于a的含绝对值符号的一元一次方程是解题的关键.19.(13)【详解】分析:根据金水桥的点的坐标(1-2)确定坐标原点的位置然后建立坐标系进而可确定乾清门的点的坐标位置详解:如图所示:乾清门的点的坐标是(13)故答案为(13)点睛:此题主要考查了坐标确解析:(1,3)【详解】分析:根据金水桥的点的坐标(1,-2)确定坐标原点的位置,然后建立坐标系,进而可确定乾清门的点的坐标位置.详解:如图所示:乾清门的点的坐标是(1,3),故答案为(1,3).点睛:此题主要考查了坐标确定位置,关键是正确建立坐标系.20.或【分析】本题根据两点在同一平行于轴的直线上确定点N的纵坐标继而根据两点距离确定点N的横坐标【详解】由已知得:点N的纵坐标为设点N的横坐标为则MN的距离可表示为∵∴求解得:或故点N坐标为或故填:或【解析:(1,2)--或(7,2)-【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.【详解】由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =,∴34x -=,求解得:7x =或1x =-,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点睛】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.三、解答题21.(1)见解析;(2)他所经过的地方依次为:停机坪,小广场,雷达,哨所2,码头,哨所1【分析】(1)根据营房的坐标画出直角坐标系,然后根据点的坐标的表示方法写出雷达,码头,停机坪,哨所1的坐标;(2)利用营房为坐标原点,画出直角坐标系,然后根据点的坐标找出对应的点即可.【详解】解:(1)如图,雷达的坐标为(6,3),码头的坐标为(-3,-3),停机坪的坐标为(5,-2),哨所1的坐标为(3,5);(2)他所经过的地方依次为:停机坪,小广场,雷达,哨所2,码头,哨所1.【点睛】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.22.(1)1或﹣5;(2)(2,6)【分析】m+,解出m的值即可;(1)由点P与x轴的距离为9可得36=9(2)由点P在过点A(2,-3)且与y轴平行的直线上可得2-m=2,解出m的值即可.【详解】(1)点P(2-m,3m+6),点P在x轴的距离为9,∴|3m+6|=9,解得:m=1或-5.答:m的值为1或-5;(2)点P在过点A(2,-3)且与y轴平行的直线上,∴2-m=2,解得:m=0,∴3m+6=6,∴点P的坐标为(2,6).【点睛】本题主要考查点到坐标轴的距离以及在与坐标轴平行的直线上点的坐标的特点,熟练掌握点到坐标轴的距离的意义以及与坐标轴平行的直线上点的坐标的特点是解题关键.23.(1)3,−3,1,−1,4,1;(2)见详解;(3)5【分析】(1)由关于x轴对称的点的横坐标相等,纵坐标互为相反数,即可得到答案;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(3)利用割补法求解可得.【详解】(1)∵点A(3,3),B(1,1),C(4,−1).∴点A关于x轴的对称点A1(3,−3),B关于x轴的对称点B1(1,−1),C关于x轴的对称点C1(4,1),故答案为:3,−3,1,−1,4,1;(2)如图所示,即为所求;(3)△ABC 的面积为:3×4−12×2×2−12×2×3−12×1×4=5. 【点睛】 本题主要考查作图−轴对称变换和点的坐标,解题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点,也考查了割补法求三角形的面积.24.(1)点A 的坐标为()3,3--或()9,9-;(2)()6,3-.【分析】(1)分别根据点A 的位置列方程求解即可;(2)根据平移规律求解即可.【详解】解:(1)若点A 在第一象限或第三象限,512a a -=-,解得2a =,5123a a -=-=-.∴点A 的坐标为()3,3--,若点A 在第二象限或第四象限,5120a a -+-=,解得4a =-,59a -=-,129a -=,∴点A 的坐标为()9,9-.综上所述,点A 的坐标为()3,3--或()9,9-.(2)∵若点A 向右平移若干个单位,其纵坐标不变,为()12a -,又∵点A 向右平移若干个单位后与点()2,3B --关于x 轴对称,∴()1230a -+-=,∴1a =-,∴5156a -=--=-,()121213a -=-⨯-=,即点A 的坐标为()6,3-.【点睛】此题主要考查了关于x 轴对称的点的坐标特征,关键是掌握点的坐标变化规律. 25.(1)见解析,A 1(1,﹣1)、B 1(4,﹣2)、C 1(3,﹣4);(2)见解析.【分析】(1)依据轴对称的性质进行作图,即可得到△A 1B 1C 1,根据轴对称性质得到A 1、B 1、C 1的坐标即可;(2)因为A ′与A 点是关于y 轴对称的点,连结A ′B ,交与y 轴于点P ,此时PA +PB 的值最小.【详解】(1)如图所示,△A 1B 1C 1即为所求,∵A (1,1),B (4,2),C (3,4).又∵△ABC 关于x 轴成轴对称的图形△A 1B 1C 1,关于x 轴对称,对称点的坐标规律是横坐标不变,纵坐标变为它的相反数,∴A 1的坐标为(1,﹣1)、B 1的坐标为(4,﹣2)、C 1的坐标为(3,﹣4); (2)因为A ′与A 点是关于y 轴对称的点,连结A ′B ,交与y 轴于点P ,∵A′、P 、B 三点在一直线上,利用两点之间线段最短A′B=A′P+PB=AP+PB ,∴PA +PB 的值最小.如图所示,点P 即为所求.【点睛】本题考查了作图——轴对称变换,轴对称——最短路径问题.凡是涉及最短距离问题,一般要考虑线段的性质定理,结合轴对称的变换来解决,多数情况要作点关于某直线的对称点.26.(1)见解析;(2)见解析,点P 的坐标为(2,0).【分析】(1)作出A ,B ,C 关于x 轴对称点A 1,B 1,C 1即可;(2)作点A关于x轴对称点A′,连接CA′交x轴于点P,点P即为所求.【详解】解:(1)△A1B1C1如图所示.(2)作点A关于x轴对称点A′,连接CA′交x轴于点P,点P即为所求,点P的坐标为(2,0).【点睛】本题考查作图-轴对称变换,轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
一、选择题1.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm 2.在等腰ABC ∆中,80A ∠=︒,则B 的度数不可能是( ) A .80︒B .60︒C .50︒D .20︒ 3.已知等腰三角形有一边长为5,一边长为2,则其周长为( ) A .12 B .9 C .10 D .12或9 4.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH .其中正确的是( )A .①②③④B .①②③C .②④D .①③ 5.定义:等腰三角形的一个底角与其顶角的度数的比值()1k k >称为这个等腰三角形的“优美比”.若在等腰三角形ABC 中,36,A ∠=︒则它的优美比k 为( )A .32B .2C .52D .3 6.等腰三角形两边长为2和4,则其周长为( ) A .8 B .10 C .8或10 D .127.如图,在ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 平分∠BAC ;②∠ADC =60°;③点D 在AB 的垂直平分线上;④2ABD ACD S S =.A .1B .2C .3D .48.如图,在ABC 中,87,A ABC ∠=︒∠的平分线BD 交AC 于点,D E 是BC 中点,且DE BC ⊥,那么C ∠的度数为( )A .16︒B .28︒C .31︒D .62︒9.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒10.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个11.如图,已知AD 为ABC 的高线,AD BC =,以AB 为底边作等腰Rt ABE △,连接ED ,EC 延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED 为等腰三角形;⑤BDE ACE S S =△△,其中正确的有( )A .①③⑤B .①②④C .①③④D .①②③⑤12.如图所示,在△ABC 中,内角∠BAC 与外角∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于F ,交AB 于G ,连接CP .下列结论:①∠ACB =2∠APB ;②BP 垂直平分CE ;③PG =AG ;④CP 平分∠DCB ;其中,其中说法正确的有( )A .1个B .2个C .3个D .4个二、填空题13.平面直角坐标系xOy 中,先作出点P (2,3)-关于y 轴的对称点,再将该对称点先向下平移1个单位,再向左平移2个单位得到点P 1,称为完成一次图形变换,再将点P 1进行同样的图形变换得到点P 2,以此类推,则点P 2020的坐标为___________.14.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠BAD =70°,则∠EDC =_____°.15.如图,等边ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若2AE =,当EF CF +取最小值时,ECF ∠的度数为___________度.16.如图,在Rt ABC 中,BAC 90︒∠=,AB 2=,M 为边BC 上的点,连接AM .如果将ABM 沿直线AM 翻折后,点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是________.17.如图,在锐角△ABC 中,AB =62,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是_____________.18.如图,ABC 中,45ABC ∠=︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E 交CD 于点F ,H 是BC 边的中点,连接DH 交BE 于点G ,考察下列结论:①AC BF =;②2BF CE =;③ADGE GHCE S S =四四边形边形;④DGF △为等腰三角形.其中正确的有___.19.如图,在ABC 中,AB=AC ,40A ∠=,CD //AB ,则BCD ∠的度数是______°.20.如图,∠ABC 的平分线BF 与△ABC 中∠ACB 的相邻外角∠ACG 的平分线CF 相交于点F ,过F 作DF ∥BC ,交AB 于D ,交AC 于E ,若BD =8cm ,DE =3cm ,AE =2,求AC 的长为_____cm .三、解答题21.如图,在ABC 中,60A ∠=︒,ABC ∠、ACB ∠的平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F ,连接DE .(1)若7AC BC ==,求DE 的长;(2)求证:BE CD BC +=.22.在等边ABC 中,D E 、分别为AB AC 、边上的动点,以DE 为一边作等边DEF .(1)如图1,若等边DEF 的顶点F 恰好在BC 上,求证:ADE CEF ≌;(2)如图2,若2BD AE =,当点D 从点A 向点B 运动(不运动到点B )时,连接CF ,请判断ECF ∠的大小是否变化并说明理由.23.已知,在四边形ABCD 中,AB AD =,CB CD =,连接,AC BD ,判断,AC BD 的位置关系,并加以证明.24.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.25.已知,如图ABC ,AE 平分BAC ∠,EF AB ⊥,垂足为F ,点F 在AB 的延长线上,EG AC ⊥,垂足为点G ,ED 垂直平分BC ,D 为垂足,连结BE ,CE . 求证:BEF CEG △≌△.26.如图,在ABC 中,45B ︒∠=,60C ︒∠=,点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF 折叠得到PEF .(1)如图1,当点P 落在BC 上时,求AEP ∠的度数.(2)如图2,当PF AC ⊥时,求BEP ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】∆的周长= AB+AC,据此可解.由题意可知BD=CD,因此ACD【详解】解:∵DE垂直平分BC,∴BD=CD,∆的周长=AD+CD+AC∴ACD= AD+BD+AC= AB+AC=10+8=18(cm),故选:B.【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD.2.B解析:B【分析】分∠A是顶角和底角两种情况分类讨论求得∠B的度数,即可得到答案.【详解】当∠A是顶角时,则∠B=(180°-∠A)÷2=(180°-80°)÷2=50°,当∠B是顶角时,则∠A是底角,∴∠B=180°-80°-80°=20°,当∠C是顶角时,则∠A和∠B都是底角,∴∠B=∠A=80°,综上所述:∠B的度数为:50°或20°或80°.观察各选项可知∠B不可能是60°.故选B.【点睛】本题主要考查等腰三角形的性质,掌握分类讨论思想方法,是解题的关键.3.A解析:A【分析】由等腰三角形有一边长为5,一边长为2,可分两种情况:①5为腰长,2为底边长;②2为腰长,5为底边长,依次分析即可求得答案.【详解】解:①若5为腰长,2为底边长,∵5,5,2能组成三角形,此时周长为:5+5+2=12;②若2为腰长,5为底边长,∵2+2=4<5,不能组成三角形,故舍去;∴三角形周长为12.【点睛】此题考查等腰三角形的性质与三角形的三边关系,解题的关键是注意分类讨论.4.B解析:B【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG=∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【详解】∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.5.B解析:B由已知可以写出∠B和∠C,再根据三角形内角和定理可以得解.【详解】解:由已知可得:∠B=∠C=k∠A=(36k)°,由三角形内角和定理可得:2×36k+36=180,∴k=2,故选B.【点睛】本题考查等腰三角形的应用,熟练掌握等腰三角形的性质、三角形内角和定理及方程思想的应用是解题关键.6.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.7.D解析:D【分析】先根据三角形内角和计算出∠BAC=60°,再利用基本作图对①进行判断;利用∠BAD=∠CAD=30°得到∠ADC=60°,则可对②进行判断;利用∠B=∠BAD得到DA=DB,根据线段垂直平分线的性质定理的逆定理可对③进行判断.利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:∵∠C=90°,∠B=30°,∴∠BAC=60°,由作法得AD平分∠BAC,所以①正确;∴∠BAD=∠CAD=30°,∴∠ADC=90°﹣∠CAD=60°,所以②正确;∵∠B=∠BAD,∴DA=DB,∴点D在AB的垂直平分线上,所以③正确;∵如图,在直角△ACD中,∠CAD=30°,∴CD =12AD , ∴BC =CD+BD =12AD+AD =32AD ,S △DAC =12AC•CD =14AC•AD . ∴S △ABC =12AC•BC =12AC•32AD =34AC•AD , ∴S △DAC :S △ABC =14AC•AD :34AC•AD =1:3, ∴S △DAC :S △ABD =1:2.即S △ABD =2S △ACD ,故④正确.故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时需要熟悉等腰三角形的判定与性质.8.C解析:C【分析】根据角平分线的定义得到ABD CBD ∠=∠,根据线段垂直平分线的性质得到DB=DC ,进而得到DBC C ∠=∠,根据三角形内角和定理列式计算即可.【详解】∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∵DE BC ⊥,E 是BC 中点,∴DB=DC ,∴DBC C ∠=∠,∴ABD CBD C ∠=∠=∠,∴18087ABD CBD C ∠+∠+∠=︒-︒,解得:31C ∠=︒,故选:C .【点睛】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.A解析:A【分析】由平角的性质可得∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,可得∠1+∠2+∠3+∠4+∠5+∠6=540°−180°,将∠1+∠2=100°代入可求解.【详解】∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°−180°=360°,∵∠4+∠5+∠6=180°,∴∠1+∠2+∠3=360°-180°=180°,∴∠3=180°−(∠1+∠2)=80°,故选:A.【点睛】本题考查了等边三角形的性质,平角的性质,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.10.B解析:B【分析】根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B.【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.11.D解析:D【分析】①由等腰直角三角形的性质可得出结论;②证明△ADE≌△BCE,可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④AE≠DE,故④不正确;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.【详解】解:①∵AD为△ABC的高线,∴∠CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE ,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE ,故①正确②在△DAE 和△CBE 中,AE BE DAE CBE AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BCE (SAS );∴∠EDA=∠ECB ,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE ⊥DE ;故②正确;③∵∠BDE=∠ADB+∠ADE ,∠AFE=∠ADC+∠ECD ,∴∠BDE=∠AFE ,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BED (AAS ),∴BD=AF ;故③正确;④∵AE≠DE ,∴△ADE 不是等腰三角形,⑤∵AD=BC ,BD=AF ,∴CD=DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE ⊥CE ,∴EF=CE ,∴S △AEF =S △ACE ,∵△AEF ≌△BED ,∴S △AEF =S △BED ,∴S △BDE =S △ACE .故⑤正确;故选:D.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.12.D解析:D【分析】①根据角平分线的定义与三角形外角的性质可证此结论;②利用等腰三角形“三线合一”可证明此结论;③根据角平分线定义与平行线性质可得∠APG=∠BAP,再利用等腰三角形的判定可证此结论;④如下图,由角平分线的性质定理可得PM=PN,PM=PO,则PN =PO,即可证明结论.【详解】解:∵AP平分∠BAC,PB平分∠CBE,∴∠CAB=2∠PAB,∠CBE=2∠PBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠PAB+∠APB,即∠CBE=∠CAB+2∠APB,∴∠ACB=2∠APB.故①正确;∵BE=BC,BP平分∠CBE,∴BP垂直平分CE(三线合一).故②正确;∵AP平分∠BAC,∴∠CAP=∠BAP,∵PG∥AD,∴∠APG=∠CAP,∴∠APG=∠BAP,∴PG=AG.故③正确;如图,过点P作PM⊥AE于点M,PN⊥AD于点N,PO⊥BC于点O,∵AP平分∠BAC,PB平分∠CBE,∴PM=PN,PM=PO,∴PN =PO,∴CP平分∠DCB.故④正确.故选:D.【点睛】本题考查了角平分线的判定与性质、平行线的性质、等腰三角形的性质与判定,熟练掌握相关知识并能灵活运用所学知识进行论证是解题的关键.二、填空题13.【分析】按程序先作y轴对称求出点坐标横坐标-2纵坐标-1完成一次图形变换求出P变换后的坐标找出几次变换后规律奇次变换点的横坐标x=0偶次变换点的横坐标x=-2纵坐标变一次下移一个单位【详解】解:完成--解析:(2,2017)【分析】按程序先作y轴对称,求出点坐标,横坐标-2,纵坐标-1,完成一次图形变换求出P变换后的坐标,找出几次变换后规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.【详解】-关于y轴的对称点(2,3),横坐标2-2=0,纵坐标3-解:完成1次图形变换,点P (2,3)1=2,P1(0,2),完成2次图形变换,点P1(0,2)关于y轴的对称点(0,2),横坐标0-2=-2,纵坐标2-1=1,P2(-2,1),完成3次图形变换,点P2(-2,1)关于y轴的对称点(2,1),横坐标3-3=0,纵坐标1-1=0,P3(0,0),完成4次图形变换,点P3(0,0)关于y轴的对称点(0,0),横坐标0-2=-2,纵坐标0-1=-1,P4(-2,-1),……,完成2020次图形变换,点P2019(0,3-2019)关于y轴的对称点(0,-2016),横坐标0-2=-2,纵坐标-2016-1=-2017,P2020(-2,-2017).故答案为:(-2,-2017).【点睛】本题考查图形规律探索问题,掌握图形程序变换的轴对称性质和平移特征,关键是找到变换规律奇次变换点的横坐标x=0,偶次变换点的横坐标x=-2,纵坐标变一次下移一个单位.14.70【分析】根据全等三角形的性质可得对应角和对应边相等再根据等腰三角形的性质即可解答【详解】解:∵△ABC≌△ADE∴AB=AD∠B=∠ADE∴∠ADB=∠B∵∠BAD=70°∴∠B=∠ADB=(1解析:70【分析】根据全等三角形的性质可得对应角和对应边相等,再根据等腰三角形的性质,即可解答.【详解】解:∵△ABC ≌△ADE ,∴AB =AD ,∠B =∠ADE ,∴∠ADB =∠B ,∵∠BAD =70°,∴∠B =∠ADB =(180°-70°)÷2=55°,∴∠EDC =180°-2×55°=70°.故答案是:70.【点睛】本题考查了全等三角形的性质,等腰三角形的性质以及平角的定义,熟记性质并准确识图是解题的关键.15.30【分析】由等边三角形三线合一可知:点B 和点C 关于AD 成轴对称连接BE 交AD 于点F 此时取得最小值进而求出的度数即可【详解】∵是等边三角形是边上的中线∴AD ⊥BCAD 平分∠BAC ∴点B 和点C 关于AD解析:30【分析】由等边三角形三线合一,可知:点B 和点C 关于AD 成轴对称,连接BE 交AD 于点F ,此时,EF CF +取得最小值,进而,求出ECF ∠的度数即可.【详解】∵ABC ∆是等边三角形,AD 是BC 边上的中线,∴AD ⊥BC ,AD 平分∠BAC ,∴点B 和点C 关于AD 所在直线成轴对称,连接BE 交AD 于点F ,则BF=CF ,∴EF CF +=EF+BF=BE ,即:此时,EF CF +取得最小值,∵等边ABC ∆的边长为4,2AE =,∴E 是AC 的中点,∴BE 平分∠ABC ,∵点F 是角平分线AD 与BE 的交点,∴CF 平分∠BCA ,即:∠FCA=12∠ACB=12×60°=30°, ∴∠ECC=30°.故答案是:30.【点睛】本题主要考查等边三角形中,两线段和最小时,求角的度数,通过轴对称,把两线段和化为两点之间的一条线段的长,是解题的关键.16.【分析】过点M作MP⊥ACMQ⊥AB首先证明MP=MQ求出AC的长度运用S△ABC=S△ABM+S△ACM求出MP即可解决问题【详解】如图设点B的对应点为N由题意得:∠BAM=∠CAMAB=AN=2解析:4 3【分析】过点M作MP⊥AC,MQ⊥AB,首先证明MP=MQ,求出AC的长度,运用S△ABC=S△ABM+S△ACM,求出MP即可解决问题.【详解】如图,设点B的对应点为N,由题意得:∠BAM=∠CAM,AB=AN=2;过点M作MP⊥AC,MQ⊥AB,则MP=MQ,设MP=MQ=x,∵AN=NC,∴AC=2AN=4;∵S△ABC=S△ABM+S△ACM,∴12AB•AC=12AB•MQ+12AC•MP,∴2×4=2x+4x,解得:x=43,故答案为43.该题主要考查了翻折变换的性质、角平分线的性质、三角形的面积公式及其应用,解题的关键是作辅助线,灵活运用三角形的面积公式来解答.17.6【分析】作BH⊥AC垂足为H交AD于M′点过M′点作M′N′⊥AB垂足为N′则BM′+M′N′为所求的最小值再根据AD是∠BAC的平分线可知M′H=M′N′再由锐角三角函数的定义即可得出结论【详解解析:6【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值,再根据AD是∠BAC的平分线可知M′H=M′N′,再由锐角三角函数的定义即可得出结论.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=2∠BAC=45°,∴BH=AH∴222+=AH BH AB∴BH=6.∵BM+MN的最小值是BM′+M′N′=BM′+M′H=BH=6.故答案为6.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.18.①②④【分析】只要证明△BDF≌△CDA△BAC是等腰三角形即可判断①②正确作GM⊥BD于M只要证明GH<DG即可判断③错误证明可判断④正确【详解】解:①又又∴是等腰直角三角形在和中故①正确;②平分解析:①②④【分析】只要证明△BDF≌△CDA,△BAC是等腰三角形,即可判断①②正确,作GM⊥BD于M,∠=∠可判断④正确.只要证明GH<DG即可判断③错误,证明DGF DFG解:①CD AB ⊥,90CDA BDF ∠∴∠==︒,18090DBF DFB BDF ︒∠+∠=-∠=︒,又BE AC ⊥,90BEA ∴∠=︒,18090DBF DAC BEA ∠+∠=-∠=∴︒︒,DAC DFB ∠=∠∴,又45ABC ∠=︒,18045DCB ABC BDF ∴∠=︒-∠-∠=︒,∴BCD △是等腰直角三角形,BD CD ∴=,在ACD △和FBD 中,DAC DFB CDA BDF CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD FBD AAS ∴≅,AC BF ∴=.故①正确;②BE 平分ABC ∠,BE AC ⊥,ABE CBE ∴∠=∠,90BEA BEC ∠=∠=︒,∴在ABE △和CBE △中,ABE CBE BE BEBEA BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ASA ABE CBE ∴≅,AE CE ∴=,2AC AE CE CE ∴=+=,又AC BF =,2BF CE ∴=,故②正确;③如图所示,过G 作GM BD ⊥于点M ,H 为等腰直角BCD △斜边BC 的中点,DH BC ∴⊥,即90GHB ∠=︒,又BE 平分ABC ∠,GM BD ⊥,GM GH ∴=,又BD BH >,BDG BGH S S ∴>,又ABE CBE ≅ABE CBE S S ∴=,ABE BDG ADGE S S S ∴=-四边形,CBE BGH GHCE S S S =-四边形,ADGE GHCE S S ∴<四边形四边形,故③错误;④18090HBG BGH GHB ∠+∠=︒-∠=︒,18090DBF DFG BDF ∠+∠=︒-∠=︒,HBG DBF ∠=∠,BGH DFG ∴∠=∠,又BGH DGF ∠=∠,DGF DFG ∴∠=∠,DGF ∴为等腰三角形.∴综上,答案为①②④.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第三个问题难度比较大,添加辅助线是解题关键.19.110【分析】根据等腰三角形的性质求出∠B=70º再根据平行线的性质求出的度数【详解】解:∵AB=AC ∴∠B=∠ACB==70º∵//∴+∠B=180º∴=110º故答案为:110【点睛】本题考查了解析:110【分析】根据等腰三角形的性质,求出∠B=70º,再根据平行线的性质,求出BCD ∠的度数.【详解】解:∵AB=AC ,40A ∠=,∴∠B=∠ACB=180402︒-︒=70º, ∵CD //AB , ∴BCD ∠+∠B=180º,∴BCD ∠=110º,故答案为:110.【点睛】本题考查了等腰三角形的性质和平行线的性质,熟练运用已知条件,准确推理计算,是解决这类题的关键.20.7【分析】根据已知条件BFCF 分别平分∠ABC ∠ACB 的外角且DE ∥BC 可得∠DBF=∠DFB ∠ECF=∠EFC 根据等角对等边得出DF=BDCE=EF 根据BD-CE=DE 即可求得【详解】解:∵BFC解析:7【分析】根据已知条件,BF 、CF 分别平分∠ABC 、∠ACB 的外角,且DE ∥BC ,可得∠DBF=∠DFB ,∠ECF=∠EFC ,根据等角对等边得出DF=BD ,CE=EF ,根据BD-CE=DE 即可求得.【详解】解:∵BF 、CF 分别平分∠ABC 、∠ACB 的外角,∴∠DBF=∠CBF ,∠FCE=∠FCG ,∵DE ∥BC ,∴∠DFB=∠CBF ,∠EFC=∠FCG ,∴∠DBF=∠DFB ,∠FCE=∠EFC ,∴BD=FD ,EF=CE ,∴BD-CE=FD-EF=DE ,∴EF=DF-DE=BD-DE=8-3=5cm ,∴EC=5cm ,∴AC=AE+EC=2+5=7cm ,故答案为:7.【点睛】本题主要考查了等腰三角形的性质以及平行线的性质,利用边角关系并结合等量代换来推导证明是本题的特点.三、解答题21.(1) 3.5DE =;(2)见解析.【分析】(1)证明△ADE 为等边三角形,即可得结论;(2)在BC 上截取BH=BE ,证明两对三角形全等:△EBF ≌△HBF ,△CDF ≌△CHF ,可得结论.【详解】(1)∵AC=BC=7,∠A=60°,∴△ABC 为等边三角形,∴AC=AB=7,又∵BD 、CE 分别是∠ABC 、∠ACB 的平分线,∴D 、E 分别是AC 、AB 的中点, ∴11=3.5,=3.522==AD AC AE AB , ∴AD=AE ,∵∠A=60°,∴△ADE 为等边三角形,∴DE=AE=3.5;(2)证明:在BC 上截取BH=BE ,∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵BF=BF∴△EBF ≌△HBF (SAS ),∴∠EFB=∠HFB=60°.∵∠A=60°,∴∠ABC+∠ACB=120°,∵BD 平分∠ABC ,CE 平分∠ACB ,∴∠ABD=∠CBD ,∠ACE=∠BCE ,∴∠CBD+∠BCE=60°,∴∠BFE=60°,∴∠CFB=120°,∴∠CFH=60°,∵∠BFE=∠CFD=60°,∴∠CFH=∠CFD=60°,∵CF=CF ,∴△CDF ≌△CHF (ASA ).∴CD=CH ,∵CH+BH=BC ,∴BE+CD=BC .【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质.解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.22.(1)见解析;(2)不变,理由见解析.【分析】(1)根据AAS 证明ADE CEF ≌即可;(2)在AC 上截取CH AE =,连接FH ,根据等边△ABC 和等边△DEF 的性质证明△ADE HEF ≅∆可得FH CH =,得∠FCH HFC =∠,进一步可得∠30ECF =︒.【详解】解:(1)证明:∵△ABC 和△DEF 是等边三角形∴∠A=∠C=60°,∠DEF=60°,DE=EF∵∠DEF=60°,∴∠DEF+∠FEC=180°-60°=120°∵∠C=60°∴∠CFE+∠FEC=180°-60°=120°∴∠DEA EFC =∠在△ADE 和△CEF 中,A C DEA EFC DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE CEF ≌;(2)在AC 上截取CH AE =,连接FH ,设,AE CH x ==等边△ABC 的边长为a∵22BD AE x ==∴2AD EH a x ==-∵△ABC 是等边三角形∴∠60A =︒∴∠120ADE DEA +∠=︒∵△DEF 是等边三角形∴∠60,DEF DE EF =︒=∴∠120AED FEC +∠=︒∴∠ADE FEC =∠∴△()ADE HEF SAS ≅∆∴∠60,FHE A FH AE x =∠=︒==∴FH CH =∴∠FCH HFC =∠∵∠60FCH HFC FHE +∠=∠=︒∴260FCH ∠=︒∴∠30FCH =︒即∠30ECF =︒【点睛】本题考查的是全等三角形的判定和性质,等边三角形的性质,掌握全等三角形的判定定理和性质定理、等边三角形的性质是解题的关键.23.AC BD ⊥,见解析【分析】根据垂直平分线的判定证明即可.【详解】解:AC BD ⊥;证明:∵AB AD =,∴点A 在BD 的垂直平分线上,∵CB CD =,∴点C 在BD 的垂直平分线上,∴AC 垂直平分BD ,即AC BD ⊥.【点睛】本题考查了线段的垂直平分线的性质,根据与一条线段两个端点距离相等的点,在这条线段的垂直平分线上和两点确定一条直线证明是解题关键.24.(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,∴ED CD 4==. ∵120QDP EDC ∠=∠=︒,,QDE EDP EDP PDC ∴∠+∠=∠+∠∴QDE PDC ∠=∠.∵,60ED CD AED C =∠=∠=︒,∴QDE PDC ≌,∴EQ PC =,∴4AQ PC AQ QE AE +=+==.【点睛】本题考查的是等腰三角形的判定,等边三角形的性质与判定,三角形的全等的判定与性质,掌握以上知识是解题的关键.25.见解析【分析】利用角平分线的性质得出EF EG =,再利用线段垂直平分线的性质得出BE CE =,最后证明Rt △BEF ≌Rt △CEG 即可.【详解】证明:AE ∵平分FAC ∠,EF AF ⊥,EG AC ⊥,EF EG ∴=, DE 垂直平分BC ,BE CE ∴=,EF AF ⊥,EG AC ⊥,90BFE CGE ∴∠=∠=︒,在Rt BEF 和Rt CEG △中,BE CE EF EG =⎧⎨=⎩Rt Rt (HL)BEF CEG ∴△≌△.【点睛】本题考查了全等三角形的判定与性质, 角平分线的性质及线段垂直平分线的性质,解题的关键是灵活运用性质解决问题.26.(1)90°;(2)60°【分析】(1)证明BE=EP,可得∠EPB=∠B=45°解决问题.(2)根据折叠的性质求出∠AFE=45°,根据三角形内角和求出∠BAC,从而得到∠AEF和∠PEF,再根据平角的定义求出∠BEP.【详解】解:(1)如图1中,∵折叠,∴△AEF≌△PEF,∴AE=EP,∵点E是AB中点,即AE=EB,∴BE=EP,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°-90°=90°.(2)∵PF⊥AC,∴∠PFA=90°,∵沿EF将△AEF折叠得到△PEF.∴△AEF≌△PEF,∴∠AFE=∠PFE=45°,∵∠B=45°,∠C=60°,∴∠BAC=180°-45°-60°=75°,∴∠AEF=∠PEF=180°-75°-45°=60°,∴∠BEP=180°-60°-60°=60°.【点睛】本题考查了折叠的性质,三角形内角和,全等三角形的性质,解题的关键是根据折叠的性质得到相等的线段和角.。
一、选择题1.已知点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,那么点P 的坐标为( )A .(﹣1,2)B .(﹣2,1)C .(﹣1,﹣2)D .(﹣2,﹣1) 2.已知点Q 的坐标为()2,27a a -+-,且点Q 到两坐标轴的距离相等,则点Q 的坐标是( )A .()3,3B .()3,3-C .()1,1-D .()3,3或()1,1- 3.点(3, 2)P t t ++在直角坐标系的x 轴上,则P 点坐标为( ) A .()0,2- B .()2,0- C .()1,2 D .()1,0 4.已知点P (a ,3)、Q (﹣2,b )关于y 轴对称,则a b a b +-的值是( ) A .15- B .15 C .﹣5D .5 5.在平面直角坐标系中,点()3,4-在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4) 7.如图,动点Р在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点Р的坐标是( )A .(2019,2)B .(2019,0)C .()2019,1D .(2020,1) 8.如图,△ABC 中,AD 垂直BC 于点D ,且AD=BC ,BC 上方有一动点P 满足12PBC ABC S S ∆∆=,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90°9.在平面直角坐标系中,若点()2,3M 与点()2,N y 之间的距离是4,则y 的值是( ) A .7 B .1- C .1-或7 D .7-或1 10.在平面直角坐标系中,若m 为实数,则点()21, 2m --在( )A .第一象限B .第二象限C .第三象限D .第四象限 11.我们规定:在平面直角坐标系xOy 中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212, d M N x x y y =-+-,例如图①中,点()2,3M -与点()1,1N -之间的折线距离为()(),2131347d M N =----++==.如图②,已知点() 3,4P -若点Q 的坐标为(),2t ,且(),10d P Q =,则t 的值为( )A .1-B .5C .5或13-D .1-或7 12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(1,1),第二次接着运动到点(2,0),第三次接着运动到点(3,2),…,按这样的运动规律经过第2020次运动后,动点P 的坐标是( )A .(2020,1)B .(2020,0)C .(2020,2)D .(2020,2020)二、填空题13.如图,在平面直角坐标系中,以A (2,0),B (0,1)为顶点作等腰直角三角形ABC (其中∠ABC =90°,且点C 落在第一象限),则点C 关于y 轴的对称点C'的坐标为______.14.已知点()2 6,2P m m -+.(1)若点P 在y 轴上,P 点的坐标为______.(2)若点P 的纵坐标比横坐标大6,则点P 在第______象限.(3)若点P 在过点()2,3A 且与x 轴平行的直线上,则点P 的坐标为______. (4)点P 到x 轴、y 轴的距离相等,则点P 的坐标为______.15.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.16.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.17.若点P 1(a+3,4)和P 2(-2,b -1)关于x 轴对称,则a+b=___.18.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1,A 第二次移动到点2A ….第n 次移动到点,n A 则点2020A 的坐标是____________________.19.已知点P 的坐标(),x y 满足方程组0328x y x y -=⎧⎨+=⎩,则点P 在第_____象限. 20.点A 的坐标为()5,3-,点A 关于x 轴的对称点为点B ,则点B 的坐标是______.三、解答题21.如图,方格纸中小正方形的边长均为1个单位长度,A 、B 均为格点.(1)在图中建立直角坐标系,使点A 、B 的坐标分别为(3,3)和(﹣1,0);(2)在(1)中x 轴上是否存在点C ,使△ABC 为等腰三角形(其中AB 为腰)?若存在,请直接写出所有满足条件的点C 的坐标.22.如图,在平面直角坐标系中有三点(1,5)A -,(2,1)B -,(4,3)C -.(1)在图中作出ABC 关于y 轴的对称图形111A B C △;(2)写出点1A ,1B ,1C 的坐标;(3)求111A B C △的面积.23.在平面直角坐标系中,()0,A a ,()5,B b ,且a ,b 满足130a b ++=,将线段AB 平移至CD ,其中A ,B 的对应点分别为C ,D .(1)a =______,b =______;(2)若点C 的坐标为()2,4-,如图1,连接OC ,求三角形COD 的面积; (3)设点E 是射线OD (E 不与点D 重合)上一点,①如图2,若点E 在线段OD 上,25DCE ∠=︒,70EAB ∠=︒,求AEC ∠的度数并说明理由;②如图3,点E 在射线OD 上,试探究DCE ∠与EAB ∠和AEC ∠的关系并直接写结论.24.如图,在平面直角坐标系中,O为坐标原点,A、B两点的坐标分别为A(m,0)、B (0,n),且|m﹣n﹣3|+(2n﹣6)2=0,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(1)OA=________,OB=_________.(2)连接PB,若△POB的面积为3,求t的值;(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样点P,使△EOP≌△AOB,若存在,请直接写出t的值;若不存在,请说明理由.25.如图,在网格中按要求完成作图:(1)作出ABC (三角形的顶点都在格点上)关于x 轴对称的图形;(2)写出A 、B 、C 的对应点A '、B '、C '的坐标;(3)在x 轴上画出点Q ,并写出点Q 的坐标,使QAC 的周长最小.26.如图,在平面直角坐标系中,ABC 的三个顶点分别为()2,3A ,()3,1B ,()2,2C --.(1)请在图中作出ABC 关于y 轴的轴对称图形A B C '''(A ,B ,C 的对称点分别是A ',B ',C '),并直接写出A ',B ',C '的坐标.(2)求A B C '''的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据第三象限点的横坐标与纵坐标都是负数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答即可.【详解】解:∵点P 在第三象限内,点P 到x 轴的距离是2,到y 轴的距离是1,∴点P 的横坐标为﹣1,纵坐标为﹣2,∴点P 的坐标为(﹣1,﹣2).故选:C .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键,也是最容易出错的地方.2.D解析:D【分析】根据点Q 到两坐标轴的距离相等列出方程,然后求解得到a 的值,再求解即可.【详解】解:∵点Q 到两坐标轴的距离相等,∴|-2+a|=|2a-7|,∴-2+a =2a-7或-2+a =-2a+7,解得a=5或a=3,当a=5时,-2+a =-2+5=3, 2a-7=2×5-7=3;当a=3时,-2+a =-2+3=1, 2a-7=2×3-7=-1;所以,点Q 的坐标为()3,3或()1,1-.故选D .【点睛】本题考查了点坐标,掌握坐标到坐标轴的距离的表示方法,以及掌握各象限内点的坐标特征是解题的关键.3.D解析:D【分析】x 轴上点的纵坐标是0,由此列得t+2=0,求出t 代回即可得到点P 的坐标.【详解】∵点(3, 2)P t t ++在直角坐标系的x 轴上,∴t+2=0,解得t=-2,∴点P 的坐标为(1,0),故选:D .【点睛】此题考查坐标轴上点的坐标特点:x 轴上点的纵坐标是0,y 轴上点的横坐标是0. 4.C解析:C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称,∴2a =,3b =, 则23523a b a b ++==---. 故选:C .【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y 轴对称的点,纵坐标相同,横坐标互为相反数. 5.B解析:B【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵点()3,4-,∴点()3,4-在第二象限,故选:B.【点睛】此题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).6.B解析:B【分析】根据题目已知条件先表示出6个坐标,观察其中的规律即可得出结果.【详解】解:由题可得:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),A 6(0,4)…, 所以是四个坐标一次循环,2020÷4=505,所以是一个循环的最后一个坐标,故A 2020(0,-2),故选:B【点睛】本题主要考查的是找规律,根据题目给的已知条件找出规律是解题的关键.7.A解析:A【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.解:解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第三个,即为2,∴经过第2019次运动后,动点P的坐标是:(2019,2),故选:A.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.8.B解析:B【分析】根据12PBC ABCS S∆∆=得出点P到BC的距离等于AD的一半,即点P在过AD的中点且平行于BC的直线l上,则此问题转化成在直线l上求作一点P,使得点P到B、C两点距离之和最小,作出点C关于直线l的对称点C’,连接BC’,然后根据条件证明△BCC’是等腰直角三角形即可得出∠PBC的度数.【详解】解:∵12PBC ABCS S∆∆=,∴点P到BC的距离=12AD,∴点P在过AD的中点E且平行于BC的直线l上,作C点关于直线l的对称点C’,连接BC’,交直线l于点P,则点P即为到B、C两点距离之和最小的点,∵AD⊥BC,E为AD的中点,l∥BC,点C和点C’关于直线l对称,∴CC’=AD=BC,CC’⊥BC,∴三角形BCC’是等腰直角三角形,∴∠PBC=45°.故选B.本题主要考查了轴对称变换—最短距离问题,根据三角形的面积关系得出点P 在过AD 的中点E 且平行于BC 的直线l 上是解决此题的关键.9.C解析:C【分析】根据点M (2,3)与点N (2,y )之间的距离是4,可得|y−3|=4,从而可以求得y 的值.【详解】∵点M (2,3)与点N (2,y )之间的距离是4,∴|y−3|=4,∴y−3=4或y−3=−4,解得y =7或y =−1.故选:C .【点睛】本题考查两点之间的距离,解题的关键是明确两个点如果横坐标相同,那么它们之间的距离就是纵坐标之差的绝对值.10.B解析:B【分析】根据平方数非负数判断出纵坐标为负数,再根据各象限内点的坐标的特点解答.【详解】∵m 2≥0,∴−m 2−1<0,∴点P (−m 2−1,2)在第二象限.故选:B .【点睛】本题考查了点的坐标,判断出纵坐标是负数是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−)需熟练掌握.11.D解析:D【分析】根据折线距离的定义可得关于t 的绝对值方程,解方程即可求出t 的值,进而可得答案.【详解】解:∵()3,4P -,点Q 的坐标为(),2t ,(),10d P Q =, ∴34210t -+--=,解得:1t =-或7t =.故选:D .【点睛】本题考查了坐标与图形,正确理解折线距离、掌握绝对值方程的解法是解题的关键. 12.B解析:B【分析】分析图象发现点P 的运动每4次位置循环一次,每循环一次向右移动4个单位,根据这个规律先确定2020次运动是多少个循环,然后根据循环次数确定点P 的位置.【详解】分析图象可以发现,点P 的运动每4次位置循环一次,每循环一次向右移动4个单位. ∴2020=505⨯4,当第505次循环结束时,点P 的位置在(2020,0),故答案为:B.【点睛】本题主要考查了平面直角坐标系中点的运动规律问题,分析图象得出规律是解题的关键.二、填空题13.【分析】过点C 向y 轴引垂线CD 利用△OAB ≌△DBC 确定DCDO 的长度即可确定点C 的坐标对称坐标自然确定【详解】如图过点C 作CD ⊥y 轴垂足为D ∵∠ABC=90°∴∠DBC+∠OBA=90°∵∠OAB解析:()1,3-【分析】过点C 向y 轴,引垂线CD ,利用△OAB ≌△DBC ,确定DC ,DO 的长度,即可确定点C 的坐标,对称坐标自然确定.【详解】如图,过点C 作CD ⊥y 轴,垂足为D ,∵∠ABC=90°,∴∠DBC+∠OBA=90°,∵∠OAB+∠OBA=90°,∴∠DBC=∠OAB ,∵AB=BC ,∠BDC=∠AOB=90°∴△OAB ≌△DBC ,∴DC=OB ,DB=OA ,∵A (2,0),B (0,1)∴DC=OB=1,DB=OA=2,∴OD=3,∴点C (1,3),∴点C 关于y 轴的对称点坐标为(-1,3),故答案为:(-1,3).【点睛】本题考查了点的坐标及其对称点坐标的确定,熟练分解点的坐标,利用三角形全等,把坐标转化为线段的长度计算是解题的关键.14.(1);(2)二;(3);(4)或【分析】(1)y 轴上点的坐标特点是横坐标为0据此求解可得;(2)由题意可列出等式2m-6+6=m+2求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等根据这个解析:(1)()0,5;(2)二;(3)()4,3-;(4)()10,10或1010,33⎛⎫-⎪⎝⎭ 【分析】(1)y 轴上点的坐标特点是横坐标为0,据此求解可得;(2)由题意可列出等式2m-6+6=m+2,求解即可;(3)与x 轴平行的直线上点的特点是纵坐标都相等,根据这个性质即可求解. (4)点P 到x 轴、y 轴的距离相等,所以点P 的横坐标与纵坐标相等或互为相反数,据此可解.【详解】解:(1)∵点P 在y 轴上,∴2m-6=0,解得m=3,∴P 点的坐标为(0,5);故答案为(0,5);(2)根据题意得2m-6+6=m+2,解得m=2,∴P 点的坐标为(-2,4),∴点P 在第二象限;故答案为:二;(3)∵点P 在过A (2,3)点且与x 轴平行的直线上,∴点P 的纵坐标为3,∴m+2=3,∴m=1,∴点P 的坐标为(-4,3).故答案为:(-4,3);(4)∵点P 到x 轴、y 轴的距离相等,∴2m-6=m+2或2m-6+ m+2=0,∴m=8或m=43, ∴点P 的坐标为()10,10或1010,33⎛⎫-⎪⎝⎭. 故答案为:()10,10或1010,33⎛⎫-⎪⎝⎭. 【点睛】 本题考查平面直角坐标系中点的特点;熟练掌握平面直角坐标系中坐标轴上点的特点,与坐标轴平行的直线上点的特点是解题的关键.15.1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数纵坐标相等进而得出答案【详解】解:∵点A (1+m1-n )与点B (-32)关于y 轴对称∴1+m=31-n=2∴m=2n=-1∴(m +n )202解析:1【分析】直接利用关于y 轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m +n )2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y 轴对称点的性质,正确掌握点的坐标特点是解题关键.16.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.17.-8【分析】根据关于x 轴对称的点的横坐标相等纵坐标互为相反数关于y 轴对称的点的纵坐标相等横坐标互为相反数得出ab 的值即可得答案【详解】解:由题意得a+3=-2b-1=-4解得a=-5b=-3所以a+解析:-8【分析】根据关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数,得出a 、b 的值即可得答案.【详解】解:由题意,得a+3=-2,b-1=-4.解得a=-5,b=-3,所以a+b=(-5)+(-3)=-8故答案为:-8.【点睛】本题考查关于x 轴对称的点的坐标,熟记对称特征:关于x 轴对称的点的横坐标相等,纵坐标互为相反数,关于y 轴对称的点的纵坐标相等,横坐标互为相反数是解题关键. 18.【分析】根据都在x 轴上得出也在x 轴上再根据的坐标规律即可得出答案【详解】由图可知都在x 轴上小蚂蚁每次移动一个单位=(20)=(40)=(60)=(2n0)2020÷4=505所以=(50220)=(解析:()1010,0【分析】根据4A 、8A 、12A 都在x 轴上,得出4n A 也在x 轴上,再根据4A 、8A 、12A 的坐标规律,即可得出答案. 【详解】由图可知,4A 、8A 、12A 都在x 轴上,小蚂蚁每次移动一个单位,4A =(2,0),8A =(4,0),12A =(6,0),4n A = (2n ,0) 2020÷4=505,所以2020A =(502⨯2,0)= (1010,0),故本题答案为(1010,0).【点睛】 本题主要考查的是平面直角坐标系中确定点的坐标和点的坐标的规律性,对点的变化规律的考查.19.一【分析】求出方程组的解进而确定出P 坐标判断即可【详解】解:解方程组得:则点P ()在第一象限故答案为:一【点睛】本题考查了二元一次方程组的解及平面直角坐标系点的特征熟练掌握方程组的解法平面直角坐标系 解析:一【分析】求出方程组的解,进而确定出P 坐标,判断即可.【详解】解:解方程组0328x y x y -=⎧⎨+=⎩得:8585x y ⎧=⎪⎪⎨⎪=⎪⎩则点P (85,85)在第一象限. 故答案为:一.【点睛】 本题考查了二元一次方程组的解及平面直角坐标系点的特征,熟练掌握方程组的解法、平面直角坐标系点的特征是解答本题的关键.20.【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点的坐标为∴关于轴的对称点为点;故答案是【点睛】本题主要考查了关于x 轴对称点的坐标准确计算是解题的关键解析:()5,3【分析】根据关于x 轴对称横坐标不变纵坐标互为相反数即可得解;【详解】∵点A 的坐标为()5,3-,∴关于x 轴的对称点为点B ()5,3;故答案是()5,3.【点睛】本题主要考查了关于x 轴对称点的坐标,准确计算是解题的关键.三、解答题21.(1)答案见解析;(2)存在,点C 的坐标(-6,0)或(4,0)或(7,0).【分析】(1)根据点B (-1,0),判断x 轴经过点B ,且B 右侧的点就是原点,建立坐标系即可; (2)分情形求解即可.【详解】(1)∵点B (-1,0),∴x 轴经过点B ,且B 右侧的点就是原点,建立坐标系如图1所示;(2)存在,点C 的坐标(-6,0)或(4,0)或(7,0).理由如下:∵A (3,3),B (-1,0),∴22(3(1))(30)--+-,当AB 为等腰三角形的腰时,(1)以B 为圆心,以BA=5为半径画弧,角x 轴于两点,原点左边的1C ,右边为2C , ∵AB=5,点B (-1,0),∴1C (-6,0),2C (4,0);(2)以A 为圆心,以AB=5为半径画弧,角x 轴于一点,原点的右边为3C ,∵AB=5,点A 到x 轴的距离为3,(-1,0),∴等腰三角形AB 3C 的底边长为2253-,∴3C (7,0);综上所述,存在,点C 的坐标(-6,0)或(4,0)或(7,0).【点睛】本题考查了平面直角坐标系的建立,等腰三角形的判定,勾股定理,熟练掌握坐标系的特点,等腰三角形的判定,科学分类求解是解题的关键.22.(1)见解析;(2)1(1,5)A ,1(2,1)B ,1(4,3)C ;(3)1115A B C S =【分析】(1)做出A ,B ,C 关于y 轴的对称点连接即可;(2)根据(1)写出即可; (3)构造长方形,用长方形的面积减去三个边角三角形的面积即可得解;【详解】(1)(1,5)A -,(2,1)B -,(4,3)C -关于y 轴对称的点为1(1,5)A ,1(2,1)B ,1(4,3)C ,如图所示;(2)由(1)可知1(1,5)A ,1(2,1)B ,1(4,3)C ;(3)111111=34232214123225222△S ⨯-⨯⨯-⨯⨯-⨯⨯=---=A B C ; 【点睛】本题主要考查了作图-轴对称变换,准确分析计算是解题的关键.23.(1)﹣1,﹣3;(2)8;(3)①∠AEC=95°,理由见解析;②当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【分析】(1)根据非负数的性质解答即可;(2)先根据平移的性质求出点D 的坐标,然后过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,如图1,再根据S △COD =S 梯形CMND -S △COM -S △DON 代入数据计算即可;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG ,然后根据平行线的性质可得∠DCE=∠CEG ,∠BAE=∠GEA ,再根据角的和差即可求出结果; ②分两种情况:当点E 在线段OD 上时,如图2,此时由①的推导可直接得出结论;当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,根据平行线的性质和三角形的外角性质解答即可.【详解】解:(1)∵130a b ++=,∴a+1=0,b+3=0,解得:a=﹣1,b=﹣3,故答案为:﹣1,﹣3;(2)∵a=﹣1,b=﹣3,∴A (0,﹣1),B (5,﹣3),∵将线段AB 平移至CD ,A ,B 的对应点分别为C (﹣2,4),D ,∴点D (3,2)如图1,过点C 、D 作CM ⊥x 轴于M ,DN ⊥x 轴于N ,则CM=4,DN=2,MN=2+3=5,∴S △COD =S 梯形CMND -S △COM -S △DON =()11124524328222⨯+⨯-⨯⨯-⨯⨯=;(3)①根据平移的性质可得AB ∥CD ,过点E 作EG ∥AB ,如图2,则AB ∥CD ∥EG , ∴∠DCE=∠CEG ,∠BAE=∠GEA ,∵25DCE ∠=︒,70EAB ∠=︒,∴∠AEC=∠CEG+∠AEG=∠DCE+∠BAE=25°+70°=95°;②当点E 在线段OD 上时,如图2,此时由①的结论可得:DCE ∠+EAB ∠=AEC ∠; 当点E 在OD 的延长线DH 上时,如图3,设CD 的延长线DQ 交AE 于点P ,∵AB ∥CD ,∴∠EPQ=∠EAB ,∵∠EPQ=∠DCE+∠AEC ,∴∠BAE=∠DCE+∠AEC ;综上,当点E 在线段OD 上时,DCE ∠+EAB ∠=AEC ∠;当点E 在OD 的延长线上时,∠BAE=∠DCE+∠AEC .【点睛】本题考查了非负数的性质、平移的性质、坐标系中三角形面积的计算、平行线的性质、平行公理的推论以及三角形的外角性质等知识,涉及的知识点多,但难度不大,熟练掌握上述知识是解题的关键.24.(1)6,3;(2)t =4或8;(3)当t =3或9时,△POQ 与△AOB 全等【分析】(1)根据非负数的性质列出方程,解方程分别求出m 、n ;(2)分点P 在线段AO 上、点P 在线段AO 的延长线上两种情况,根据三角形面积公式计算;(3)分点P 在线段AO 上、点P 在线段AO 的延长线上两种情况,根据全等三角形的性质列出方程,解方程得到答案.【详解】解:(1)∵|m ﹣n ﹣3|+(2n ﹣6)2=0,|m ﹣n ﹣3|≥0,(2n ﹣6)2≥0,∴|m ﹣n ﹣3|=0,(2n ﹣6)2=0,∴m ﹣n ﹣3=0,2n ﹣6=0,解得,m =6,n =3,∴OA =6,OB =3,故答案为:6;3;(2)当点P 在线段AO 上时,OP =6﹣t , 则12×(6﹣t )×3=3, 解得,t =4,当点P 在线段AO 的延长线上时,OP =t ﹣6, 则12×(t ﹣6)×3=3,解得,t =8,∴当t =4或8时,△POB 的面积等于3;(3)如图1,当点P 在线段AO 上时,∵△POE ≌△BOA ,∴OP =OB ,即6﹣t =3,解得,t =3,如图2,当点P 在线段AO 的延长线上时,∵△POE ≌△BOA ,∴OP =OB ,即t ﹣6=3,解得,t =9,∴当t =3或9时,△POQ 与△AOB 全等.【点睛】本题主要考查了坐标与图形的性质、绝对值的非负性,准确计算是解题的关键. 25.(1)见解析;(2)()4,1A '--,()3,3B '--,()1,2C '--;(3)见解析,()3,0-【分析】(1)(2)利用关于x 轴对称的点的坐标特征写出A′、B′、C′的坐标,然后描点即可; (3)连接CA′交x 轴于Q ,利用两点之间线段最短可判断此时△QAC 的周长最小.【详解】解:(1)如图A B C '''即为所求;(2)由图可得,()4,1A '--、()3,3B '--、()1,2C '--;(3)连接A C ',与x 轴交于点Q ,根据两点之间线段最短,此时QAC 周长最小即为AC 的长,Q 点坐标为()3,0-.【点睛】本题考查了作图-轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.26.(1)答案见解析;()2,3A '-,()3,1B '-,()2,2C '-;(2) 6.5A B C S '''=△.【分析】(1)分别作出点A ,B ,C 的对称点A ′,B ′,C ′,顺次连接,然后再根据各点在坐标系中的位置写出坐标即可得;(2)利用割补法求解可得.【详解】(1)如图所示.()2,3A '-,()3,1B '-,()2,2C '-(2)如图,正方形ADEC´的面积为:5×5=25△A´DE 的面积为:11212⨯⨯= △A´AC´的面积为:145102⨯⨯= △BEC´的面积为:1537.52⨯⨯=251107.5 6.5A B C S '''=---=△【点睛】本题主要考查轴对称变换的作图以及用割补法求三角形面积,熟练掌握轴对称变换的性质是解题的关键.。
八年级数学上册《第三章分式》单元测试卷及答案一、选择题(每小题3分,共36分)1.一组数据:1,2,4,2,2,5,这组数据的众数是( )A.1B.2C.4D.52.某校九年级进行了3次数学模拟考试,甲、乙、丙三名同学的平均分以及方差s2如下表所示,那么这三名同学数学成绩最稳定的是( )甲乙丙x91 91 91s2 6 24 54A.甲B.乙C.丙D.无法确定3.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,则成绩更稳定的是( )A.甲B.乙C.都一样D.不能确定4.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为30,40,34,36,则这组数据的中位数是( )A.34B.35C.36D.405.八年级二班在一次体重测量中,小明体重54.5 kg,低于全班半数学生的体重,分析得到结论所用的统计量是( )A.中位数B.众数C.平均数D.方差6.小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是( )A.中位数是36.5 ℃B.众数是36.2 ℃C.平均数是36.2 ℃D.极差是0.3 ℃7.某校为推荐一项作品参加“科技创新”比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如下表:项目甲乙丙丁作品创新性90 95 90 90实用性90 90 95 85如果按照创新性占60%,实用性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是( )A.甲B.乙C.丙D.丁8.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表如下:一分钟跳绳个数(个) 141 144 145 146学生人数(名) 5 2 1 2则关于这组数据的结论正确的是( )A.平均数是144B.众数是141C.中位数是144.5D.方差是5.49.一组数据4,4,x,8,8有唯一的众数,则这组数据的平均数是( )A. B.或5 C.或 D.510.两组数据:3、a、b、5与a、4、2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为( )A.2B.3C.4D.511.为迎接中国共产党建党一百周年,某班50名同学进行了党史知识竞赛,竞赛成绩统计如下表,其中有两个数据被遮盖.成绩/分91 92 93 94 95 96 97 98 99 100人数■■ 1 2 3 5 6 8 10 12下列关于成绩的统计量中,与被遮盖的数据无关的是( )A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数12.垃圾分类是对垃圾进行有效处置的一种科学管理方式,是对垃圾收集处置传统方式的改革,山东省2022年3月1日正式实施强制垃圾分类制度.甲、乙两班各有40名同学参加了学校组织的“生活垃圾分类回收”考试,考试规定成绩大于等于96分为优异.两个班成绩的平均数、中位数和方差如下表所示,则下列各选项正确的是( )参加人数平均数中位数方差甲班40 95 93 5.1乙班40 95 95 4.6A.甲班的成绩比乙班的成绩稳定B.甲班成绩优异的人数比乙班多C.甲、乙两班成绩的众数相同D.小明得94分将排在甲班的前20名二、填空题(每小题3分,共15分)13.为了落实教育部提出的“双减政策”,历下区各学校积极研发个性化、可选择的数学作业.一天,小明对他学习小组其他三位同学完成数学作业的时间进行了调查,得到的结果分别为18分钟,20分钟,25分钟.然后他告诉大家说,我们四个人完成数学作业的平均时间是21分钟.则小明同学完成数学作业的时间是分钟.×[(x1-15)2+(x2-15)2+……+(x20-15)2]中,若m,n分别表示这组数据的个数和平均数, 14.在方差计算公式s2=120则m-n的值为.15.从-1,1,2中任取两个不同的数作积,则所得积的中位数是.216.(2022独家原创)在学校数学竞赛中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,有如下说法:①众数是90;②中位数是85;③平均数是89;④极差是15,其中正确的是(填写序号).17.九(1)班准备从甲、乙两名男生中选派一名参加学校组织的一分钟引体向上比赛,在相同的条件下,分别对两名男生进行了五次一分钟引体向上测试.测试结果如下表所示:甲11 12 13 14 15乙12 12 13 14 14若九(1)班选一位成绩稳定的选手参赛,应该选择同学.(填“甲”或“乙”)三、解答题(共49分)18.(8分)某校为提高学生的安全意识,开展了安全知识竞赛,这次竞赛成绩满分为10分.现从该校七年级中随机抽取10名学生的竞赛成绩,这10名学生的竞赛成绩是10,9,9,8,10,8,10,9,7,10.(1)求这10名学生竞赛成绩的中位数和平均数;(2)该校七年级共400名学生参加了此次竞赛活动,根据上述10名学生竞赛成绩情况估计七年级参加此次竞赛活动成绩为满分的学生人数.19.(8分)某校开展了以“庆祝中国共产党成立100周年”为主题的演讲比赛,其中八(1)班要从甲、乙两名参赛选手中择优推荐一人参加校级决赛,他们预赛阶段的各项得分如下表:选手项目演讲内容演讲技巧仪表形象甲95 90 85乙88 92 93(1)如果根据三项成绩的平均分确定推荐人选,请通过计算说明甲、乙两人谁会被推荐;(2)如果根据演讲内容、演讲技巧、仪表形象按5∶4∶1的比例确定成绩,请通过计算说明甲、乙两人谁会被推荐,并对另外一位同学提出合理的建议.20.(10分)垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分.已知运动员甲测试成绩的中位数和众数都是7.运动员甲测试成绩统计表测试序号 1 2 3 4 5 6 7 8 9 10成绩(分) 7 6 8 7 a 6 8 6 8 b(1)填空:a= ,b= ;(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?21.(10分)受疫情影响,某地无法按原计划正常开学,在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中选出一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分(单位:分):班级课程设置课程质量在线答疑作业情况学生满意度甲班10 10 6 10 7乙班10 8 8 9 8丙班9 10 8 7 9根据统计表中的信息解答下列问题:(1)①请确定下表中的a、b、c的值;班级平均分众数中位数甲班8.6 10 a乙班8.6 b 8丙班 c 9 9②求甲、乙、丙三个班在线教学活动中“学生满意度”的考评得分的极差;(2)如果学校把“课程设置”“课程质量”“在线答疑”“作业情况”“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应选哪个班作为在线教学先进班级.22.(13分)“惜餐为荣,殄物为耻”.为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2),下面给出了部分信息;七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1 a 0.26 40%八年级 1.3 b 1.0 0.23 m%八年级抽取的班级餐厨垃圾质量统计图根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).参考答案及解析一、选择题1.B这组数据中,2出现的次数最多,所以众数是2.2.A∵=6,=24,=54,∴<<.同时平均数相等,∴这三名同学数学成绩最稳定的是甲.3.A观察统计图可知,甲选手的成绩波动较小,较稳定,故选A.4.B把已知数据按照由小到大的顺序重新排列,为30,34,36,40,∴中位数为=35.5.A八年级二班所有人的体重按从大到小的顺序排列后,最中间一个数或最中间两个数的平均数是这组体重数的中位数,半数学生的体重位于中位数以上,小明低于全班半数学生的体重,故所用的统计量是中位数.6.B把小红连续5天的体温从小到大排列,得36.2,36.2,36.3,36.5,36.6,处在中间位置的一个数是36.3,因此中位数是36.3 ℃;出现次数最多的是36.2,因此众数是36.2 ℃;平均数为x=(36.2+36.2+36.3+36.5+36.6)÷5=36.36(℃);极差为36.6-36.2=0.4(℃).7.B甲的总成绩=90×60%+90×40%=90(分),乙的总成绩=95×60%+90×40%=93(分),丙的总成绩=90×60%+95×40%=92(分),丁的总成绩=90×60%+85×40%=88(分),∵93>92>90>88,∴乙的总成绩最高,∴应推荐的作品是乙.8.B根据加权平均数的计算方法,这组数据的平均数x==143,选项A结论错误;141出现的次数最多,所以众数是141,选项B结论正确;从小到大排列的10个数据中,处于最中间的数据是141与144,所以中位数为=142.5,选项C结论错误;根据方差的计算公式,方差s2=×[(141-143)2×5+(144-143)2×2+(145-143)2×1+(146-143)2×2]=4.4,选项D 结论错误. 9.C 因为一组数据4,4,x,8,8有唯一的众数,根据众数的定义, 得x=4或x=8. 当x=4时,平均数==,当x=8时,平均数==,故选C.10.B 由平均数的计算方法,得解得{a =3,b =1,所以这两组数据为3、3、1、5和3、4、2,合并成一组新数据为3、3、1、5、3、4、2, 在这组新数据中,出现次数最多的是3,因此众数是3.11.C 由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3,100分出现的次数最多,因此成绩的众数是100.成绩从小到大排列后处在第25、第26位的数都是98分,因此中位数是98.因此中位数和众数与被遮盖的数据无关.12.D 选项A,乙班成绩的方差小于甲班成绩的方差,所以乙班成绩较稳定,错误; 选项B,乙班成绩的中位数大于甲班,所以乙班成绩不低于95分的人数多于甲班,错误; 选项C,根据表中数据无法判断甲、乙两班成绩的众数,错误;选项D,因为甲班共有40名同学,甲班成绩的中位数是93分,所以小明得94分将排在甲班的前20名,正确,符合题意. 二、填空题 13.21解析 设小明同学完成数学作业的时间是x 分钟, 根据题意,得=21,解得x=21,所以小明同学完成数学作业的时间是21分钟. 14.5 解析 s 2=×[(x 1-15)2+(x 2-15)2+…+(x 20-15)2],其中20,15分别表示这组数据的个数和平均数, 所以m=20,n=15,所以m -n=20-15=5. 15.-解析从-1,,2中任取两个不同的数作积,有以下几种情况:-1×=-,-1×2=-2,×2=1,将所得的积从小到大排列,为-2,-,1,处在中间位置的数是-,因此中位数是-.16.①①①解析∵90出现了5次,出现的次数最多,∴众数是90,①正确;∵共有10个数,∴中位数是第5、第6个数的平均数,∴中位数是90,②错误;平均数是=89, ③正确;最大值是95,最小值是80,极差是95-80=15,④正确.17.乙解析x甲==13,=×[(11-13)2+(12-13)2+(13-13)2+(14-13)2+(15-13)2]=2,x乙==13,=×[(12-13)2+(12-13)2+(13-13)2+(14-13)2+(14-13)2]=0.8,∵2>0.8,∴>.同时x甲=x乙,所以乙的成绩比甲的成绩稳定.三、解答题18.解析(1)这10名学生竞赛成绩从小到大排列,为7,8,8,9,9,9,10,10,10,10,处于中间位置的数是9和9,所以中位数为=9,平均数x=×(7+8×2+9×3+10×4)=9.(2)400×=160(人).答:估计七年级参加此次竞赛活动成绩为满分的学生人数是160.19.解析(1)x甲==90(分),x乙==91(分),因为90<91,所以乙将被推荐参加校级决赛.(2)甲的成绩=95×+90×+85×=92(分),乙的成绩=88×+92×+93×=90.1(分),因为92>90.1,所以甲将被推荐参加校级决赛.建议:由于演讲内容的权较大,乙这项的成绩较低,应改进演讲内容,争取得到更好的成绩.(答案不唯一,只要合理即可)20.解析(1)7;7.提示:∵运动员甲测试成绩的众数是7,∴数据7出现的次数最多,∵甲测试成绩中6分与8分均出现了3次,而一共测试10次,∴甲测试成绩中7分出现的次数为4,而7分已经出现2次,∴a=7,b=7.(2)x甲=×(6×3+7×4+8×3)=7,x乙=×(6×2+7×6+8×2)=7,x丙=×(5×2+6×4+7×3+8)=6.3,=×[3×(6-7)2+4×(7-7)2+3×(8-7)2]=0.6,=×[2×(6-7)2+6×(7-7)2+2×(8-7)2]=0.4,=×[2×(5-6.3)2+4×(6-6.3)2+3×(7-6.3)2+(8-6.3)2]=0.81,∵x甲=x乙>x丙,>>,∴选运动员乙更合适.21.解析(1)①将甲班得分按照从小到大的顺序排列为6,7,10,10,10,所以中位数a=10.乙班的得分中,8出现的次数最多,所以众数b=8.丙班得分的平均数c=(9+10+8+7+9)÷5=8.6.②甲、乙、丙三个班在线教学活动中“学生满意度”考评得分的极差为9-7=2.(2)甲班的最终成绩为10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分),乙班的最终成绩为10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分),丙班的最终成绩为9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),因为8.2<8.5<8.7,所以应选丙班作为在线教学先进班级.22.解析(1)a=0.8,b=1.0,m=20.(2)∵八年级抽取的10个班级中,A等级的百分比是20%,∴估计该校八年级30个班这一天餐厨垃圾质量符合A等级的班级数为30×20%=6.答:估计八年级这一天餐厨垃圾质量符合A等级的班级数为6.(3)七年级各班落实得更好,因为:①七年级各班餐厨垃圾质量的众数0.8,低于八年级各班餐厨垃圾质量的众数1.0.②七年级各班餐厨垃圾质量A等级所占百分比高于八年级各班餐厨垃圾质量A等级所占百分比.八年级各班落实得更好,因为:①八年级各班餐厨垃圾质量的中位数1.0低于七年级各班餐厨垃圾质量的中位数1.1.②八年级各班餐厨垃圾质量的方差0.23低于七年级各班餐厨垃圾质量的方差0.26.第11 页共11 页。
部编人教版数学八年级上册第三单元测试卷一、选择题(每小题5分,共30分)1. ( ) 已知a:b=2:3, a与b的和为30,则a, b为:A. 18, 12B. 12, 18C. 10, 20D. 20, 102. ( ) 某公司今年销售额比去年增长30%,如果去年销售额为300万元,今年销售额为:A. 360万元B. 390万元C. 330万元D. 270万元3. ( ) 现有一瓶200毫升容量的饮料,每50毫升装一杯,共分装满几杯:A. 2B. 3C. 4D. 54. ( ) 小明骑自行车返校,第一个小时骑行3千米,第二个小时骑行3.5千米,小明从家到校共用时:A. 0.5小时B. 1.5小时C. 2小时D. 2.5小时5. ( ) 如图,已知角A和角B的度数之和为180°,则角B的度数为:A. 70°B. 90°C. 110°D. 130°6. ( ) 一辆车以每小时80千米的速度行驶400千米,所用的时间是多少小时:A. 0.2B. 0.5C. 2D. 5二、填空题(每小题6分,共18分)1. 已知有10个大苹果,小苹果是大苹果的__1/4__,则有小苹果__2__个。
2. 如果一个角是76°,那么它的补角是__104°__。
3. 如果一个角是117°,那么它的余角是__63°__。
三、解答题(每小题15分,共30分)1. 用配方法将240分成4份成比例的数。
解:设其中一份为x,则另一份为240-x。
根据题意得到等式:x/(240-x) = 2/3通过移项和化简得到:3x = 480 - 2x最终解得:x = 120所以240分可以分成4份分别为120、120、240-120=120、240-120=120。
2. 有一个三位数,个位数是7,十位数是3,百位数比个位数小1。
八年级上册数学单元测试题第3章直棱柱一、选择题1.由四个大小相同的小正方体搭成的几何体的左视图如图,则这个几何体的搭法不可能是()A. B.C.D.答案:D2.下列各个图形中,可以围成长方体的共有()A.1个B.2个C.3个D.4个答案:C3.一个骰子抛掷三次,得到三种不同的结果,如图,则写有“?”号一面上的点数是()A.1 B.2 C.3 D.6答案:D4.三个物体的主视图都有圆,那么这三个物体可能是()A.立方体、球、圆柱B.球、圆柱、圆锥C.直四棱柱、圆柱、三棱锥D.圆锥、正二十面体、直六棱柱答案:B5.一个几何体的三视图如下图所示,则这个几何体应该是()A.B. C. D.答案:D6.一个画家有l4个边长为1 cm的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有()A.21m2 B.24 m2 C.33 m2 D.37m2答案:C7.如图所示的四个几何体中,主视图是四边形的几何体共有()A.1 个B.2个 C.3个 D.4个答案:B8.下列图形中,不是正方体的表面展开图的是()答案:C9.下列几何体中,是直棱柱的是()答案:D10.由若干个相同的小正方体搭成的几何体的俯视图如图,各小方体内的数字表示叠在该层位置的小正方体个数,则这个几何体的左视图是()A.B.C.D.答案:A11.如图表示的是组合在一起的模块,则它的俯视图是()A.B.C.D.答案:A12.立方体的六个面标有数字:1,2,3,4,5,6,而且相对两个面的数之和相等,下列各图是它的展开图的是()答案:A13.将如图1所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是()答案:A14.如图,一天,小明的爸爸送给小明一个礼物,小明打开包装后,利用所学的知识画出视图.它的主视图和俯视图分别如下:根据小明所画的三视图,猜测小明的爸爸送给小明的礼物可能是()A.钢笔B.生日蛋糕C.光盘D.一套衣服答案:B解析:B.15.如图所示,是一个几何体的三视图,这个几何体是()A.圆锥B.圆柱C.长方体D.直三棱柱答案:D16.当我国发现H1N1流感第一个确诊病例时,卫生部要求全国各地做好流感预防工作. 一个立方体玩具的每个面上都有一个汉字,其表面展开图如图所示,那么在该立方体中和“毒”字相对的字是()A.卫B.防C.讲D.生答案:B二、填空题17.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.解析:618.棱长是1cm的小立方体共10块,组成如图所示的几何体,那么这个几何体的表面积是cm2.解析:3619.在如图中添加小正方形,使该图形经过折叠后能围成一个四棱柱. 不同的添法共有种.解析:420.如图(1),用八个同样大小的小立方体搭成一个大立方体,小明从上面的四个小立方体中取走了两个后,得到的新几何体的三视图如图(2)所示,则他拿走的两个小立方体的序号是___________________.(只填写满足条件的一种情况即可)(1)(2)解析:①③(答案不唯一)21.如图,是由四棱锥和直四棱柱所组成的几何体,它的主视图是选项中的,左视图是,俯视图.解析:C,C,B22.已知一几何体的三视图如图所示,则该几何体的体积是 cm3.解析:12023.一个正方体的每个面分别标有数字l,2,3,4,5,6.根据下图中该正方体A、B、C 三种状态所显示的数字,可推出“?”处的数字是.解答题解析:624.如图是一个立方体纸盒的展开图,当折叠成纸盒时,标号为1的点与标号点重合.解析:2、625.一个六棱柱的底面边长都是3 cm,一条侧棱的长为5 cm,那么它的所有棱长度之和为 cm,侧面积为 cm2.解析:66,9026.如图,有四个立方体,每个立方体的表面都分别按相同次序涂黑、白、红、黄、蓝、绿六色,将四个立方体叠放在一起,只能看到它们的部分颜色,则这个几何体最左边的一个面的颜色是色.解答题解析:绿27.直六棱柱的一条侧棱长为5cm,它的所有侧棱长度之和为 cm.解析:3028.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示(有字一面朝外).如图所示,是一个正方体的平面展开图,如果图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面,那么“祝”、“你”、“前”分别表示正方体的.解析:后面、上面、左面29.如图,根据下列物体的三视图,在右边横线上填出几何体的名称:.解析:直六棱柱30.有14个顶点的直棱柱是直棱柱,有条侧棱,相邻两条侧棱互相.解析:7,7,平行31.若一个多面体的棱数是30,顶点数是20,这是一个面体.解析:1232.若一个底面为正方形的直棱柱的侧面展开图是一个边长为4的正方形,则这个直棱柱的表面积是,体积是.解析:18,433.若要使图中平面展开图折叠成立方体后相对面上两个数之和为10,则应使x= ,y= .解析:9,734.请举出一个主视图和俯视图相同,但是左视图不同的几何体: .解析:答案不唯一,如横放的圆柱35.如图是由一些形状相同的长方体搭成的几何体的三视图,则此几何体共由块长方体搭成.解析:436.一个几何体的三视图如图所示,则该几何体是.解析:直四棱柱三、解答题37.如图是由若干个小立方体搭成的几何体的俯视图,小立方体中的数字表示的是在该位置上的小立方体的个数,请画出这个几何体的主视图和左视图.解析:略38.如图,请画出该几何体的三视图.解析:略39.如图是一所房子的三视图.(1)用线把表示房子的同一部分的图形连起来;(2)从哪个图上能大约看出房子的占地面积?(3)请画出这个房子的简图.解析:略40.某城市有一标志性雕塑;它的基座是一个正方体,在正方体的上面是一个球,而且球的直径与正方体的边长相等,请你根据描述,画出它的三视图.解析:41.正方体的六个面上分别有l,2,3,4,5,6六个数字,而且两个对面的数字之和相等.如图是这个正方体的表面展开图,请你在它的展开图中填上六个数字,使它符合要求.解析:答案不唯一42.一个零件的三视图如图所示(单位:cm),这个零件的体积和表面积各为多少?解析:体积为l800cm3,表面积为900cm243.画出如图所示几何体的主视图、左视图和俯视图.解析:44.一个几何体的表面展开图如图所示,说出它是一个怎样的几何体.解析:长方体45.如图是4个小正方形连在一起,试再拼接2个同样大小的正方形,使它可以折成正方体.请画出两种拼法:解析:答案不唯一,如46.你知道棱柱与直棱柱的关系吗?请简要说明.解析:略47.从图中你可以观察到哪些几何体?其中哪些是多面体,哪些不是?解析:圆锥,长方体,圆柱体,四棱锥(五面体),球体,除球体、圆锥和圆柱体外,其余都是多面体48.从棱长为2厘米的立方体毛坯的一角,挖去一个棱长为 1厘米的小立方体,得到一个如图所示的零件,请先画出该几何体的三视图,再求出它的表面积.它的表面积.解析:图略.该几何体的表面积等于三视图面积和的2倍,即(2×2+2×2+2×2)×2=24(平方厘米).∴该几何体的表面积为24平方厘米.49.将如图所示的几何体分类,并说明理由.(1)立方体 (2)圆柱 (3)长方体 4)球 (5)圆锥 (6)三棱锥解析:答案不唯一,如:(1)按平面分:立方体、长方体、三棱锥;(2)按曲面分:圆柱、球、圆锥50.一个物体的俯视图是正方形,你认为这个物体可能是什么形状?你能写出两种或两种以上不同的物体吗?解析:正方体,正四棱柱等。
一、选择题1.已知123n A A A A 、、中,1A 与2A 关于x 轴对称,2A 与3A 关于y 轴对称,3A 与4A 关于x 轴对称,4A 与5A 关于y 轴对称……,如果1A 在第二象限,那么100A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- 3.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3B .()1,3--C .()1,3-D .()1,3- 4.点A (3,4)关于x 轴的对称点的坐标为( ) A .(3,﹣4)B .(﹣3,﹣4)C .(﹣3,4)D .(﹣4,3) 5.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限B .x 轴上C .第四象限D .y 轴上 6.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2) C .(-2,4) D .(2,-4) 7.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8868.已知P(2-x ,3x-4)到两坐标轴的距离相等,则x 的值为( )A .32B .1-C .32或1-D .32或1 9.如下图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点()1,0-运动到点()0,1,第2次运动到点()1,0,第3次运动到点()2,2-,…按这样的运动规律,动点P 第2020次运动到点( )A .()2020,2-B .()2020,0C .()2019,1D .()2019,0 10.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A ﹣B ﹣C ﹣D ﹣A …循环爬行,其中A 点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C 的坐标为(﹣1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A .(1,1)B .(1,0)C .(0,1)D .(1,﹣1) 11.在平面直角坐标中,点(2,5)M --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 12.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(﹣2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2020的坐标是( )A .(0,1)B .(﹣2,4)C .(﹣2,0)D .(0,3)二、填空题13.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________14.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.15.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.16.长方形共有_________________条对称轴.17.如图,在平面直角坐标系中,()()()()1,1,1,1,1,2,1,2A B C D ----,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处, 并按 A B C D A ----⋯的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是 ____.18.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰到矩形的边时的点为P n. 则点P3的坐标是_______,点P2014的坐标是_______.19.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“ ”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)……根据这个规律探究可得,第115个点的坐标为________.20.在平面直角坐标系中,线段AB平行于x轴,且AB=4,若点A坐标为(-1,2),点B 的坐标为(a,b),则a+b=_______三、解答题21.如图所示的正方形网格中,每个小正方形的边长都是1,△ABC顶点都在网格线的交点上,点B坐标为(﹣3,0),点C坐标为(﹣2,﹣2);(1)根据上述条件,在网格中建立平面直角坐标系xOy;(2)画出△ABC分别关于x轴的对称图形△A1B1C1;(3)写出点A关于y轴对称点的坐标.22.如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A 1B 1C 1;(3)写出点B 1的坐标;(4)求△ABC 的面积.23.(1)请在网格中建立平面直角坐标系,使得A ,B 两点的坐标分别为()4,1,()1,2-;(2)在(1)的条件下,过点B 作x 轴的垂线,垂足为点M ,在BM 的延长线上取一点C ,使MC BM =.①写出点C 的坐标;②平移线段AB 使点A 移动到点C ,画出平移后的线段CD ,并写出点D 的坐标.24.如图,在平面直角坐标系中,ABC 三个顶点坐标分别为()3,3A ,()1,1B ,()4,1C -.(1)画出ABC ,并求出ABC 的面积;(2)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出2B 、1C 两点的坐标.25.如图,在12×10的正方形网格中,△ABC 是格点三角形,点B 的坐标为(﹣5,1),点C 的坐标为(﹣4,5).(1)请在方格纸中画出x 轴、y 轴,并标出原点O ;(2)画出△ABC 关于直线l 对称的△A 1B 1C 1;C 1的坐标为(3)若点P (a ,b )在△ABC 内,其关于直线l 的对称点是P 1,则P 1的坐标是 .26.如图,已知△ABC 的顶点分别为A(-2,2)、B(-4,5)、C(-5,1)和直线m (直线m 上各点的横坐标都为1).(1)作出△ABC 关于x 轴对称的图形111A B C ,并写出点1A 的坐标;(2)作出点C 关于直线m 对称的点2C ,并写出点2C 的坐标;(3)在x 轴上画出点P ,使PA +PC 最小.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数,以及循环的规律就可以得到.【详解】解:A1与A2关于x轴对称,A2与A3关于y轴对称,A3与A4关于x轴对称,A4与A5关于y 轴对称,A1与A5是同一个点,四次一循环,100÷4=25,A100与A4重合,即第一象限,故选:A.【点睛】本题考查了关于x轴、y轴对称的点的坐标,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2.C【分析】根据点A,点A'坐标可得点A,点A'关于y轴对称,即可求点B'坐标.【详解】解:∵将线段AB沿坐标轴翻折后,点A(1,3)的对应点A′的坐标为(-1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(-2,1)故选:C.【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y轴对称的两点纵坐标相等,横坐标互为相反数是关键.3.D解析:D【分析】在平面直角坐标系中,关于原点对称的两点的横坐标和纵坐标均互为相反数即可求得.【详解】1,3-,∵与点P关于原点对称的点Q为()-.∴点P的坐标是:()1,3故选D.【点睛】本题考查平面直角坐标系中点的对称性,掌握关于原点对称的两点的横坐标和纵坐标均互为相反数是解题关键.4.A解析:A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,-y),得出即可.【详解】点A(3,4)关于x轴对称点的坐标为:(3,-4).故选:A.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.5.B解析:B【分析】根据点的坐标特点判断即可.【详解】在平面直角坐标系中,点P(-5,0)在x轴上,【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键. 6.A解析:A【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2,即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2).故选A .【点睛】本题考查点的坐标.7.C解析:C【分析】根据点的坐标变化寻找规律即可.【详解】解:一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→L ,发现:当x=0时,有两个点,共2个点,当x=1时,有3个点,x=2时,1个点,共4个点;当x=3时,有4个点,x=4,1个点,x=5,1个点,共6个点;当x=6时,有5个点,x=7,1个点,x=8,1个点,x=9,1个点,共8个点;当x=10时,有6个点,x=11,1个点,x=12,1个点,x=13,1个点,x=14,1个点,共10个点;…当x=()12n n -,有(n+1)个点,共2n 个点; 2+4+6+8+10+…+2n≤2018, ()222n n +≤2018且n 为正整数, 得n=44,∵n=44时,2+4+6+8+10+…+88=1980,且当n=45时,2+4+6+8+10+…+90=2070,1980<2018<2070,∴当n=45时,x=45462⨯=990,46个点, ∴1980<2018<1980+46,∴2018个粒子所在点的横坐标为990.故选:C.【点睛】本题考查了规律型:点的坐标,解决本题的关键是观察点的坐标的变化寻找规律.8.D解析:D【分析】根据到两坐标轴的距离相等,可得方程,根据解方程,可得答案.【详解】由题意,得2-x=3x-4或2-x+(3x-4)=0,解2-x=3x-4得x=32,解2-x+(3x-4)=0得x=1,x的值为32或1,故选D.【点睛】本题考查了点的坐标,利用到两坐标轴的距离相等得出方程是解题关键.9.D解析:D【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2020除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:20204505÷=,∴动点P第2020次运动为第505个循环组的第4次运动,横坐标505412019⨯-=,纵坐标为0,∴点P此时坐标为(2019,0).故选:D.【点睛】本题考查了规律型:点的坐标,本题为平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.10.B解析:B【分析】由题意知:AB=2,BC=4,CD=2,DA=4,可求出蚂蚁爬行一周的路程为12个单位,然后求出2015个单位能爬167圈还剩11个单位,结合图形即可确定位置为(1,0)【详解】由题意知:AB=2,BC=4,CD=2,DA=4,∴蚂蚁爬行一周的路程为:2+4+2+4=12(单位),2015÷12=167(圈)…11(单位),即离起点差1个单位,∴蚂蚁爬行2015个单位时,所处的位置是AD和x轴的正半轴的交点上,∴其坐标为(1,0).故选:B.【点睛】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.11.C解析:C【分析】由于点M的横坐标为负数,纵坐标为负数,根据各象限内点的坐标的符号特征即可求解.【详解】解:∵-2<0,-5<0,∴点M(-2,-5)在第三象限.故选:C.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).12.B解析:B【分析】按照反弹规律依次画图即可.【详解】解:解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(-2,4),再反射到P5(-4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(-2,4),故选:B.【点睛】本题是规律探究题,解答时要注意找到循环数值,从而得到规律.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.14.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 15.【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等纵坐标是1020…4个数一个循环按照此规律解答即可【详解】解:观察点的坐标变化可知:第1次从原点运动到点(11)第2次接着运动到点(20)第解析:()2021,1【分析】观察点的坐标变化发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,…4个数一个循环,按照此规律解答即可.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与运动的次数相等,纵坐标是1,0,2,0,4个数一个循环,由于2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故答案为:(2021,1).【点睛】本题考查了点的坐标规律探求,属于常考题型,由已知点的坐标变化找出规律是解题的关键.16.【分析】依据轴对称图形的概念即在平面内如果一个图形沿一条直线折叠直线两旁的部分能够完全重合这样的图形叫做轴对称图形据此即可进行判断【详解】如下图长方形有2条对称轴故答案为2【点睛】解答此题的主要依据解析:2【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此即可进行判断.【详解】如下图长方形有2条对称轴,故答案为2.【点睛】解答此题的主要依据是:轴对称图形的概念及特征和对称轴的条数.17.【分析】先根据点的坐标求出四边形ABCD的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】解:∵A(11)B(﹣11)C (﹣1﹣2)D(1﹣2)∴AB=1﹣(﹣1)=2BC=1﹣(0,1解析:()【分析】先根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2021÷10=202…1,∴细线另一端在绕四边形第203圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故答案为:(0,1).【点睛】本题考查了点的坐标规律探求,根据点的坐标求出四边形ABCD一周的长度,从而确定2021个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.18.(83)(50)【详解】解:如图根据反射角与入射角的定义作出图形可知:(1)当点P第3次碰到矩形的边时点P的坐标为(83);(2)每6次反弹为一个循环组依次循环经过6次反弹后动点回到出发点(03)∵解析:(8,3)(5,0)【详解】解:如图,根据反射角与入射角的定义作出图形,可知:(1)当点P第3次碰到矩形的边时,点P的坐标为(8,3);(2)每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(0,3),∵2014÷6=335…4,∴当点P第2014次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(8,3);(5,0).19.(155)【分析】观察图形可知:第115个点为第15列的由上往下第10个可求出第115个点的坐标(此处纵坐标为6-1)【详解】解:观察图形可知:1+2+3+…+14==105105+10=115∴第解析:(15,5)【分析】观察图形,可知:第115个点为第15列的由上往下第10个,可求出第115个点的坐标(此处纵坐标为6-1).【详解】解:观察图形,可知:1+2+3+…+14=14(14+1)2=105,105+10=115,∴第115个点为第15列从上往下的第10个.∴第115个点的坐标为(15,5).故答案为:(15,5).【点睛】本题考查了规律型:点的坐标,找出第115个点为第15列的倒数第10个是解题的关键.20.5或-3【分析】根据题意求出ab 的值计算即可;【详解】∵AB 平行于x 轴且AB=4点A 坐标为(-12)∴或∴或;故答案是5或-3【点睛】本题主要考查了坐标与图形的性质明确平行于x 轴的直线上的纵坐标相等解析:5或-3【分析】根据题意求出a ,b 的值计算即可;【详解】∵AB 平行于x 轴,且AB=4,点A 坐标为(-1,2),∴2b =,145a =--=-或413a =-=,∴()253a b +=+-=-或235a b +=+=;故答案是5或-3.【点睛】本题主要考查了坐标与图形的性质,明确平行于x 轴的直线上的纵坐标相等是解题的关键.三、解答题21.(1)见解析;(2)见解析;(3)(5,4)【分析】(1)根据B ,C 两点坐标,分别确定横轴与纵轴的位置,即可作出平面直角坐标系; (2)分别作出A ,B ,C 的对应点A 1,B 1,C 1,再依次连接即可得出图形;(3)根据轴对称与坐标变换的性质,由点A 的坐标即可得出结果.【详解】解:(1)如图,平面直角坐标系即为所求作.(2)如图,△A 1B 1C 1;即为所求作.(3)∵点A 的坐标为(-5,4),∴点A 关于y 轴对称点的坐标(5,4).【点睛】本题考查作图−轴对称变换,解题的关键是熟练掌握平面直角坐标系中的坐标特点及轴对称与坐标变换之间的规律.22.(1)答案见解析;(2)答案见解析;(3)B 1(2,1);(4)4【分析】(1)根据点C 的坐标,向右一个单位,向下3个单位,确定出坐标原点,然后建立平面直角坐标系即可;(2)根据轴对称得到点A 1、B 1、C 1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出点B 1的坐标,(4)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1)建立如图所示的平面直角坐标系:(2)(3)由(2)可得点B 1的坐标为B 1(2,1);(4)△ABC 的面积=111341223244222. 【点睛】本题考查轴对称作图问题,用到的知识点:图象的变换轴对称,看关键点的变换即可. 23.(1)见解析;(2)①(1,2)C ;②图见解析,(2,1)D --【分析】(1)根据点A 、B 坐标即可建立坐标系;(2)①由(1)中所作图形即可得;②根据平移的定义作图可得.【详解】(1)建立平面直角坐标系如图所示:(2)①所画图形如图所示,点C 的坐标为(1,2);②如图所示,线段CD 即为所求,点D 的坐标为(-2,-1).【点睛】本题主要考查了坐标与图形的性质及平移变换作图,解题关键是根据题意建立直角坐标系,然后根据平移规律找出平移后的对应点.24.(1)画图见解析;5 (2)画图见解析;()11,1B -,()14,1C --【分析】(1)先根据A 、B 、C 三点坐标描点,再顺次连接即可得到ABC ,再运用割补法即可求出ABC 的面积;(2)分别作出A 、B 、C 三点关于y 轴的对称点,再顺次连接即可,根据作图即可写出2B 、1C 两点的坐标.【详解】解:(1)ABC 如图所示:111341422235222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;(2)111A B C △如图所示:()11,1B -,()14,1C --.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义和性质. 25.(1)见解析;(2)见解析;(0,5);(3)(﹣a ﹣4,b )【分析】(1)利用A 、C 点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A 、B 、C 关于直线l 的对称点A 1、B 1、C 1即可; (3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l 向左平移2个单位回到原来位置,于是得到P 1的坐标为(-a-2-2,b ).【详解】解:(1)如图,就是所求作的坐标轴与原点;(2)如图,△A 1B 1C 1为所作的三角形;C 1的坐标为:(0,5);(3)先把P 点向右平移2个单位(a+2,b )(相当于把直线l 右平移2个单位),点(a+2,b )关于y 轴的对称点为(-a-2,b ),然后把(-a-2,b )向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(-a-2-2,b).∴P1的坐标是(﹣a﹣4,b).【点睛】本题考查了作图——轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,26.(1)图见解析,A(-2,-2);(2)图见解析,C2(7,1);(3)图见解析【分析】(1)根据轴对称关系确定点A1、B1、C1的坐标,顺次连线即可;(2)根据轴对称的性质解答即可;(3)连接AC1,与x轴交点即为点P.【详解】(1)如图,A1(-2,-2);(2)如图,C2的坐标为(7,1);(3)连接AC1,与x轴交点即为所求点P.【点睛】此题考查轴对称的性质,利用轴对称关系作图,确定直角坐标系中点的坐标,最短路径问题作图,正确理解轴对称的性质是解题的关键.。
北师大版数学八年级上册第三单元测试题一.选择题(共10小题)1.点M(﹣4,﹣1)关于y轴对称的点的坐标为()A.(﹣4,1)B.(4,1) C.(4,﹣1)D.(﹣4,﹣1)2.在平面直角坐标系中,点A的坐标为(1,2),将点A向右平移3个单位长度后得到A′,则点A′的坐标是()A.(﹣2,2)B.(1,5) C.(1,﹣1)D.(4,2)3.下列各点中位于第四象限的点是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)4.若点A(a,3)在y轴上,则点B(a﹣3,a+2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣17.无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“炮”位于点()A.(﹣2,﹣1)B.(0,0) C.(1,﹣2)D.(﹣1,1)9.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C 的坐标为()A.(2,3) B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)10.在平面直角坐标系中,已知A(2,﹣2),点P是y轴上一点,则使AOP为等腰三角形的点P有()A.1个 B.2个 C.3个 D.4个二.填空题(共10小题)11.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为.12.已知点A的坐标为(﹣2,3),则点A关于原点对称的点B的坐标为.13.直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为.14.点P(m,m+3)在平面直角坐标系的y轴上,则点P的坐标是.15.已知点P1(a,﹣3)和点P2(3,b)关于y轴对称,则a+b的值为.16.点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是.17.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.18.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(﹣1,4),则点C的坐标是.19.若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015=.20.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…则三角形⑩的直角顶点与坐标原点的距离为.三.解答题(共10小题)21.求图中四边形ABCD的面积.22.如图是一个平面直角坐标系,按要求完成下列各小题.(1)写出图中的多边形ABCDEF顶点在坐标轴上的点的坐标;(2)说明点B与点C的纵坐标有什么特点?线段BC与x轴有怎样的位置关系?(3)写出点E关于y轴的对称点E′的坐标,并指出点E′与点C有怎样的位置关系.23.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.24.已知点A(3,0)、B(0,2)、C(﹣2,0)、D(0,﹣1)在同一坐标系中描出A、B、C、D各点,并求出四边形ABCD的面积.25.已知点P(2x,3x﹣1)是平面直角坐标系上的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离和为11,求x的值.26.已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.27.已知点M(﹣3a+2,a+6).(1)若点M在x轴上,求点M的坐标;(2)点N(﹣4,﹣5),且直线MN∥y轴,求线段MN的长度.28.在平面坐标系中△ABO 位置如图,已知OA=AB=5,OB=6,(1)求A 、B 两点的坐标.(2)点Q 为y 轴上任意一点,直接写出满足:S △ABO =S △AOQ 的Q 点坐标.29.已知点P 的坐标为(2m ﹣1,m +7).(1)若点P 在x 轴上,试求m 的值;(2)若点P 在二、四象限的角平分线上,求m 的值;(3)若点Q 坐标为(1,2),且PQ ∥y 轴,求点P 的坐标;(4)若点Q 坐标为(1,n +3),且PQ 关于x 轴对称,请求出n 的值.30.已知A(o,a),B(b,o),C(3,c)且|a﹣2|+(b﹣3)2+=0(1)求a,b,c的值(2)若第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,说明理由.北师大版数学八年级上册第三单元测试题参考答案与试题解析一.选择题(共10小题)1.(2017•桂林一模)点M(﹣4,﹣1)关于y轴对称的点的坐标为()A.(﹣4,1)B.(4,1) C.(4,﹣1)D.(﹣4,﹣1)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y轴对称的点,纵坐标相同,横坐标互为相反数.【解答】解:∵平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点M关于y轴的对称点的坐标是(4,﹣1).故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.(2017•历下区一模)在平面直角坐标系中,点A的坐标为(1,2),将点A向右平移3个单位长度后得到A′,则点A′的坐标是()A.(﹣2,2)B.(1,5) C.(1,﹣1)D.(4,2)【分析】将点A的横坐标加3,纵坐标不变即可求解.【解答】解:点A(1,2)向右平移3个单位长度得到的点A′的坐标是(1+3,2),即(4,2).故选D.【点评】此题主要考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.3.(2017春•滨海县月考)下列各点中位于第四象限的点是()A.(3,4) B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)【分析】应先判断点在第四象限内点的坐标的符号特点,进而找相应坐标.【解答】解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.【点评】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(2017春•西湖区校级月考)若点A(a,3)在y轴上,则点B(a﹣3,a+2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴上点的横坐标为0求出a,再求出点B的坐标,然后根据各象限内点的坐标特征解答.【解答】解:∵点A(a,3)在y轴上,∴a=0,∴点B(﹣3,2),∴点B在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(2017春•新野县月考)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系【分析】根据,横坐标相同,纵坐标互为相反数,即可求出P1和P2关于x轴对称的点.【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),∴横坐标相同,纵坐标互为相反数,∴P1和P2关于x轴对称的点,故选C.【点评】本题考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,注意掌握关于x轴对称的点,横坐标相同,纵坐标互为相反数.6.(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选D.【点评】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.(2016•江都区二模)无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).【解答】解:当m<0时,5﹣2m>0,点A(m,5﹣2m)在第二象限,当0<m时,点A(m,5﹣2m)在第一象限,当m时,点A(m,5﹣2m)在第四象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(2016•大兴区一模)如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“炮”位于点()A.(﹣2,﹣1)B.(0,0) C.(1,﹣2)D.(﹣1,1)【分析】根据“帅”的位置向右平移1个单位,上移两个单位,可得答案.【解答】解:“帅”的位置向右平移1个单位,上移两个单位(0,0),故选:B.【点评】本题考查了坐标确定位置,利用点的坐标平移是解题关键.9.(2016春•苏仙区期末)点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3) B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)【分析】根据平面直角坐标系中各个象限内点的坐标的符号即可解答.【解答】解:∵点C在x轴上方,y轴左侧,∴点C的纵坐标大于0,横坐标小于0,点C 在第二象限;∵点距离x轴2个单位长度,距离y轴3个单位长度,所以点的横坐标是﹣3,纵坐标是2,故点C的坐标为(﹣3,2).故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(2016秋•红安县期中)在平面直角坐标系中,已知A(2,﹣2),点P是y轴上一点,则使AOP为等腰三角形的点P有()A.1个 B.2个 C.3个 D.4个【分析】由于点P的位置不确定,所以应当讨论,当OA=OP时,可得到2点,当OA=AP时,可得到一点.【解答】解:分三种情况:当OA=OP时,可得到2点;当OA=AP时,可得到一点;当OP=AP 时,可得到一点;共有4点,故选D.【点评】本题考查了坐标与图形的性质及等腰三角形的判定;分情况进行分析是正确解答本题的关键.二.填空题(共10小题)11.(2017•娄底模拟)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(﹣1,﹣1).【分析】让点A的横坐标减2,纵坐标减4即可得到平移后点的坐标.【解答】解:点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,所以点B的坐标是(﹣1,﹣1),故答案为(﹣1,﹣1).【点评】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.12.(2017•罗平县一模)已知点A的坐标为(﹣2,3),则点A关于原点对称的点B的坐标为(2,﹣3).【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:点A的坐标为(﹣2,3),则点A关于原点对称的点B的坐标为(2,﹣3),故答案为:(2,﹣3).【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.13.(2017•常州模拟)直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B 逆时针旋转90°得到点C,则点C的坐标为(﹣2,4).【分析】根据题意画出图形,易证△ADB≌△BEC,求出CE、OE的长即可求出C的坐标.【解答】解:如图所示,点A绕点B逆时针旋转90°到点C,∵A坐标为(5,3),B坐标为(1,0),∴AD=3,BD=4,∴AB=5,根据旋转的性质,AB=BC,∵∠ABC=90°,∴∠EBC+∠ABD=90°,∵∠DAB+∠ABD=90°,∴∠EBC=∠DAB.在△EBC和△BAD中,∴△EBC≌△BAD,∴CE=BD=4,BE=AD=3,∵OB=1,∴OE=2,∴C(﹣2,4).故答案为:(﹣2,4).【点评】本题主要考查了旋转变换和三角形全等的判定与性质,证明△EBC≌△BAD是解决问题的关键.14.(2017春•滨海县月考)点P(m,m+3)在平面直角坐标系的y轴上,则点P的坐标是(0,3).【分析】根据y轴上点的横坐标为0求出m=0,再求解即可.【解答】解:∵点P(m,m+3)在平面直角坐标系的y轴上,∴m=0,∴m+3=0+3=3,所以,点P的坐标为(0,3).故答案为:(0,3).【点评】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.15.(2017春•西湖区校级月考)已知点P1(a,﹣3)和点P2(3,b)关于y轴对称,则a+b 的值为﹣6.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后相加计算即可得解.【解答】解:∵点P1(a,﹣3)和点P2(3,b)关于y轴对称,∴a=﹣3,b=﹣3,∴a+b=﹣3+(﹣3)=﹣6.故答案为:﹣6.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.16.(2016•梧州)点P(2,﹣3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P′的坐标是(﹣2,﹣2).【分析】根据点的平移特点直接写出结论【解答】解:点(2,﹣3),向左平移4个单位,横坐标:2﹣4=﹣2,向上平移1个单位,纵坐标:﹣3+1=﹣2,∴点P'(﹣2,﹣2),故答案为:(﹣2,﹣2)【点评】此题是坐标与图形变化﹣﹣﹣平移,熟记平移的特征是解本题的关键,特征:上加,下减,右加,左减,其实图形平移也有这个特点,抓住图形的几个特殊点,也能达到目的.17.(2016•鞍山二模)已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为(﹣1,﹣1).【分析】根据第三象限点的坐标性质得出a的取值范围,进而得出a的值,即可得出答案.【解答】解:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴,解得:2<a<3.5,故a=3,则点P坐标为:(﹣1,﹣1).故答案为:(﹣1,﹣1).【点评】此题主要考查了点的坐标,正确得出a的取值范围是解题关键.18.(2016•乐亭县一模)如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点A的坐标是(﹣1,4),则点C的坐标是(3,0).【分析】根据点A的坐标求出正方形的边长与OB的长度,再求出OC的长,然后写出点C 的坐标即可.【解答】解:∵点A的坐标是(﹣1,4),∴BC=AB=4,OB=1,∴OC=BC﹣OB=4﹣1=3,∴点C的坐标为(3,0).故答案为:(3,0).【点评】本题考查了坐标与图形性质,主要利用了正方形的性质,根据点A的坐标求出正方形的边长是解题的关键.19.(2016•洛阳模拟)若点P(m,﹣2)与点Q(3,n)关于原点对称,则(m+n)2015=﹣1.【分析】根据关于原点对称的两点的横、纵坐标都是互为相反数,可得m、n的值,根据负数奇数次幂是负数,可得答案.【解答】解:由点P(m,﹣2)与点Q(3,n)关于原点对称,得m=﹣3,n=2.(m+n)2015=(﹣3+2)2015=﹣1,故答案为:﹣1.【点评】本题考查了关于原点对称的点的坐标,关于原点对称的则两点的横、纵坐标都是互为相反数,注意负数奇数次幂是负数.20.(2016•南昌校级自主招生)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…则三角形⑩的直角顶点与坐标原点的距离为36.【分析】先利用勾股定理得到AB=5,利用图形和旋转的性质可得到△OAB每三次旋转一个循环,并且每一个循环向前移动了12个单位,由于10=3×3+1,则可判断三角形⑩和三角形①的状态一样,且三角形⑩与三角形⑨的直角顶点相同,所以三角形⑩的直角顶点与坐标原点的距离为3×12=36.【解答】解:∵A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵对△OAB连续作如图所示的旋转变换,∴△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位,∵10=3×3+1,∴三角形⑩和三角形①的状态一样,则三角形⑩与三角形⑨的直角顶点相同,∴三角形⑩的直角顶点的横坐标为3×12=36,纵坐标为0,∴三角形⑩的直角顶点与坐标原点的距离为36.故答案为36.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是确定△OAB连续作旋转变换后三角形的状态的变换规律.三.解答题(共10小题)21.(2017春•滨海县月考)求图中四边形ABCD的面积.【分析】由图可得:四边形ABCD的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积,即可解答.【解答】解:如图,S四边形ABCD=S矩形EFGH﹣S△AEB﹣S△AHD﹣S△BFC﹣S△CDG==25.【点评】本题考查了坐标与图形性质,解决本题的关键是结合图形四边形ABCD的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积.22.(2017春•邢台县月考)如图是一个平面直角坐标系,按要求完成下列各小题.(1)写出图中的多边形ABCDEF顶点在坐标轴上的点的坐标;(2)说明点B与点C的纵坐标有什么特点?线段BC与x轴有怎样的位置关系?(3)写出点E关于y轴的对称点E′的坐标,并指出点E′与点C有怎样的位置关系.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据点的坐标并结合图形解答即可;(3)根据图形写出点E′的坐标,再根据关于原点对称的点的坐标特征解答.【解答】解:(1)点A的坐标为(﹣2,0),点B的坐标为(0,﹣3),点D的坐标为(4,0),点F的坐标为(0,3);(2)点B与点C的纵坐标相等,线段BC平行于x轴;(3)点E关于y轴的对称点的坐标为(﹣3,3),它与点C关于原点对称.【点评】本题考查了关于x轴、y轴对称的点的坐标,熟练掌握平面直角坐标系与点的关系是解题的关键.23.(2016春•沂水县期中)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【点评】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.24.(2016秋•东至县期中)已知点A(3,0)、B(0,2)、C(﹣2,0)、D(0,﹣1)在同一坐标系中描出A、B、C、D各点,并求出四边形ABCD的面积.【分析】已知A,B,C,D的坐标,再直角坐标系中画出四边形,再求四边形ABCD的面积.【解答】解:如图所示:S ABCD=S△AOB+S△BOC+S△COD+S△AOD=(3×2+2×2+2×1+1×3)=.所以,四边形ABCD的面积为.【点评】本题考查了坐标与图形的性质,属于基础题,做题时重点要掌握把不规则四边形的面积看做成几个三角形面积的和.25.(2016秋•景德镇期中)已知点P(2x,3x﹣1)是平面直角坐标系上的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离和为11,求x的值.【分析】(1)根据角平分线上的点到角的两边的距离相等可得第一象限角平分线上的点的横坐标与纵坐标相等,然后列出方程求解即可;(2)根据第三象限的点的横坐标与纵坐标都是负数,然后列出方程求解即可.【解答】解:(1)由题意得,2x=3x﹣1,解得x=1;(2)由题意得,﹣2x+[﹣(3x﹣1)]=11,则﹣5x=10,解得x=﹣2.【点评】本题考查了坐标与图形性质,主要利用了角平分线上的点到角的两边的距离相等的性质,各象限内点的坐标特征.26.(2016春•宜阳县期中)已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【分析】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【解答】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P 点坐标为:(0,﹣3).【点评】此题主要考查了坐标与图形的性质,根据已知得出关于m 的等式是解题关键.27.(2016秋•吉安期中)已知点M (﹣3a +2,a +6).(1)若点M 在x 轴上,求点M 的坐标;(2)点N (﹣4,﹣5),且直线MN ∥y 轴,求线段MN 的长度.【分析】(1)根据点M 在x 轴上即可得出a +6=0,由此即可得出a 值,将其代入点M 的坐标中即可得出结论;(2)根据点M 、N 的坐标结合直线MN ∥y 轴,即可得出﹣3a +2=﹣4,由此即可得出a 值,将其代入点M 的坐标中求出点M 的坐标,再利用两点间的距离公式求出线段MN 的长度即可.【解答】解:(1)∵点M (﹣3a +2,a +6)在x 轴上,∴a +6=0,即a=﹣6,∴点M 的坐标为(20,0).(2)∵点M (﹣3a +2,a +6),点N (﹣4,﹣5),直线MN ∥y 轴,∴﹣3a +2=﹣4,即a=2,∴点M 的坐标为(﹣4,8),∴线段MN 的长度为8﹣(﹣5)=13.【点评】本题考查了坐标与图形性质、解一元一次方程以及两点间的距离,解题的关键是:(1)根据点M 在x 轴上找出关于a 的一元一次方程;(2)根据直线MN ∥y 轴找出关于a 的一元一次方程.28.(2016春•滦县期中)在平面坐标系中△ABO 位置如图,已知OA=AB=5,OB=6,(1)求A 、B 两点的坐标.(2)点Q 为y 轴上任意一点,直接写出满足:S △ABO =S △AOQ 的Q 点坐标.【分析】(1)过A 作x 轴的垂线,垂足为C ,根据等腰三角形三线合一的性质得出OC=CB=OB=3,利用勾股定理求出AC==4,得出A 点的坐标,由OB=6,得出B点的坐标; (2)根据三角形面积公式求出S △ABO =OB•AC=12,S △AOQ =OQ•OC=OQ ,由S △ABO =S △AOQ 得出OQ=12,求出OQ=8,进而得到Q 点坐标.【解答】解:(1)如图,过A 作x 轴的垂线,垂足为C ,∵OA=AB=5,OB=6,∴OC=CB=OB=3,∴AC===4,∴A 点的坐标为(3,4).∵OB=6,∴B 点的坐标为(6,0);(2)∵S △ABO =OB•AC=×6×4=12,S △AOQ =OQ•OC=OQ•3=OQ , ∴OQ=12,∴OQ=8,∴Q 点坐标为(0,8)或(0,﹣8).【点评】本题考查了坐标与图形性质,等腰三角形的性质,勾股定理,三角形的面积,利用数形结合与分类讨论是解题的关键.29.(2016春•丹江口市期中)已知点P 的坐标为(2m ﹣1,m +7).(1)若点P 在x 轴上,试求m 的值;(2)若点P 在二、四象限的角平分线上,求m 的值;(3)若点Q 坐标为(1,2),且PQ ∥y 轴,求点P 的坐标;(4)若点Q坐标为(1,n+3),且PQ关于x轴对称,请求出n的值.【分析】(1)根据x轴上点的纵坐标为0,可列方程解得m;(2)根据二、四象限的角平分线上点的横纵坐标互为相反数可解得m;(3)平行于y轴直线上的点的纵坐标相等,可得m,代入解得点P的坐标;(4)关于x轴对称的两个点横坐标相等,纵坐标互为相反数,可解得m,解得n.【解答】解:(1)∵点P在x轴上,∵m+7=0,m=﹣7;(2)∵点P在二、四象限的角平分线上,∵2m﹣1+m+7=0,∴m=﹣2;(3)∵Q坐标为(1,2),且PQ||y轴,∴2m﹣1=1,∴m=1;∴p点坐标为:(1,8);(4)∵Q坐标为(1,n+3),且PQ关于x轴对称,∴2m﹣1=1,∴m=1,∴m+7=8,∴n+3=﹣8,∴n=﹣11.【点评】本题主要考查了点的坐标,熟记坐标的特点是解答此题的关键.30.(2016春•宜春校级期中)已知A(o,a),B(b,o),C(3,c)且|a﹣2|+(b﹣3)2+=0(1)求a,b,c的值(2)若第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积为△ABC面积的2倍?若存在,求出点P的坐标,若不存在,说明理由.【分析】(1)由绝对值、偶次方、算术平方根的性质即可得出结果;(2)S ABOP=S△AOB+S△AOP,即可得出结果;(3)由三角形的面积求出m的值,即可得出结果.【解答】解:(1)根据题意得:a﹣2=0,b﹣3=0 c﹣4=0得a=2,b=3,c=4(2)S ABOP=S△AOB+S△AOP=×2×3+×2×(﹣m)=3﹣m;(3)存在;理由如下:,∴3﹣m=12,∴m=﹣9,∴.【点评】本题考查了坐标与图形性质、三角形面积的计算;熟练掌握坐标与图形性质是解决问题的关键.。
第11题图
八年级数学(上)一次函数整章测试(A )
一、填空题(每题2分,共32分)
1.函数的三种表示方式分别是 、 、 。
2.在函数y =11
x +中,自变量x 的取值范围是______.
3.小明将RMB1000元存入银行,年利率为2%,利息税为20%,那么x 年后的本息和y 元与年数x 的函数关系式是 .
4.已知一次函数k x k y )1(-=+3,则k = .
5.已知直线经过原点和P (-3,2),那么它的解析式为______. 6.函数2+-=x y 中,y 的值随x 值的减小而 ,且函数图像与x 轴、y 轴的交点坐标分别是 . 7.已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是 .
8.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 9.已知直线6+=x y 与x 轴,y 轴围成一个三角形,则这个三角形面积为 。
10.已知自变量为x 的函数y=mx+2-m 是正比例函数,则
m=________,•该函数的解析式为__ __.
11.长沙向北京打长途电话,设通话时间x (分),
需付电话费y (元),通话3分以内话费为3.6元.请你根据如图所示的y 随x 的变化的图象,找出通话5分钟需付电
话费__ _元.
12.若函数y =2x +1中函数值的取值范围是1≤y≤3.则自变量x 的取值范围是 。
13.若ab >0,bc <0,则直线a a
y x b c
=--经过第 象限。
14.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.
15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组
30220
x y x y --=⎧⎨
-+=⎩的解是________.
16.若正比例函数y =(1-2m)x 的图像经过点11(,)A x y 和点
22(,)B x y ,当
,则m 的取值范围
是 .
二、解答题(每题2分,共32分)
17.(4分)在同一直角坐标系中,画出函数
32,32,2+=-==x y x y x y 的图像,并比较它们的异同.
18.(4分)北京到天津的低速公路约240千米,骑自行车以每
小时20千米匀速从北京出发,t 小时后离天津S 千米. (1)写出S 与t 之间的函数关系式; (2)回答:8小时后距天津多远?
19.(4分)如图一次函数y=kx+b的图象经过点A和点B.(1)写出点A和点B的坐标并求出k、
b的值;
时的函数值.
(2)求出当x=3
2
20.(6分)根据下列条件,确定函数关系式:
(1)y与x成正比,且当x=9时,y=16;
(2)y=kx+b的图象经过点(3,2)和点(-2,1).
21.(5分)已知与成正比例,与x-2成正比例,当x=1时,
y=3.当x=-3时,y=4。
求x=3时,y的值。
22.(5分)如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距,某项研究表明,一般情况下人身高h是指距d的
一次函数。
下表是测得的旨距与身高的一组数据:
(1)求出h与d之间的函数关系式(不要求写出自变量d 的取值范围);
(2)某人身高196cm,一般情况下他的指距
应是多少?
23.(6分)一次函数y=kx+b 的图象如图所示: (1(2)当x=10时,y (3)当y=12时,•x 的值
是
多少?
24.(8分)已知一次函数)3()12(+--=n x m y ,求: (1)当m 为何值时,y 的值随x 的增加而增加; (2)当n 为何值时,此一次函数也是正比例函数; (3)若,2,1==n m 求函数图像与x 轴和y 轴的交点坐标; (4)若2,1==n m ,写出函数关系式,画出图像,根据图像求
x 取什么值时,0>y 。
25.(6分)如图,一次函数y=kx+b的图像经过A、B两点,与x轴交于点C,求:(1)一次函数的解析式;(2)
△AOC的面积。
26.(6分)作函数y=2x-4的图像,并根据图像回答下列问题。
(1)当-2≤x≤4,求函数y的取值范围。
(2)当x取何值时,y<0?y=0?y>0?
27.(6分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中
的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
28.(8分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已
知做一套M型号的时装需用A种布料1.•1米,B种布料0.4
米,可获利50元;做一套N型号的时装需用A种布料0.6
米,B种布料0.•9米,可获利45元.设生产M型号的时装
套数为x,用这批布料生产两种型号的时装所获得的总利润
为y元.
(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
参考答案
一、填空题
1.解析法、表格法、图像法 2.1
x≠ 3.161000
y x
=+ 4.-1 5.2 3
y x
=-6.增大;(2,0)(0,2) 7.m>-2 8.-6;2 9.18 10.2;
y=2x 11.6 12.0≤x ≤1 13.一二四 14.16 15.5
8
x y =-⎧⎨=-⎩ 16.m >1
2
- 二、解答题
17.略 18.(1)S=-20t+240;(2)80 19.(1)A (-1,3),B (2,-3),k=-2,b=1;(2)-2 20.(1)169y x =
;(2)1755y x =+ 21.61
2
- 22.(1)y=9x-20;(2)24cm 23.(1)y=x-2;(2)8;(3)14 24.(1)
m >1
2
;(2)n=-3;(3)(5,0)(0,-5) 25.(1)y=x+2;(2)4 26.(1)84y -≤≤;(2)x <2时,y <0;x =2时,y =0;x >2时,y >0 27.(1)
5元;(2)0.5元/千克;(3)45千克 28.(1)y=5x+3600(40≤x ≤44);(2)44套,3820元。