2020年广东数学中考名师预测仿真模拟联考试卷
- 格式:pdf
- 大小:264.74 KB
- 文档页数:3
广东省梅州市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.已知点M与点N(2,5)关于x轴对称,那么点M的坐标为()A. (−2,5)B. (2,5)C. (−2,−5)D. (2,−5)4.一个多边形有5条边,则它的内角和是()A. 540°B. 720°C. 900°D. 1080°5.使式子√3x+2有意义的实数x的取值范围是()A. x≥0B. x>−23C. x≥−32D. x≥−236.若以△ABC各边中点为顶点的三角形的周长是18cm,则△ABC的周长是()A. 9cmB. 36cmC. 54cmD. 72cm7.抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为()A. b=6,c=7B. b=−6,c=−11C. b=6,c=11D. b=−6,c=118.不等式组{3x−1≥x+1x+4<4x−2的解集是()A. x>2B. x≥1C. 1≤x<2D. x≥−19.如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB于点G,则GE的长是()A. 3√3−4B. 4√2−5C. 4−2√3D. 5−2√310.如图,抛物线y=ax2+bx+c与x轴交于点(−1,0),对称轴为x=1,则下列结论中正确的是()A. a>0B. 当x>1时,y随x的增大而增大C. c<0D. x=3是一元二次方程ax2+bx+c=0的一个根二、填空题(本大题共7小题,共28.0分)11.分解因式:2ax−4ay=______.12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.若|a−3|+√b+2=0,则a+b=______.14.若x−2y=−3,则5−x+2y=______.15.如图,在△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于M,N两点;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连结CD,若CD=AC,∠B=25°,则∠ACB的度数为________.16.如图,扇形的圆心角为120°,半径为6,将此扇形围成一个圆锥,则圆锥的底面半径为______.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:[(x+2y)(x−2y)−(x+4y)2]÷4y,其中x=1,y=4.四、解答题(本大题共7小题,共56.0分)19.“校园安全”受到全社会的广泛关注,“高远”中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下尚不完整的条形统计图,且知在抽样调查中“了解很少”的同学占抽样调查人数的50%,请你根据提供的信息解答下列问题:(1)接受问卷调查的学生共有多少名?(2)请补全条形统计图;(3)若“高远”中学共有1800名学生,请你估计该校学生对校园知识“基本了解”的有多少名?20.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.21. 已知方程组{5x +y =3ax +5y =4与方程组{x −2y =55x +by =1有相同的解,求a 、b 的值.22. 如图,⊙O 是△ABC 的外接圆,AC 是直径,弦BD =BA ,EB ⊥DC ,交DC 的延长线于点E .(1)求证:BE 是⊙O 的切线;(2)当sin∠BCE =34,AB =3时,求AD 的长.23. 某商店开学前用2000元购进一批学生书包,开学后发现供不应求,商店又购进第二批同样的书包,所购数量比第一批数量多了20个,但每个书包的进货价比第一批提高了20%,结果购进第二批书包用了3600元.(1)求第一批购进书包时每个书包的进货价是多少元?(2)若商店想销售第二批书包的利润至少为15%,则每个书包的售价至少定为多少元?(备注:×%)利润率=售价−进价进价24.如图,在平面直角坐标系中,短形ABCD的顶点B、C在x轴的正半轴上,AB=8,BC=6,(x>0)的图象经过点E,分别与AB、CD交于点对角线AC、BD相交于点E,反比例函数y=kxF,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.25.已知二次函数y=x2+(3−m)x−3m(其中0<m<3)的图象交x轴于AB两点,y轴于C点.(1)求点A、B、C的坐标(用m表示).(2)点P是其对称轴上的一点,当PB+PC的最小值等于3√2时,求抛物线的解析式.(3)在(2)的条件下过点A的直线l交抛物线另一个交点为Q,交y轴于D点,当Q为AD的中点时,求直线l的解析式.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.3.答案:D解析:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”求解即可.解:点N(2,5)关于x轴的对称点M的坐标是(2,−5).故选:D.4.答案:A解析:解:∵多边形有5条边,∴它的内角和=(5−2)×180°=540°,故选:A.根据多边形的内角和公式即可得到结论.本题考查了多边形的内角和外角,熟记多边形的内角和公式是解题的关键.5.答案:D解析:根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式有意义的条件,二次根式的被开方数是非负数.解:由题可得,3x+2≥0,x≥−2,3故选D6.答案:B解析:本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.如图:根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图:∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴BC=2DF,AB=2EF,AC=2DE;∴AB+BC+AC=2EF+2DF+2DE=2(EF+DF+DE)=2×18=36.故选B.7.答案:C解析:此题主要考查了二次函数图象与几何变换,关键是掌握“左加右减,上加下减”的平移规律.根据平移的规律求得解析式,化成一般式即可求得.解:∵抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=(x+1+2)2+2,即y=x2+6x+11,∴b=6,c=11.故选C.8.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:C解析:解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,∴∠DFC′=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=3,∴DF+2DF=3,解得:DF=1,∴DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,∵∠B′GE=∠AGC′=∠DC′F=30°,∴GE=2x,则√3(3−√3)+3x=3,解得:x=2−√3,∴GE=4−2√3;故选:C.由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=1,DC′=√3DF=√3,则C′A=3−√3,AG=√3(3−√3),设EB=x,则GE=2x,得出方程,解方程即可.本题考查了翻折变换的性质、正方形的性质、勾股定理、含30°角的直角三角形的性质等知识;熟练掌握翻折变换和正方形的性质,根据题意得出方程是解决问题的关键.10.答案:D解析:解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.11.答案:2a(x−2y)解析:解:2ax−4ay=2a(x−2y).故答案为:2a(x−2y).直接找出公因式2a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:1解析:解:由题意得,a−3=0,b+2=0,解得a=3,b=−2,所以,a+b=3+(−2)=1.故答案为:1.根据非负数的性质列式求出a、b的值,然后相加即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x−2y=−3,∴5−x+2y=5−(x−2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:105°解析:本题考查了基本作图中的垂直平分线的作法及线段的垂直平分线的性质,解题的关键是了解垂直平分线的做法.首先根据题目中的作图方法确定MN是线段BC的垂直平分线,然后利用垂直平分线的性质解题即可.解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,故答案为:105°.16.答案:2解析:解:设圆锥的底面半径为r,=4π,扇形的弧长为:120π×6180则2πr=4π,解得,r=2,故答案为:2.根据弧长公式求出扇形的弧长,根据圆锥的底面圆周长是扇形的弧长列式计算即可.本题考查的是圆锥的计算,掌握弧长公式、圆锥的底面圆周长是扇形的弧长是解题的关键.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,AB,∵AD=1.5+1=2.5=12∴OD=1AB=2.5,2∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=(x2−4y2−x2−8xy−16y2)÷4y=(−8xy−20y2)÷4y=−2x−5y当x=1,y=4时,原式=−2−20=−22,故答案为−22.解析:本题考查整式的化简求值.先运用整混合运算法则化简整式,再把x、y值代入计算即可.19.答案:解:(1)接受问卷调查的学生共有30÷50%=60(名);(2)“不了解”的人数为60−(15+5+30)=10,补全条形图如下:=450(名),(3)1800×1560答:估计该校学生对校园知识“基本了解”的有450名.解析:(1)根据“了解人很少”的人数及其所占百分比可得总人数;(2)总人数减去其它类型的人数,求得“不了解”的人数即可补全条形图;(3)总人数乘以样本中“基本了解”人数所占比例即可.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案:证明:(1)∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD≌△ACE(SAS);(2)△BOC 是等腰三角形,理由如下:∵△ABD≌△ACE ,∴∠ABD =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC −∠ABD =∠ACB −∠ACE ,∴∠OBC =∠OCB ,∴BO =CO ,∴△BOC 是等腰三角形.解析:(1)由“SAS ”可证△ABD≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC =∠OCB ,可得BO =CO ,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.21.答案:解:由题意得出:方程组{5x +y =3x −2y =5的解与题中两方程组解相同,解得:{x =1y =−2, 将x =1,y =−2代入ax +5y =4,解得:a −10=4,∴a =14,将x =1,y =−2,代入5x +by =1,得5−2b =1,∴b =2.解析:根据题意得出方程组{5x +y =3x −2y =5的解与题中两方程组解相同,进而得出x ,y 的值代入另两个方程求出a ,b 的值即可.此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.22.答案:解:(1)证明:连结OB ,OD ,在△ABO 和△DBO 中,{AB=BD BO=BO OA=OD,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB//ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线;(2)∵AC是直径,∴∠ABC=90°,∵∠OBA+∠OBC=∠EBC+∠OBC=90°,∴∠OBA=∠EBC,∴∠BAC=∠EBC,∵BE⊥DE,∴∠E=90°,∴∠BCE+∠EBC=∠BAC+∠ACB=90°,∵∠BAC=∠EBC,∴∠ACB=∠BCE,∵sin∠BCE=34,∴sin∠ACB=34,∵AB=3,∴AC=4,∵∠BDE=∠BAC,∴sin∠DBE=34,∵BD=AB=3,∴DE=94,∴BE=√BD2−DE2=3√74,∵∠CBE=∠BAC=∠BDC,∠E=∠E,∴△BDE∽△CBE,∴BECE =DEBE,∴CE=74,∴CD =12, ∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =√BD 2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设第一批购进书包的进货价是x 元,则第二批书包的进价是1.2x 元,2000x +20=36001.2x ,解得:x =50,经检验:x =50是原方程的解,答:第一批购进书包的进货价是50元;(2)设每个书包至少定价为y 元,得:y−50(1+20%)50×(1+20%)×100%≥15%,解得:y ≥69,答:设每个书包至少定价为69元.解析:(1)设第一批购进书包时每个书包的进货价是x 元,则第二批的进货价为(1+20%)x 元,根据题意,第二批所购数量比第一批数量多了20个,列方程求解;(2)设每个书包至少定价为y 元,根据题意得出不等式解答即可.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.答案:解:(1)∵矩形ABCD ,AB =8,BC =6,∴∠ABC =∠BCD =90°,∴AC =BD =10,∴BE =DE =12BD =5,AE =CE =12AC =5,∴AE =DE =CE =BE =5,作EH ⊥BC ,垂足为H ,∴BH =CH =12BC =3,∴EH =4,∵OC=8,∴OH=OC−CH=5,∴点E的坐标为(5,4),代入y=kx,得k=5×4=20;(2)∵BF−BE=2,BE=5,∴BF=7,设F(a,7),则E(a+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7a=4(a+3),解得a=4,∴F(4,7),∴k=28,∴反比例函数解析式为y=28x,当x=4+6=10时,y=2810=145,∴G(10,145),∴CG=145,作EM⊥DC,垂足为M,∵EH⊥BC,∴∠EHC=∠HCM=∠CME=90°,∴四边形EHCM是矩形,∴EM=CH=3,∴S△CEG=12CG×EM=12×145×3=215.解析:本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.(1)先利用矩形的性质求出点E的坐标(5,4),然后把E点坐标代入y=kx即可求得k的值;(2)因为BF−BE=2,BE=5,所以BF=7,设F(a,7),E(a+3,4),利用反比例函数图象上点的坐标得到7a=4(a+3),解得a=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.25.答案:解:(1)方程x2+(3−m)x−3m=0,解得:x=−3或x=m,把x=0代入函数式得y=−3m,则A(−3,0),B(m,0),C(0,−3m);(2)∵点A 、B 都是抛物线与x 轴的交点,∴A 、B 两点关于抛物线的对称轴对称,∴PB +PC 的最小值即为PA +PC 的最小值=√32+(3m)2=3√1+m 2=3√2,解得:m =1,则抛物线解析式为y =x 2+2x −3;(3)∵点Q 为AD 的中点,∴Q 的横坐标为点A 横坐标的一半,即为−32,把x =−32代入函数解析式得:y =−154,即Q(−32,−154),设直线l 的解析式为y =kx +b(k ≠0),把A(−3,0),Q(−32,−154)代入得:{−3k +b =0−32k +b =−154, 解得:{k =−52b =−152, 则直线l 的解析式为y =−52x −152.解析:(1)令y =0,得到关于x 的方程,求出方程的解得到x 的值,确定出A 与B 坐标,令x =0求出y 的值,确定出C 坐标;(2)由抛物线对称性得到PB +PC 的最小值即为PC +AP =AC ,利用勾股定理求出m 的值,确定出抛物线解析式即可;(3)由Q 为AD 中点,得到Q 的横坐标为A 横坐标的一半,代入解析式求出Q 坐标,利用待定系数法求出直线AQ 解析式即可.此题属于二次函数综合题,涉及的知识有:二次函数与坐标轴的交点,待定系数法确定函数解析式,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.。
2020年广东省中山市中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)的算术平方根是()A.B.C.±2D.22.(3分)如图是由4个大小相同的正方体组合而成的几何体,其俯视图是()A.B.C.D.3.(3分)PM2.5是指大气中直径不大于0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×105B.2.5×106C.2.5×10﹣5D.2.5×10﹣6 4.(3分)某校“环保小组”的5名同学在一次活动中捡废弃塑料袋的个数分别是:4,6,8,6,10,这组数据的中位数,众数分别为()A.8,6B.6,8C.6,6D.8,105.(3分)若一个正多边形的一个内角等于150°,则这个正多边形的边数是()A.9B.10C.11D.126.(3分)不等式组的解集是()A.x>1B.﹣3<x<1C.x>﹣3D.无解7.(3分)如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是()A.55°B.45°C.35°D.65°8.(3分)关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1B.m>﹣1C.m≤﹣1D.m<﹣19.(3分)下列所述的图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形B.等腰直角三角形C.菱形D.正五边形10.(3分)如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)函数y=中自变量x的取值范围是.12.(4分)计算3a6÷a2=.13.(4分)如图,已知AB是⊙O的直径,CD是⊙O的弦,∠ABD=65°,则∠BCD=.14.(4分)已知a与b互为相反数,则代数式a2+2ab+b2﹣2017的值为.15.(4分)如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC 长为半径画弧,与BC的延长线交于点E,则图中的长为.16.(4分)如图,E、F是?ABCD的边AD上的两点,△EOF的面积为4,△BOC的面积为9,四边形ABOE的面积为7,则图中阴影部分的面积为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:(﹣5)0+|﹣3|﹣2sin60°+(﹣)﹣1.18.(6分)先化简再求值:÷(x﹣)(其中x=)19.(6分)如图,已知△ABC,∠C=90°,点D在线段AC上,且CD=2AD.(1)过点D作AC的垂线,与AB交于点E(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,直接写出的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)据某网站调查,2016年全国网民们最关注的热点话题分别有:消费、教育、环保、反腐及其它共五类.根据调查的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)请补全条形统计图;(2)如果某市约有300万人口,请你估计该市最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,请用列表法或树形图法表示抽取的两人恰好是甲和乙的概率.21.(7分)如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD 相交于点F.(1)求证:△BFD是等腰三角形;(2)若BC=4,CD=2,求∠AFB的余弦值.22.(7分)某市计划举办青少年足球比赛,赛制采取双循环形式(即每两队之间都要打两场比赛),一共组织30场比赛.计分规则为胜一场得3分,平一场得1分,负一场得0分.(1)该市举办方应该邀请多少支球队参赛?(2)此次比赛结束后,如果其中一支参赛球队共平了4场,负了2场,则该球队此次比赛的总积分是多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知直线l:y=ax+b与反比例函数y=﹣的图象交于A(﹣4,1)、B(m,﹣4),且直线l与y轴交于点C.(1)求直线l的解析式;(2)若不等式ax+b>﹣成立,则x的取值范围是;(3)若直线x=n(n<0)与y轴平行,且与双曲线交于点D,与直线l交于点H,连接OD、OH、OA,当△ODH的面积是△OAC面积的一半时,求n的值.24.(9分)如图,AB是⊙O的直径,点P在⊙O上,且PA=PB,点M是⊙O 外一点,MB与⊙O相切于点B,连接OM,过点A作AC∥OM交⊙O于点C,连接BC交OM于点D.(1)求证:OD=AC;(2)求证:MC是⊙O的切线;(3)若MD=8,BC=12,连接PC,求PC的长.25.(9分)如图,在平面直角坐标系中,△ABC三个顶点坐标分别为A(﹣1,0)、B(4,0)、C(0,2),将△ABC绕点B顺时针旋转90°得到△A1BC1,有一条抛物线经过点A,且它的顶点为A1.(1)求该抛物线的解析式;(2)该抛物线是否经过点C1,请说明理由;(3)在抛物线的对称轴上是否存在一点Q,|QC﹣QC1|有最大值,若存在,请求出点Q的坐标,若不存在,请说明理由.2020年广东省中山市中考数学模拟试卷参考答案一、选择题(本大题10小题,每小题3分,共30分)1.B;2.A;3.D;4.C;5.D;6.B;7.A;8.A;9.C;10.C;二、填空题(本大题6小题,每小题4分,共24分)11.x≠3;12.3a4;13.25°;14.﹣2017;15.π;16.10;三、解答题(一)(本大题3小题,每小题6分,共18分)17.;18.;19.;四、解答题(二)(本大题3小题,每小题7分,共21分)20.;21.;22.;五、解答题(三)(本大题3小题,每小题9分,共27分)23.x<﹣4或0<x<1;24.;25.;。
广东省2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2014的相反数是()A. 2014B. 12014C. −12014D. −20142.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.点P(−3,−5)关于x轴对称的点为P1,则P1的坐标为()A. (−3,5)B. (3,−5)C. (−3,−5)D. (3,5)4.一个多边形有5条边,则它的内角和是()A. 540°B. 720°C. 900°D. 1080°5.式子√1−x在实数范围内有意义,则x的取值范围是()A. x≥1B. x≤1C. x≥−1D. x≤−16.如图,在△ABC中,E、D、F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A. 10B. 20C. 30D. 407.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x−1)2+1B. y=(x+1)2+1C. y=2(x−1)2+1D. y=2(x+1)2+18.不等式组{12−2x<203x−6≤0的解集是()A. −4<x≤6B. x≤−4或x>2C. −4<x≤2D. 2≤x<49.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.二次函数y=ax2+bx+c(a≠0)的图象如图.对称轴x=−1.下列结论:①4ac−b2<0;②4a+c<2b;③3b+2c<0.其中正确结论的个数是()A. 3个B. 2个C. 1个D. 0个二、填空题(本大题共7小题,共28.0分)11.分解因式:2ax−4ay=______.12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.已知√2a+8+|b−√3|=0,则ab=______.14.若2x+3y的值为−2,则4x+6y+2的值为______ .BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+3y)2+(x+2y)(x−2y)−2x2,其中x=2,y=−1.四、解答题(本大题共7小题,共56.0分)19.我区某校数学兴趣小组在本校学生中开展了以“垃圾分类知多少”为主题的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为四个等级:“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并根据调查所得到的结果绘制了如下不完整的统计图:根据以上信息解答下列问题:(1)求本次被调查的学生人数;(2)补全条形统计图;(3)若该校有学生1500人,请根据调查结果,估计这些学生中“比较了解”垃圾分类知识的人数.20.如图,∠A=∠D=90°,AB=CD,AC,BD相交于点E.求证:(1)△ABC≌△DCB;(2)△EBC是等腰三角形.21.设a,b,c是△ABC的三条边,关于x的方程12x2+√bx+c−12a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx−3m=0的两个根,求m的值.22.如图,⊙O是△ABC的外接圆,AC是直径,弦BD=BA,EB⊥DC,交DC的延长线于点E.(1)求证:BE是⊙O的切线;(2)当sin∠BCE=34,AB=3时,求AD的长.23.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?24.如图,在平面直角坐标系中,短形ABCD的顶点B、C在x轴的正半轴上,AB=8,BC=6,(x>0)的图象经过点E,分别与AB、CD交于点对角线AC、BD相交于点E,反比例函数y=kxF,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:A解析:本题主要考查了相反数,解题的关键是熟记相反数的定义.利用相反数的定义求解即可.解:−2014的相反数是2014.故选A.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.3.答案:A解析:解:根据平面直角坐标系中对称点的规律可知,点P(−3,−5)关于x轴的对称点为P1(−3,5).故选:A.根据平面直角坐标系中对称点的规律,关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:∵多边形有5条边,∴它的内角和=(5−2)×180°=540°,故选:A.根据多边形的内角和公式即可得到结论.本题考查了多边形的内角和外角,熟记多边形的内角和公式是解题的关键.5.答案:B解析:【分析】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.根据被开方数是非负数,可得答案.【解答】解:由√1−x在实数范围内有意义,得1−x≥0.解得x≤1,故选:B.6.答案:A解析:本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,DF=AE=12AB,再根据四边形的周长的定义计算即可得解.解:∵在△ABC中,E、D、F分别是AB、BC、CA的中点,∴DE=AF=12AC=2,DF=AE=12AB=3,∴四边形AEDF的周长是(2+3)×2=10.故选:A.7.答案:C解析:本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.根据平移规律,可得答案.解:根据图像可知函数解析式为:y=2x2−2,则平移后的解析式为:y=2(x−1)2+1.故选C.8.答案:C解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式12−2x<20,得:x>−4,解不等式3x−6≤0,得:x≤2,则不等式组的解集为−4<x≤2.故选:C.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:B解析:解:∵抛物线与x轴有交点,∴△>0,∴b2−4ac>0,∴4ac−b2<0,故①正确,∵x=−2时,y>0,∴4a−2b+c>0,∴4a+c>2b,故②错误,∴对称轴x=−1,=−1,∴−b2a∴b=2a,∴y=ax2+2ax+c,∵x=1时,y<0,∴3a+c<0,∴6a+2c<0,∴3b+2c<0,故③正确.故选:B.根据二次函数的性质以及图象信息,一一判断即可.本题考查二次函数的性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.答案:2a(x−2y)解析:解:2ax−4ay=2a(x−2y).故答案为:2a(x−2y).直接找出公因式2a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:−2解析:解:∵2x+3y=−2,∴原式=2(2x+3y)+2=2×(−2)+2=−2,故答案为:−2.将2x+3y=−2整体代入原式=2(2x+3y)+2即可得出答案.本题主要考查代数式的求值,熟练掌握整体代入的思想是解题的关键.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:(1)1;(2)14解析:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=√2,∴AB=√22BC=1;故答案为:1(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅1180,解得r=14.故答案为:14.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=√2,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=90⋅π⋅1,然后解180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=1AB,2∴OD=1AB=2.5,2∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=x²+6xy+9y²+x²−4y²−2x²=6xy+5y²当x=2,y=−1时,原式=6×2×(−1)+5×(−1)²=−12+5=−7解析:本题主要考查整式的混合运算.先算乘方及乘法,再合并同类项,最后把x、y的值代入计算.19.答案:解:(1)本次被调查的学生人数是36÷18%=200(人).答:本次被调查的学生人数是200人;(2)比较了解的人数是200−40−36−4=120(人).;=900(人).(3)比较了解垃圾分类的人数是1500×120200答:这些学生中“比较了解”垃圾分类知识的人数是900人.解析:(1)根据基本了解的人数是36,所占的百分比是18%,据此即可求得总人数;(2)利用总人数减去其它组的人数即可求得比较了解的人数,从而补全直方图;(3)利用总人数1500乘以对应的百分比即可求得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案:解:(1)∵∠A=∠D=90°,∴在Rt△ABC和Rt△DCB中,{BC=CBAB=DC,∴Rt△ABC≌Rt△DCB(HL).(2)∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴BE=CE,∴△EBC是等腰三角形.解析:本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL”可证Rt△ABC≌Rt△DCB;(2)由全等三角形的性质可得∠ACB=∠DBC,可得BE=CE,可得结论.21.答案:解:(1)∵12x2+√bx+c−12a=0有两个相等的实数根,∴△=(√b)2−4×12(c−12a)=0,整理得a+b−2c=0①,又∵3cx+2b=2a的根为x=0,∴a=b②,把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形;(2)a,b是方程x2+mx−3m=0的两个根,∴方程x2+mx−3m=0有两个相等的实数根∴△=m2−4×(−3m)=0,即m2+12m=0,∴m1=0,m2=−12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=−12.解析:(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,b的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可得到关于a,b的方程组,可求出a,b的关系式;(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m.本题主要考查了一元二次方程的判别式与方程的解得定义,是一个比较简单的问题.22.答案:解:(1)证明:连结OB,OD,在△ABO和△DBO中,{AB=BD BO=BO OA=OD,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB//ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线;(2)∵AC是直径,∴∠ABC=90°,∵∠OBA+∠OBC=∠EBC+∠OBC=90°,∴∠OBA=∠EBC,∴∠BAC=∠EBC,∵BE⊥DE,∴∠E=90°,∴∠BCE+∠EBC=∠BAC+∠ACB=90°,∵∠BAC=∠EBC,∴∠ACB=∠BCE,∵sin∠BCE=34,∴sin∠ACB=34,∵AB=3,∴AC=4,∵∠BDE=∠BAC,∴sin∠DBE=34,∵BD=AB=3,∴DE=94,∴BE=√BD2−DE2=3√74,∵∠CBE=∠BAC=∠BDC,∠E=∠E,∴△BDE∽△CBE ,∴BE CE =DE BE, ∴CE =74, ∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =√BD 2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设B 类玩具的进价为x 元,则A 类玩具的进价是(x +3)元由题意得900x+3=750x ,解得x =15,经检验x =15是原方程的解.所以15+3=18(元)答:A 类玩具的进价是18元,B 类玩具的进价是15元;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,由题意得:2a +10(100−a)≥1080,解得a ≥40.答:至少购进A 类玩具40个.解析:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力.(1)设B 的进价为x 元,则a 的进价是(x +3)元;根据用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同这个等量关系列出方程即可;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,结合“玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答. 24.答案:解:(1)∵矩形ABCD ,AB =8,BC =6,∴∠ABC =∠BCD =90°,∴AC =BD =10,∴BE=DE=12BD=5,AE=CE=12AC=5,∴AE=DE=CE=BE=5,作EH⊥BC,垂足为H,∴BH=CH=12BC=3,∴EH=4,∵OC=8,∴OH=OC−CH=5,∴点E的坐标为(5,4),代入y=kx,得k=5×4=20;(2)∵BF−BE=2,BE=5,∴BF=7,设F(a,7),则E(a+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7a=4(a+3),解得a=4,∴F(4,7),∴k=28,∴反比例函数解析式为y=28x,当x=4+6=10时,y=2810=145,∴G(10,145),∴CG=145,作EM⊥DC,垂足为M,∵EH⊥BC,∴∠EHC=∠HCM=∠CME=90°,∴四边形EHCM是矩形,∴EM=CH=3,∴S△CEG=12CG×EM=12×145×3=215.解析:本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.(1)先利用矩形的性质求出点E的坐标(5,4),然后把E点坐标代入y=kx即可求得k的值;(2)因为BF−BE=2,BE=5,所以BF=7,设F(a,7),E(a+3,4),利用反比例函数图象上点的坐标得到7a=4(a+3),解得a=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG 的面积.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A 的坐标为(1,0),点B 的坐标为(0,−4),∴OA =1,OB =4,在Rt △OAB 中,AB =√OA 2+OB 2=√17,①当PB =PA 时,PB =√17,∴OP =PB −OB =√17−4,此时点P 的坐标为(0,√17−4),②当PA =AB 时,OP =OB =4,此时点P 的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A 的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB =PA 、PA =AB 两种情况,根据等腰三角形的性质解答.。
2020年深圳市中考数学仿真模拟押题卷一.选择题(共12小题,满分36分,每小题3分)1.下列各数,最小的数是()A. -2020B. 0C.12020D. 320202.如图,大正方体上面正中间放置小正方体,小正方体6个表面写了数字1到6,且所相对面两个数字之和都是7,则这个几何体的左视图为()A. B. C. D.3.截至北京时间2020年7月17日7时17分,全球新冠肺炎累计确诊病例达到13920405例,累计死亡病例达到591640例.美国新冠肺炎累计确诊病例全球最多,达到3682463例,累计死亡病例达到140977例.下面是受疫情影响较大的四个国家国旗,其中既是轴对称图形,又是中心对称图形的是()A. 韩国国旗 B. 澳大利亚国旗C. 美国国旗D. 瑞士国旗4.如图是一个正方形的平面展开图,把展开图折叠成正方体后,“深”字一面相对面的字是()A. 中B. 考C. 数D. 学5.我国高铁发展迅速,截止2019年底,全国高铁总里程突破3.5万千米,稳居世界第一,将3.5万千米用科学记数法表示正确的是( ) A. 3.5×103米 B. 3.5×104米 C. 3.5×106米 D. 3.5×107 6.下列计算正确的是( ) A. b 6÷b 3=b 2B. b 3•b 3=b 9C. a 2+a 2=2a 2D. (a 3)3=a 67.抢微信红包已成为中国传统节日人们最喜爱的祝福方式,今年深圳中考前2天,小明在自己的微信群中发祝福红包,一共有10名好友抢到红包,抢到红包的金额情况如下: 金额(元)4.50 4.60 4.65 4.70 4.75 4.80人数(人) 132121则10名好友抢到金额的众数、中位数分别是( ) A. 4.60 4.65B. 4.60 4.675C. 4.60 4.70D. 4.70 4.6758.如图,AD ∥BC ,BD 为∠ABC 的角平分线,DE 、DF 分别是∠ADB 和∠ADC 的角平分线,且∠BDF =α,则以下∠A 与∠C 的关系正确的是( )A. ∠A =∠C +αB. ∠A =∠C +2αC. ∠A =2∠C +αD. ∠A =2∠C +2α9.如图,在ABC 中,90,28ACB B ∠=︒∠=︒.分别以点,A B 为圆心,大于12AB 的长为半径画弧,两弧交于点D 和E ,直线DE 交AB 于点F ,连结CF ,则AFC ∠的度数为( )A. 62B. 60︒C. 58D. 56︒10.一次函数y =ax +b 和反比例函数y cx=在同一平面直角坐标系中的图象如图所示,则二次函数y =ax 2-bx +c 的图象可能是( )A. B. C. D.11.下列命题中真命题是()A. 若a2=b2,则a=bB. 4的平方根是2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角12.如图,在矩形ABCD中,E,F分别是AD,BC的中点,AF与BE相交于点M,CE与DF相交于点N,QM⊥BE,QN⊥EC相交于点Q,PM⊥AF,PN⊥DF相交于点P,若2BC=3AB,记△ABM和△CDN的面积和为S,则四边形MQNP的面积为()A. 12S B.58S C.916S D.34S二.填空题(共4小题,满分12分,每小题3分)13.因式分解:9x2-81=____________________.14.端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他好朋友小悦,小悦拿到的两个粽子都是肉馅的概率是_____.15.定义一种新运算:1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4,……计算:100!98!=_______.16.如图,将反比例函数y=kx(k>0)的图象向左平移2个单位长度后记为图象c,c与y轴相交于点A,点P 为x 轴上一点,点A 关于点P 的对称点B 在图象c 上,以线段AB 为边作等边△ABC ,顶点C 恰好在反比例函数y =﹣kx(x >0)的图象上,则k =_____.三.解答题(共7小题,满分52分)17.计算:-12020+(2019-π)0-(12-)-3+|13-|-2sin 260°. 18.先化简:(1+211a -)÷1aa -,请在﹣1,0,1,2,3当中选一个合适的数a 代入求值. 19.绿色出行是对环境影响最小的出行方式,“共享单车”已成为深圳市的一道亮丽的风景线.某社会实践活动小组为了了解“共享单车”的使用情况,对本校师生在7月6日至7月10日使用单车的情况进行了问卷调查.以下是根据调查结果绘制的统计图的一部分:请根据以上信息解答下列问题: (1)7月7日使用“共享单车”的师生有 人,喜欢ofo 的扇形圆心角为 度;(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的师生做了进一步调查,每个人都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢mobike 的师生有36人.求喜欢ofo 的师生人数.20.如图,左图是一辆小型踏板电动车,右图为其示意图,点A 为座垫,AB ⊥BC ,AB 高度可调节,其初始高度为34cm ,CD 为车前柱,CD =120cm ,∠C =70°,根据该款车提供信息表明,当骑行者手臂DE 与车前柱DC 夹角为80°时,骑行者最舒适,若某人手臂长60cm ,肩膀到座垫的高度AE =42cm ,则座垫应调高多少厘米才能使得骑行最舒适?(参考数据sin 70°=0.94,cos 70°≈0.34,tan 70°≈2.75,精确到lcm )21.2020年6月开始,国家大力鼓励摆地摊,大学生小张摆摊销售一批充电小风扇,进价40元,经市场考察知,销售进价为52元时,可售出180个,且定价x(元)与销售减少量y(个)满足关系式:y=10(x -52).(1)若他打算获利2000元,且投资尽量少,则应进货多少个?定价是多少;(2)若他想获得最大利润,则定价及进货各是多少?22.如图,抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)求抛物线的解析式;(2)x轴上是否存在点P,使PC+12PB最小?若存在,请求出点P 的坐标及PC+12PB的最小值;若不存在,请说明理由;(3)连接BC,设E为线段BC中点.若M是抛物线上一动点,将点M绕点E旋转180°得到点N,当以B、C、M、N为顶点的四边形是矩形时,直接写出点N的坐标.23.已知四边形ABCD是菱形,AC、BD交于点E,点F在CB的延长线上,连结EF交AB于H,以EF为直径作⊙O,交直线AD于A、G两点,交BC于K点.(1)如图1,连结AF,求证:四边形AFBD是平行四边形;(2)如图2,当∠ABC=90°时,求tan∠EFC的值;(3)如图3,在(2)的条件下,连结OG,点P在弧FG上,过点P作PT∥OF交OG于T,PR∥OG交OF于R点,连结TR,若AG=2,在点P运动过程中,探究线段TR的长是否为定值,如果是,则求出这个定值;如果不是,请说明理由.2020年深圳市中考数学仿真模拟押题卷一.选择题(共12小题,满分36分,每小题3分)1.下列各数,最小的数是( ) A. -2020 B. 0 C.12020D.32020【答案】A 【解析】 【分析】根据实数的大小比较法则即可得.【详解】实数的大小比较法则:正数大于0,0大于负数,负数绝对值大的反而小, 则320202020120200-<-<<, 因此,最小的数是2020-, 故选:A .【点睛】本题考查了实数的大小比较法则,掌握理解实数的大小比较法则是解题关键.2.如图,大正方体上面正中间放置小正方体,小正方体6个表面写了数字1到6,且所相对面两个数字之和都是7,则这个几何体的左视图为( )A. B. C. D.【答案】D 【解析】 【分析】根据三视图的判断方法判断即可,根据数字之和等于7可得到结果; 【详解】由图可知,左视图是线面一个大正方形,上面一个小正方形,再根据相对面的数字之和等于7可得,小正方形上面的数字是4,故选:D.【点睛】本题主要考查了简单组合图形的三视图,准确判断出数字是解题的关键.3.截至北京时间2020年7月17日7时17分,全球新冠肺炎累计确诊病例达到13920405例,累计死亡病例达到591640例.美国新冠肺炎累计确诊病例全球最多,达到3682463例,累计死亡病例达到140977例.下面是受疫情影响较大的四个国家国旗,其中既是轴对称图形,又是中心对称图形的是()A. 韩国国旗B. 澳大利亚国旗C. 美国国旗D. 瑞士国旗【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念求解.【详解】解:A、外围三条短线要注意,不是轴对称图形,故此选项不符合题意;B、“米”字形不对称,不是轴对称图形,故此选项不合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.4.如图是一个正方形的平面展开图,把展开图折叠成正方体后,“深”字一面相对面的字是()A. 中B. 考C. 数D. 学【答案】D【解析】【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,相邻不可能相对,据此作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,,相邻不可能相对.“深”与“学”是相对面,“圳”与“考”是相对面,“中”与“数”是相对面.故选:D.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.我国高铁发展迅速,截止2019年底,全国高铁总里程突破3.5万千米,稳居世界第一,将3.5万千米用科学记数法表示正确的是()A. 3.5×103米B. 3.5×104米C. 3.5×106米D. 3.5×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:3.5万千米=35000千米=35000000米=3.5×107米,故选:D.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.6.下列计算正确的是()A. b6÷b3=b2B. b3•b3=b9C. a2+a2=2a2D. (a3)3=a6【答案】C【解析】【分析】根据同底数幂的除法运算法则、同底数幂的乘法运算法则、合并同类项法则以及幂的乘方运算法则分别化简得出答案.【详解】A.b6÷b3=b3,故此选项错误;B.b3•b3=b6,故此选项错误;C.a2+a2=2a2,正确;D.(a3)3=a9,故此选项错误.故选:C.【点睛】本题考查了同底数幂的除法运算法则、同底数幂的乘法运算法则、合并同类项法则以及幂的乘方运算法则。
绝密★启用前2020年广东省中考数学仿真模拟试卷一注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个选项是正确的,请把正确答案写在括号内.1.(3分)实数a,b在数轴上的对应点的位置如图所示,把a,b,0按照从小到大的顺序排列,正确的是()A.a<0<b B.0<a<b C.b<0<a D.0<b<a2.(3分)据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×107 3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形D.平行四边形4.(3分)下列运算中,正确的是()A.2x3+3x3=6x6B.2x3•3x3=6x6C.(x2)3=x5D.(﹣ab)2=a2b5.(3分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.6.(3分)已知点(2,3)在反比例函数y=的图象上,则该图象必过的点是()A.(1,6)B.(﹣6,1)C.(2,﹣3)D.(﹣3,2)7.(3分)一元二次方程2x2﹣x﹣1=0的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定8.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.99.(3分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.60°B.55°C.50°D.45°10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在相应的位置上11.(4分)=.12.(4分)分解因式:x2﹣9=.13.(4分)已知多边形每个内角都等于144°,则这个多边形是边形.14.(4分)在平面直角坐标系中,点P(4,﹣5)与点Q(﹣4,m+1)关于原点对称,那么m=.15.(4分)一次函数的图象经过点A(1,3)和B(3,1),它的解析式是.16.(4分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.17.(4分)一组数为:,3,6,10,15…则第8个数是.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)解方程组:.19.(6分)先化简,再求值:÷﹣x+1,其中x=﹣1.20.(6分)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了名学生;若该校共有1500名学生,估计全校爱好运动的学生共有名.(2)补全条形统计图,并计算阅读部分圆心角是度.(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?22.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.23.(8分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A 类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.25.(10分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个选项是正确的,请把正确答案写在括号内.1.(3分)实数a,b在数轴上的对应点的位置如图所示,把a,b,0按照从小到大的顺序排列,正确的是()A.a<0<b B.0<a<b C.b<0<a D.0<b<a【分析】根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,可得:a<0<b.【解答】解:根据图示,可得:a<0<b.故选:A.2.(3分)据统计,深圳户籍人口约为3700000人,将3700000用科学记数法表示为()A.37×105B.3.7×105C.3.7×106D.0.37×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于3700000人有7位,所以可以确定n=7﹣1=6.【解答】解:3700000=3.7×106,故选:C.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形B.圆C.矩形D.平行四边形【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:等边三角形不是中心对称图形,是轴对称图形,A不合题意;圆是中心对称图形,也是轴对称图形,B不合题意;矩形是中心对称图形,是轴对称图形,C不合题意;平行四边形是中心对称图形但不是轴对称图形,D符合题意,故选:D.4.(3分)下列运算中,正确的是()A.2x3+3x3=6x6B.2x3•3x3=6x6C.(x2)3=x5D.(﹣ab)2=a2b【分析】直接利用幂的乘方与积的乘方法则以及合并同类项、同底数幂的乘法运算法则进而得出答案.【解答】解:A、2x3+3x3=5x6,原计算错误,故此选项不符合题意;B、2x3•3x3=6x6,原计算正确,故此选项符合题意;C、(x2)3=x6,原计算错误,故此选项不符合题意;D、(﹣ab)2=a2b2,原计算错误,故此选项不符合题意;故选:B.5.(3分)一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.【分析】让绿灯亮的时间除以时间总数60即为所求的概率.【解答】解:一共是60秒,绿的是25秒,所以绿灯的概率是.故选:C.6.(3分)已知点(2,3)在反比例函数y=的图象上,则该图象必过的点是()A.(1,6)B.(﹣6,1)C.(2,﹣3)D.(﹣3,2)【分析】把已知点代入反比比例函数解析式求出k,然后判断各选项点的坐标是否符合即可.【解答】解:∵点(2,3)在y=上,∴k=2×3=6,A选项1×6=k,符合题意;故选:A.7.(3分)一元二次方程2x2﹣x﹣1=0的根的情况()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】把a=2,b=﹣1,c=﹣1代入△=b2﹣4ac,计算△,再根据计算结果判断方程根的情况.【解答】解:∵a=2,b=﹣1,c=﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×2×(﹣1)=9>0,∴方程有两个不相等的实数根.故选:A.8.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.9【分析】先依据非负数的性质求得a、b的值,然后再代入求解即可.【解答】解:∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3.∴原式=(﹣3)2=9.故选:D.9.(3分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.60°B.55°C.50°D.45°【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选:C.10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选:A.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在相应的位置上11.(4分)=1.【分析】根据负整数指数幂和零指数幂运算法则进行计算即可.【解答】解:=2﹣1=1;故答案为:1.12.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).13.(4分)已知多边形每个内角都等于144°,则这个多边形是十边形.【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,∴这个多边形的边数是10.故答案为:十.14.(4分)在平面直角坐标系中,点P(4,﹣5)与点Q(﹣4,m+1)关于原点对称,那么m=4.【分析】直接利用关于原点对称点的性质得出m的值即可.【解答】解:∵点P(4,﹣5)与点Q(﹣4,m+1)关于原点对称,∴m+1=5,解得:m=4,故答案为:4.15.(4分)一次函数的图象经过点A(1,3)和B(3,1),它的解析式是y=﹣x+4.【分析】根据一次函数图象过A(1,3),B(3,1).然后将其代入一次函数的解析式,利用待定系数法求该函数的解析式.【解答】解:设直线AB的函数解析式为y=kx+b(k、b为常数且k≠0)∵一次函数的图象经过点A(1,3),B(3,1).∴,解得.∴直线AB的函数解析式为y=﹣x+4,故答案为y=﹣x+4.16.(4分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为4﹣.【分析】连接BG,CG得到△BCG是等边三角形.求得∠CBG=∠BCG=60°,推出∠DCG=30°,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=60°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.17.(4分)一组数为:,3,6,10,15…则第8个数是36.【分析】根据题意,可得:第一个数加上2等于第二个数,第二个数加上3等于第三个数,第三个数加上4等于第二个数,所以相邻的两个数的差分别是:2、3、4、…,据此求出第8个数是多少即可.【解答】解:3﹣=26﹣3=310﹣6=4∴相邻的两个数的差分别是:2、3、4、…,∴第8个数是:15+6+7+8=36.故答案为:36.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=8,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.19.(6分)先化简,再求值:÷﹣x+1,其中x=﹣1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•(x+1)﹣(x﹣1)=﹣=,当x=﹣1时,原式==.20.(6分)如图,已知平行四边形ABCD,(1)作∠B的平分线交AD于E点.(用尺规作图法,保留作图痕迹,不要求写作法)(2)若平行四边形ABCD的周长为10,CD=2,求DE的长.【分析】(1)利用基本作图作BE平分∠ABC;(2)先根据平行四边形的性质得到AD∥BC,AB=CD=2,AD=BC,则AD=3,再证明∠ABE=∠AEB得到AE=AB=2,然后计算AD﹣AE即可.【解答】解:(1)如图,BE为所作;(2)∵四边形ABCD为平行四边形,∴AD∥BC,AB=CD=2,AD=BC,∵平行四边形ABCD的周长为10∴AB+AD=5,∴AD=3,∵BE平分∠ABC,∴∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=2,∴DE=AD﹣AE=3﹣2=1.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了100名学生;若该校共有1500名学生,估计全校爱好运动的学生共有600名.(2)补全条形统计图,并计算阅读部分圆心角是108度.(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?【分析】(1)根据娱乐的人数以及百分比求出总人数即可.(2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.(3)根据总人数,个体,百分比之间的关系解决问题即可.【解答】解:(1)总人数=20÷20%=100(名),若该校共有1500名学生,估计全校爱好运动的学生有1500×=600(名).故答案为100,600.(2)圆心角=360°×108°,条形图如图所示:故答案为108.(3)150÷30%=500(名),答:估计九年级有500名学生.22.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.若AC=2,CE=4;(1)求证:四边形ACED是平行四边形.(2)求BC的长.【分析】(1)先根据垂直于同一条直线的两直线平行,得AC∥DE,又CE∥AD,所以四边形ACED是平行四边形;(2)四边形ACED是平行四边形,可得DE=AC=2.由勾股定理和中线的定义得到结论.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD===2.∵D是BC的中点,∴BC=2CD=4.23.(8分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A 类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?【分析】(1)设B的进价为x元,则a的进价是(x+3)元;根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.(2)设A玩具a个,则B玩具(100﹣a)个,结合“玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答.【解答】解:(1)设B的进价为x元,则a的进价是(x+3)元由题意得=,解得x=15,经检验x=15是原方程的解.所以15+3=18(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具(100﹣a)个,由题意得:12a+10(100﹣a)≥1080,解得a≥40.答:至少购进A40个.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:△DAF≌△DCE.(2)求证:DE是⊙O的切线.(3)若BF=2,DH=,求四边形ABCD的面积.【分析】(1)利用SAS证明△DAF≌△DCE;(2)利用(1)中全等三角形的性质可得:∠DF A=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.(2)连接AH,求出DB=2DH=2,则四边形ABCD的面积=2△ABD的面积.【解答】(1)证明:如图,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS);(2)由(1)知,△DAF≌△DCE,则∠DF A=∠DEC.∵AD是⊙O的直径,∴∠DF A=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DF A=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴AD2﹣(AD﹣2)2=(2)2﹣22,∴AD=5.∴AH===2∴S四边形ABCD=2S△ABD=2וAH=BD•AH=2×2=20.即四边形ABCD的面积是20.25.(10分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.【分析】(1)首先得出A点坐标,再利用待定系数法求出二次函数解析式即可;(2)首先表示出DF的长,再利用S△ADC=S△ADF+S△DFC,进而得出面积与点坐标的函数解析式,即可求最值得出答案;(3))①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),求出直线AD′与抛物线的交点即可解决问题.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。
广东省2020年中考数学模拟试卷--解析版-CAL-FENGHAI.-(YICAI)-Company One1广东省2020年中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105 3.(3分)如图所示的几何体左视图是()A.B.C.D.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.45.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣27.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5 10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=.12.(4分)分解因式:3y2﹣12=.13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为.17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【解答】解:∵﹣3<﹣<0<0.3∴最大为0.3故选:A.2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35000=3.5×104.故选:A.3.(3分)如图所示的几何体左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形中间为虚线,故选:C.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.4【分析】将这组数据从小到大重新排列后为﹣2,0,1,3,4;最中间的数1即中位数【解答】解:将这组数据从小到大重新排列后为﹣2,0,1,3,4;.所以中位数为1.故选:B.5.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣2【分析】因为表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点,所以x>﹣2.【解答】解:∵表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点∴x>﹣2故选:D.7.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a【分析】由D、E分别是AB、AC的中点,可得出DE∥BC、BC=2DE,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出S△ABC=4a,再根据S△BDEC =S△ABC﹣S△ADE即可求出四边形BDEC的面积.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∴△ADE∽△ABC,∴=()2=4,∴S△ABC=4a,∴S△BDEC=S△ABC﹣S△ADE=3a.故选:C.8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°【分析】先根据三角形外角的性质可求∠ABD,再根据平行线的性质可求∠AFE的度数.【解答】解:∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC∥EG,∴∠AFE=110°.故选:B.9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b =﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】根据点Q的位置分两种情况讨论,当点Q在AB上运动时,求得y 与x之间函数解析式,当点Q在BC上运动时,求得y与x之间函数解析式,最后根据分段函数的图象进行判断即可.【解答】解:由题得,点Q移动的路程为2x,点P移动的路程为x,∠A=∠C=60°,AB=BC=2,①如图,当点Q在AB上运动时,过点Q作QD⊥AC于D,则AQ=2x,DQ=x,AP=x,∴△APQ的面积y=×x×x=(0<x≤1),即当0<x≤1时,函数图象为开口向上的抛物线的一部分,故(A)、(B)排除;②如图,当点Q在BC上运动时,过点Q作QE⊥AC于E,则CQ=4﹣2x,EQ=2﹣x,AP=x,∴△APQ的面积y=×x×(2﹣x)=﹣+x(1<x≤2),即当1<x≤2时,函数图象为开口向下的抛物线的一部分,故(C)排除,而(D)正确;故选:D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=148°.【分析】直接利用圆周角定理求解.【解答】解:∠BOC=2∠BAC=2×74°=148°.故答案为148°.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【分析】先提公因式,在利用平方差公式因式分解.【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9 .【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为±3 .【分析】根据非负数的性质,求出x、y的值,代入原式可得答案.【解答】解:∵+|y+2|=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴x2﹣4y=1+8=9,∴x2﹣4y的平方根为±3,故答案为:±3.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为9﹣3π.【分析】连接OF、OE、OD,如图,在Rt△OBF中利用三角函数的定义求出∠OFB=60°,再利用切线的性质和切线长定理得到∠OFE=∠OFB=60°,OE⊥DF,所以∠BFE=120°,则∠ADE=60°,同样可得∠ADO=∠EDO=30°,利用含30度的直角三角形三边的关系求出AD=OA=3,所以S△=;接着计算出∠AOE=120°,于是得到S扇形AO=3π,然后利用阴影ADO部分的面积=四边形AOED的面积﹣扇形AOE的面积进行计算即可.【解答】解:连接OF、OE、OD,如图,在Rt△OBF中,∵tan∠OFB===,∴∠OFB=60°,∵BF⊥AB,∴BF为切线,∵DF为切线,∴∠OFE=∠OFB=60°,OE⊥DF,∴∠BFE=120°,∵BC∥AD,∴∠ADE=60°,∵AD⊥AB,∴AD为切线,而DE为切线,∴∠ADO=∠EDO=30°,在Rt△AOD中,AD=OA=3,∴S△ADO=×3×3=;∵∠AOE=180°﹣∠ADE=120°,∴S扇形AOE==3π,∴阴影部分的面积=四边形AOED的面积﹣扇形AOE的面积=2×﹣3π=9﹣3π.故答案为9﹣3π.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB+B1C=2+a,A2(2+a,a).1∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB+B2D=2+b,A3(2+b,b).2∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是①②③⑤.【分析】由角平分线的定义和矩形的性质可证明∠AEB=∠ABE,可求得AE =AB=2,在Rt△ADE中可求得DE=1,则EC=1,又可证明△PEC∽△PBF,可求得BF=2,可判定①;在Rt△PBF中可求得PF,可判定②;在Rt△BCE中可求得BE=2,可得∠BEF=∠F,可判定③;容易计算出S矩形ABCD和S△BPF;可判定④;由AE=AB=BE可判定⑤;可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB∥CD,∴∠CEB=∠ABE,又∵BE平分∠AEC,∴∠AEB=∠CEB,∴∠AEB=∠ABE,∴AE=AB=2,在Rt△ADE中,AD=,AE=2,由勾股定理可求得DE=1,∴CE=CD﹣DE=2﹣1=1,∵DC∥AB,∴△PCE∽△PBF,∴=,即==,∴BF=2,∴AB=BF,∴点B平分线段AF,故①正确;∵BC=AD=,∴BP=,在Rt△BPF中,BF=2,由勾股定理可求得PF===,∵DE=1,∴PF=DE,故②正确;在Rt△BCE中,EC=1,BC=,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC,故③正确;∵AB=2,AD=,∴S矩形ABCD=AB•AD=2×=2,∵BF=2,BP=,∴S△BPF=BF•BP=×2×=,∴4S△BPF=,∴S矩形ABCD=≠4S△BPF,故④不正确;由上可知AB=AE=BE=2,∴△AEB为正三角形,故⑤正确;综上可知正确的结论为:①②③⑤.故答案为:①②③⑤.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.【解答】解:原式=2﹣1+6+4=11.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后计算得到最简结果,把a=2代入计算即可求出值.【解答】解:原式=•﹣=﹣=﹣,则当a=2时,原式有意义,原式=﹣1.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)利用菱形的性质得AD∥BC,∠ABD=∠CBD=75°,则∠ABC=150°,再利用平行线的性质得∠A=180°﹣∠ABC=180°﹣150°=30°,接着根据线段垂直平分线的性质得AF=BF,则∠A=∠FBA=30°,然后计算∠ABD ﹣∠FBA即可.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC,DA∥CB,∴∠ABC+∠A=180°.又∵∠A=30°,∴∠ABC=150°.∴∠ABD=∠DBC=75°,∵EF垂直平分线段AB,∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBA=75°﹣30°=45°.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【解答】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.【分析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得的值.②先利用的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.【解答】(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC•CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为325.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.【分析】(1)①由题意,令y=0,解得C(﹣2,0),D(6,0)得CD=8,令x=0,解得y=﹣12a,且a>0,A(0,﹣12a),即OA=12a,由S△==48a=16,解得:,所求抛物线的解析式为ACD=;②由于∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1得,设S(t,0)(0≤t≤6),则SP=,SC=t+2,可得t=0时,最大值为2;(2)分两种情况讨论,①由直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°,当点N在y轴的左侧时,此时∠MAO=30°得直线AM的解析式为:得点M的横坐标为得;②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°,得直线AF的解析式为:,点G横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a>,因此满足∠MAB=75°的点M有且只有两个,则a的取值范围为:.【解答】解:(1)①由题意,令y=0,解得x1=﹣2,x2=6∴C(﹣2,0),D(6,0)∴CD=8.令x=0,解得y=﹣12a,且a>0∴A(0,﹣12a),即OA=12a∴S△ACD==48a=16,解得:所求抛物线的解析式为=②由题意知,∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1∴设S(t,0)(0≤t≤6),则SP=,SC=t+2∴∵0≤t≤6∴t=0时,最大值为2;(2)由题意,直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°如图2当点M在y轴的左侧时,此时∠MAO=30°设直线AM与x轴交于点E,则OE=∴又∵A(0,﹣12a),∴直线AM的解析式为:由得:解得:∴点M的横坐标为∵②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°∴∴直线AF的解析式为:由,解得:∴点G 横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a >,故要使满足∠MAB=75°的点M有且只有两个,则a 的取值范围为:.31。
2020年广东中考数学仿真模拟卷(本卷满分120分,考试时长90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.如果a 与-2互为相反数,那么a 等于( ) A .-2 B .2C .-12D .122.已知∠A =55°,则它的余角是( ) A .55° B .45°C .35°D .25°3.我们的祖国地域辽阔,其中领水面积约为370 000 km 2.把370 000这个数用科学记数法表示为( ) A .37×104 B .3.7×105C .0.37×106D .3.7×1064.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .正三角形 B .平行四边形C .正五边形D .圆5.x =1是关于x 的一元二次方程x 2+ax +2b =0的解,则2a +4b =( ) A .-2 B .-3C .-1D .-66.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6 B .6.5C .7D .87.下列函数中,函数值y 随自变量x 的值增大而增大的是( ) A .y =x 3B .y =-x3C .y =3xD .y =-3x8.下列运算正确的是( ) A .4x ·2x =8x B .(-a 3b 2)2=-a 6b 4 C .x 9÷x 3=x 3D .2m +3m =5m 9.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,连接AC ,BC ,AD ,CD ,若∠CAB =60°,则∠D 的度数是( ) A .25° B .30°C .35°D .60°10.如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC ,CE ,EF ,AF ,则下列描述正确的是( ) A .四边形ACEF 是平行四边形,它的周长是4 B .四边形ACEF 是矩形,它的周长是2+23 C .四边形ACEF 是平行四边形,它的周长是43 D .四边形ACEF 是矩形,它的周长是4+4 3 二、填空题(本大题共7小题,每小题4分,共28分) 11.实数4的算术平方根为 . 12.因式分解:2x 2-8= .13.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 .第13题图 第15题图 第16题图 14.已知a -b =3,则a (a -2b )+b 2的值为 .15.如图,在正五边形ABCDE 中,对角线AC 与BE 相交于点F ,则∠AFE = .16.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多 个.(用含n 的代数式表示)17.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向向右平移,得到△A ′B ′C ′,当两个三角形重叠部分的面积为32时,它移动的距离AA ′等于 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:⎝⎛⎭⎫-12-1+2cos 30°-|1-3|+(π-2020)0.19.先化简式子⎝ ⎛⎭⎪⎫a 2-2a a 2-4a +4+1÷a 2-1a 2+a,再在-2,-1,0,1,2中选取一个合适的数作为a 的值代入求值.20.如图,在△ABC中,∠ACB>∠ABC.(1)用直尺和圆规在∠ACB的内部作射线CM,使∠ACM=∠ABC(保留作图痕迹,不要求写作法);(2)若(1)中的射线CM交AB于点D,AB=9,AC=6,求AD的长.四、解答题(二)(本大题共3小题,每小题8分,共24分)21.某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是多少元/千克?(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围.22.某校为了庆祝新中国成立七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”“舞蹈”“小品”“相声”“其他”五个选项中选择一个,并将调查结果绘制成如下不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其他b在此次调查中,该校一共调查了名学生;(2)a=,b=;(3)在扇形统计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1 200名学生,请你估计最喜爱“相声”的学生的人数.23.在平面直角坐标系xOy中(如图),已知抛物线y=x2-2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①求抛物线y=x2-2x的“不动点”的坐标;②平移抛物线y=x2-2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的解析式.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P 作射线l ⊥AB ,分别交弦BC ,于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是的中点时,①若∠BAC =60°,判断以O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.25.如图,在平面直角坐标系中,矩形ABCD 的边AB 在x 轴上,AB ,BC 的长分别是一元二次方程x 2-7x +12=0的两个根(BC >AB ),OA =2OB ,边CD 交y 轴于点E ,动点P 以每秒1个单位长度的速度,从点E 出发沿折线段ED -DA 向点A 运动,运动的时间为t (0≤t <6)秒,设△BOP 与矩形AOED 重叠部分的面积为S . (1)求点D 的坐标;(2)求S 关于t 的函数关系式,并写出自变量的取值范围;(3)在点P 的运动过程中,是否存在点P ,使△BEP 为等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案1.B 2.C 3.B 4.D 5.A 6.C 7.A 8.D 9.B 10.B 11.2 12.2(x +2)(x -2) 13.25 14.9 15.72°16.(4n +3) 17.4或8 18.解:原式=-2+2×32-3+1+1=0. 19.解:原式=⎣⎢⎡⎦⎥⎤a (a -2)(a -2)2+1·a (a +1)(a +1)(a -1)=⎝⎛⎭⎫a a -2+1·a (a +1)(a +1)(a -1)=2a a -2, 当a =-2时,原式=2×(-2)-2-2=1.20.解:(1)如图,射线CM 即为所求.(2)∵∠ACD =∠ABC ,∠CAD =∠BAC , ∴△ACD ∽△ABC , ∴AD AC =AC AB ,即AD 6=69,∴AD =4. 21.解:(1)降价前苹果的销售单价是640÷40=16(元/千克). (2)降价后销售的苹果千克数是(760-640)÷(16-4)=10,设降价后销售金额y (元)与销售量x (千克)之间的函数解析式是y =kx +b ,该函数过点(40,640),(50,760),则⎩⎪⎨⎪⎧ 40k +b =64050k +b =760,得⎩⎪⎨⎪⎧k =12b =160, 即降价后销售金额y (元)与销售量x (千克)之间的函数解析式是y =12x +160(40<x ≤50). 22.解:(1)50 (2)8 5 (3)360°×1550=108°.答:“歌曲”所在扇形的圆心角的度数为108°. (4)1 200×1050=240(人).答:该校1 200名学生中最喜爱“相声”的学生大约有240人. 23.解:(1)∵a =1>0,故该抛物线开口向上,顶点A 的坐标为(1,-1).(2)①设抛物线“不动点”坐标为(t,t),则t=t2-2t,解得t=0或3,故“不动点”坐标为(0,0)或(3,3).②当OC∥AB时,∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,-1),点B(m,m),∴m=-1,故新抛物线是由抛物线y=x2-2x向左平移2个单位长度得到的,即y=(x+1)2-1;当OB∥AC时,同理可得抛物线的解析式为y=(x-2)2+2,此时四边形OACB是梯形,字母顺序不对,故舍去.综上,新抛物线的解析式为y=(x+1)2-1.24.(1)证明:如图,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD,∴∠FCD=∠FDC,∵∠FDC=∠BDP,∴∠OCB+∠FCD=90°,∴OC⊥FC,∴FC是⊙O的切线.(2)解:如图,连接OC,OE,BE,CE,设OE与BC交于H.①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC,∴四边形OBEC是菱形.②∵tan ∠ABC =AC BC =34,设AC =3k ,BC =4k (k >0),由勾股定理得AC 2+BC 2=AB 2,即(3k )2+(4k )2=202,解得k =4, ∴AC =12,BC =16, ∵点E 是的中点,∴OE ⊥BC ,BH =CH =8,∴OE ×BH =OB ×PE ,即10×8=10PE ,解得PE =8, 由勾股定理得OP =OE 2-PE 2=102-82=6, ∴BP =OB -OP =10-6=4,∵tan ∠ABC =DP BP =34,∴DP =34BP =34×4=3,∴DE =PE -DP =8-3=5.25.解:(1)∵x 2-7x +12=0,∴x 1=3,x 2=4, ∵BC >AB ,∴BC =4,AB =3, ∵OA =2OB ,∴OA =2,OB =1,∵四边形ABCD 是矩形,∴点D 的坐标为(-2,4). (2)设BP 交y 轴于点F , 如图1,当0≤t ≤2时,PE =t ,图1∵CD ∥AB ,∴△OBF ∽△EPF , ∴OF EF =OB EP ,即OF 4-OF =1t ,∴OF =4t +1, ∴S =12OF ·PE =12·4t +1·t =2t t +1;如图2,当2<t <6时,AP =6-t ,图2∵OE ∥AD ,∴△OBF ∽△ABP , ∴OF AP =OB AB ,即OF 6-t =13,∴OF =6-t 3, ∴S =12OF ·OA =12×6-t 3×2=-13t +2.综上所述,S =⎩⎨⎧2tt +1(0≤t ≤2)-13t +2(2<t <6).(3)由题意知,当点P 在DE 上时,显然不能构成等腰三角形. 当点P 在DA 上运动时,设P (-2,m ), ∵B (1,0),E (0,4),∴BP 2=9+m 2,BE 2=1+16=17,PE 2=4+(m -4)2=m 2-8m +20, ①当BP =BE 时,9+m 2=17,解得m =±2 2,则P (-2,2 2); ②当BP =PE 时,9+m 2=m 2-8m +20,解得m =118,则P ⎝⎛⎭⎫-2,118; ③当BE =PE 时,17=m 2-8m +20,解得m =4±13,则P (-2,4-13). 综上,P (-2,2 2)或⎝⎛⎭⎫-2,118或(-2,4-13).。
广东省清远市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.数据−1,0,0,1,2的中位数是()A. −1B. 0C. 1D. 23.点M(−1,−2)关于x轴对称的点的坐标为()A. (−1,−2)B. (1,−2)C. (−1,2)D. (1,2)4.若多边形的边数增加1,则其内角和的度数()A. 增加180°B. 其内角和为360°C. 其内角和不变D. 其外角和减少5.使式子√3x+2有意义的实数x的取值范围是()A. x≥0B. x>−23C. x≥−32D. x≥−236.如图,在△ABC中,E、D、F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A. 10B. 20C. 30D. 407.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x−1)2+1B. y=(x+1)2+1C. y=2(x−1)2+1D. y=2(x+1)2+18.不等式组{x−2<03x<4x+3的解集为()A. −3<x<2B. −3<x<−2C. x<2D. x>−39.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D.√310.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论正确的是()A. 当x<2时,y随x增大而增大B. a−b+c<0C. 拋物线过点(−4,0)D. 4a+b+c=0二、填空题(本大题共7小题,共28.0分)11.分解因式:2ax−4ay=______.12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.若|a−3|+√b+2=0,则a+b=______.14.若x−2y=−3,则5−x+2y=______.15.如图,分别以线段BC的两个端点为圆心,以大于12BC长为半径画弧,两弧分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是2√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,已知点A(1,0)、B(1−t,0)、C(1+t,0)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是____.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+2y)(x−2y)+(20xy3−8x2y2)÷4xy,其中x=2018,y=2019.四、解答题(本大题共7小题,共56.0分)19.“校园安全”受到全社会的广泛关注,“高远”中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下尚不完整的条形统计图,且知在抽样调查中“了解很少”的同学占抽样调查人数的50%,请你根据提供的信息解答下列问题:(1)接受问卷调查的学生共有多少名?(2)请补全条形统计图;(3)若“高远”中学共有1800名学生,请你估计该校学生对校园知识“基本了解”的有多少名?20.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.21. 已知方程组{5x +y =3ax +5y =4与方程组{x −2y =55x +by =1有相同的解,求a 、b 的值.22. 如图,⊙O 是△ABC 的外接圆,AC 是直径,弦BD =BA ,EB ⊥DC ,交DC 的延长线于点E .(1)求证:BE 是⊙O 的切线;(2)当sin∠BCE =34,AB =3时,求AD 的长.23. 某商店开学前用2000元购进一批学生书包,开学后发现供不应求,商店又购进第二批同样的书包,所购数量比第一批数量多了20个,但每个书包的进货价比第一批提高了20%,结果购进第二批书包用了3600元.(1)求第一批购进书包时每个书包的进货价是多少元?(2)若商店想销售第二批书包的利润至少为15%,则每个书包的售价至少定为多少元?(备注:利润率=售价−进价进价×%)24.(本题12分)在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数(k>0)在第一象限内过点A,且与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若F为BC的中点,且S△AOF=24,求OA长及点C坐标;25.已知二次函数y=x2+(3−m)x−3m(其中0<m<3)的图象交x轴于AB两点,y轴于C点.(1)求点A、B、C的坐标(用m表示).(2)点P是其对称轴上的一点,当PB+PC的最小值等于3√2时,求抛物线的解析式.(3)在(2)的条件下过点A的直线l交抛物线另一个交点为Q,交y轴于D点,当Q为AD的中点时,求直线l的解析式.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:解:从小到大排列为:−1,0,0,1,2,则处于中间位置的是第3个数,所以中位数是0,故选B.先把这组数据从小到大排列起来,再根据中位数的定义进行解答即可.本题考查了中位数的定义:掌握中位数的定义即把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数是解题的关键.3.答案:C解析:解:点M(−1,−2)关于x轴对称的点的坐标为(−1,2).故选:C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:是多边形的边数为n,则原多边形的内角和为(n−2)⋅180°,边数增加后的多边形的内角和为(n+1−2)⋅180°,∴(n+1−2)⋅180°−(n−2)⋅180°=180°,∴其内角和的度数增加180°.故选:A.根据多边形的内角和公式(n−2)⋅180°列式求解即可.本题考查了多边形的内角和公式,熟记公式是解题的关键.5.答案:D解析:根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式有意义的条件,二次根式的被开方数是非负数.解:由题可得,3x+2≥0,x≥−23,故选D6.答案:A解析:本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,DF=AE=12AB,再根据四边形的周长的定义计算即可得解.解:∵在△ABC中,E、D、F分别是AB、BC、CA的中点,∴DE=AF=12AC=2,DF=AE=12AB=3,∴四边形AEDF的周长是(2+3)×2=10.故选:A.7.答案:C解析:本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.根据平移规律,可得答案.解:根据图像可知函数解析式为:y=2x2−2,则平移后的解析式为:y=2(x−1)2+1.故选C.8.答案:A解析:解:解不等式x−2<0,得:x<2,解不等式3x<4x+3,得:x>−3,则不等式组的解集为−3<x<2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:D解析:解:∵抛物线的对称轴为直线x=2,∴当x<2时,y随x增大而减小;所以A选项错误;∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(0,0),所以C选项错误;∴当x=−1时,y>0,即a−b+c>0,所以B选项错误;=2,即b=−4a,∵x=−b2a∴4a+b+c=4a−4a+c=c,而抛物线过(0,0),∴c=0,所以D选项正确.故选:D.根据二次函数的性质对A进行判断;利用对称性得到抛物线与x轴的另一个交点坐标为(0,0),则可对C进行判断;利用x=−1,y>0可对B进行判断;利用对称轴方程得到b=−4a,则4a+b+c=c,则利用抛物线过(0,0)可对D进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点个数:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.11.答案:2a(x−2y)解析:解:2ax−4ay=2a(x−2y).故答案为:2a(x−2y).直接找出公因式2a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:1解析:解:由题意得,a−3=0,b+2=0,解得a=3,b=−2,所以,a+b=3+(−2)=1.故答案为:1.根据非负数的性质列式求出a、b的值,然后相加即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:8解析:解:∵x −2y =−3,∴5−x +2y =5−(x −2y)=5−(−3)=8.故本题答案为8.将已知条件整体代入所求代数式即可.本题考查了代数式的求值,根据已知条件,运用整体代入的思想解题.15.答案:6解析:解:由作图可知:AE 垂直平分线段BC ,∴AB =AC ,BF =CF ,∴∠B =∠C =60°,∵AB =12cm ,∠BAF =90°−60°=30°,∴BF =12AB =6(cm) 故答案为:6.首先证明AB =AC ,BF =CF ,在Rt △ABF 中求出BF 即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:12解析:解:∵⊙O 的直径BC =2√2,∴AB =√22BC =2,设圆锥的底面圆的半径为r ,则2πr =90π×2180,解得r =12,即圆锥的底面圆的半径为12米.故答案为12.先利用△ABC 为等腰直角三角形得到AB =2,再设圆锥的底面圆的半径为r ,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr =90π×2180,然后解方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.答案:√13−1解析:本题考查点与圆的位置关系、坐标与图形性质等知识,由题意PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小.解:∵AB=AC=t,∠BPC=90°,∴PA=AB=AC=t,连接AD交⊙D于P,此时PA的值最小,PA最小值=√32+22−1=√13−1,∴t的最小值为√13−1.故答案为√13−1.18.答案:解:原式=x2−4y2+5y2−2xy=x2−2xy+y2,=(x−y)2,当x=2018,y=2019时,原式=(2018−2019)2=(−1)2=1.解析:先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.本题主要考查整式的混合运算−化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.答案:解:(1)接受问卷调查的学生共有30÷50%=60(名);(2)“不了解”的人数为60−(15+5+30)=10,补全条形图如下:(3)1800×15=450(名),60答:估计该校学生对校园知识“基本了解”的有450名.解析:(1)根据“了解人很少”的人数及其所占百分比可得总人数;(2)总人数减去其它类型的人数,求得“不了解”的人数即可补全条形图;(3)总人数乘以样本中“基本了解”人数所占比例即可.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案:证明:(1)∵AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD≌△ACE(SAS);(2)△BOC 是等腰三角形,理由如下:∵△ABD≌△ACE ,∴∠ABD =∠ACE ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC −∠ABD =∠ACB −∠ACE ,∴∠OBC =∠OCB ,∴BO =CO ,∴△BOC 是等腰三角形.解析:(1)由“SAS ”可证△ABD≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC =∠OCB ,可得BO =CO ,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.21.答案:解:由题意得出:方程组{5x +y =3x −2y =5的解与题中两方程组解相同,解得:{x =1y =−2, 将x =1,y =−2代入ax +5y =4,解得:a −10=4,∴a =14,将x =1,y =−2,代入5x +by =1,得5−2b =1,∴b =2.解析:根据题意得出方程组{5x +y =3x −2y =5的解与题中两方程组解相同,进而得出x ,y 的值代入另两个方程求出a ,b 的值即可.此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.22.答案:解:(1)证明:连结OB ,OD ,在△ABO 和△DBO 中,{AB =BD BO =BO OA =OD,∴△ABO≌△DBO(SSS),∴∠DBO =∠ABO ,∵∠ABO =∠OAB =∠BDC ,∴∠DBO =∠BDC ,∴OB//ED ,∵BE ⊥ED ,∴EB ⊥BO ,∴BE 是⊙O 的切线;(2)∵AC 是直径,∴∠ABC =90°,∵∠OBA +∠OBC =∠EBC +∠OBC =90°,∴∠OBA =∠EBC ,∴∠BAC =∠EBC ,∵BE ⊥DE ,∴∠E =90°,∴∠BCE +∠EBC =∠BAC +∠ACB =90°,∵∠BAC =∠EBC ,∴∠ACB =∠BCE ,∵sin∠BCE =34,∴sin∠ACB =34,∵AB =3,∴AC =4,∵∠BDE =∠BAC ,∴sin∠DBE =34,∵BD =AB =3,∴DE =94,∴BE =√BD 2−DE 2=3√74,∵∠CBE =∠BAC =∠BDC ,∠E =∠E ,∴△BDE∽△CBE ,∴BE CE =DE BE, ∴CE =74, ∴CD =12, ∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =√BD 2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设第一批购进书包的进货价是x 元,则第二批书包的进价是1.2x 元,2000x +20=36001.2x ,解得:x =50,经检验:x =50是原方程的解,答:第一批购进书包的进货价是50元;(2)设每个书包至少定价为y 元,得:y−50(1+20%)50×(1+20%)×100%≥15%,解得:y ≥69,答:设每个书包至少定价为69元.解析:(1)设第一批购进书包时每个书包的进货价是x 元,则第二批的进货价为(1+20%)x 元,根据题意,第二批所购数量比第一批数量多了20个,列方程求解;(2)设每个书包至少定价为y 元,根据题意得出不等式解答即可.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.答案:解:(1)过点A 作AH ⊥OB 于H ,∵∠AOB =60°,OA =10,∴AH =5√3,OH =5,∴A点坐标为(5,5√3),根据题意得:5√3=k5,解得:k=25√3,故反比例函数解析式:y=25√3x(x>0);(2)设OA=a(a>0),过点F作FM⊥x轴于M,∵∠AOB=60°,∴AH=√32a,OH=12a,∴S△AOH=12⋅√32a⋅12a=√38a2,∵S△AOF=24√3,∴S平行四边形AOBC=48√3,∵F为BC的中点,∴S△OBF=12√3,∵BF=12a,∠FBM=∠AOB,∴FM=√34a,BM=14a,∴S△BMF=12BM⋅FM=12×√34a×14a=√332a2,∴S△FOM=S△OBF+S△BMF=12√3+√332a2,∵点A,F都在y=kx的图象上,∴S△AOH=12k,∴√38a2=12√3+√332a2,∴a=8√2,∴OA=8√2,∴OH=4√2,AH=√3OH=√3×4√2=4√6,∵S 平行四边形AOBC =OB ⋅AH =48√3,∴OB =AC =6√2,∴C(10√2,4√6).解析:此题考查了反比例函数的综合,用到的知识点是直角三角形的性质、平行四边形、反比例函数、三角形的面积等,要注意运用数形结合的思想.(1)先过点A 作AH ⊥OB ,根据∠AOB =60°,OA =10,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式;(2)先设OA =a(a >0),过点F 作FM ⊥x 轴于M ,根据∠AOB =60°,得出AHAH =√32a ,OH =12a ,求出S △AOH 的值,根据S △AOF =24√3,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出S △OBF =12√3,最后根据S 平行四边形AOBC =OB ⋅AH ,得出OB =AC =12,即可求出点C 的坐标. 25.答案:解:(1)方程x 2+(3−m)x −3m =0,解得:x =−3或x =m ,把x =0代入函数式得y =−3m ,则A(−3,0),B(m,0),C(0,−3m);(2)∵点A 、B 都是抛物线与x 轴的交点,∴A 、B 两点关于抛物线的对称轴对称,∴PB +PC 的最小值即为PA +PC 的最小值=√32+(3m)2=3√1+m 2=3√2,解得:m =1,则抛物线解析式为y =x 2+2x −3;(3)∵点Q 为AD 的中点,∴Q 的横坐标为点A 横坐标的一半,即为−32,把x =−32代入函数解析式得:y =−154,即Q(−32,−154),设直线l 的解析式为y =kx +b(k ≠0),把A(−3,0),Q(−32,−154)代入得:{−3k +b =0−32k +b =−154, 解得:{k =−52b =−152, 则直线l 的解析式为y =−52x −152.解析:(1)令y=0,得到关于x的方程,求出方程的解得到x的值,确定出A与B坐标,令x=0求出y的值,确定出C坐标;(2)由抛物线对称性得到PB+PC的最小值即为PC+AP=AC,利用勾股定理求出m的值,确定出抛物线解析式即可;(3)由Q为AD中点,得到Q的横坐标为A横坐标的一半,代入解析式求出Q坐标,利用待定系数法求出直线AQ解析式即可.此题属于二次函数综合题,涉及的知识有:二次函数与坐标轴的交点,待定系数法确定函数解析式,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.。
绝密★启用前广东省深圳2020年九年级(下)第二次段考数学试卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.函数y=﹣x2﹣4x﹣3图象顶点坐标是( )A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)2.已知一组数据3,a,4,9的众数为4,则这组数据的平均数为( )A.3B.4C.5D.63.如图,几何体的左视图是( )A.B.C.D.4.不解方程,判别方程2x2﹣3x=3的根的情况( )A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根5.如图,A、C分别是x轴、y轴上的点,双曲线y=(x>0)与矩形OABC的边BC、AB分别交于E、F,若AF:BF=1:2,则△OEF的面积为( )A.2B.C.3D.6.如图,已知PA、PB切⊙O于A、B两点,CD切⊙O于E,△PCD的周长为20,sin∠APB =,则⊙O的半径( )A.4B.5C.6D.77.如图,一次函数y1=ax+b图象和反比例函数y2=图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是( )A.x<﹣2B.x<﹣2或0<x<1C.x<1D.﹣2<x<0或x>18.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是( )A.∠B=∠D B.∠C=∠AEDC.=D.=9.某县为发展教育事业,加强了对教育经费的投入,2008年投入3000万元,预计2010年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是( )A.3000(1+x)2=5000B.3000x2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=500010.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)211.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是16:25,则OB′:OB为( )A.2:3B.3:2C.4:5D.4:912.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<0 13.如图所示,身高1.5m的小华站在距路灯杆5m的C点处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为_____米.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于。
2020年广东中考模拟试卷
数学
(考试时间:100分钟试卷满分:120分)
说明:
1.全卷共6页,满分为120分,考试用时为100分钟.
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.
用2B铅笔把对应该号码的标号涂黑.
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.
第Ⅰ卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符
合题目要求的)
1.下列各数中,最小的数是
A.-5 B.-1 C.0.1 D.0
2.从某省统计局获悉,2018年前三季度新能源发电量保持快速增长,其中垃圾焚烧发电量 6.9亿千瓦时,同比增长 5.9%,6.9亿用科学记数法表示为10n
a万,则n的值为
A.9 B.8 C.5 D.4
3.如图,水平的讲台上放置的圆柱笔筒和长方体形粉笔盒,它的俯视图是
A.B.
C.D.
4.不等式35
x x的最小整数解是
A.-3 B.-2 C.-1 D.2
5.下列图形中,对称轴的数量小于3的是
A.菱形B.正方形
C.正五边形D.等边三角形
6.如图,AB DF
∥,AC BC于点C,CB的延长线与DF交于点E,若20
A,则CEF等于
A.70B.100C.110D.120
7.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6,则不受影响的是A.众数B.中位数C.平均数D.众数和中位数
8.如图,在△ABC中,D、F分别是AB、BC上的点,且DF∥AC,若S△BDF∶S△DFC=1∶4,则S△BDF∶S△DCA=
A.1∶16 B.1∶18 C.1∶20 D.1∶24
9.若2230
x px q的两根分别是3与5,则多项式2
246
x px q可以分解为A.(3)(5)
x x B.(3)(5)
x x
C.2(3)(5)
x x D.2(3)(5)
x x
10.如图,正方形ABCD的边长为4,点P、Q分别为CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P D Q运动,点E、F的运动速度相同,设点E的运动路程为x,AEF
△的面积为y,能大致刻画y与x的函数关系的图象是
A .
B .
C .
D .
第Ⅱ卷
二、填空题(本大题共
6小题,每小题
4分,共24分)
11.如图,在⊙O 中,C 为优弧AB 上一点,若∠ACB =40°,则∠AOB =_______度.
12.二次函数2
2(3)
4y x 的最小值为_______.
13.已知实数a 、b 满足式子2
|2|(3)
0a b
,则2()
a b a
b
的值是_______.
14.如图,在
Rt ABC △中,90ACB ,CD AB 于点 D.已知5AC ,2BC ,那么
sin ACD =_______.
15.如图,
AB 是半圆O 的直径,点,C D 是半圆O 的三等分点,若弦6CD
,则图中阴影部分的面积为
_______.
16.如图,点O (0,0),A (0,1)是正方形OAA 1B 的两个顶点,以对角线
OA 1为边作正方形OA 1A 2B 1,
再以正方形的对角线
OA 2为边作正方形
OA 2A 3B 3,…,依此规律,则点
A 8的坐标是_______.
三、解答题(一)(本大题共3小题,每小题
6分,共18分)
17.计算:0
2
1
(2019)
|3
2|()
3tan302
.
18.已知2
69a
a
与|1|b 互为相反数,求代数式
22
2
2
222242(
)2a b a ab b a
b
ab a b a b ab
b a
的值.
19.如图,BD 是菱形ABCD 的对角线.
(1)请用直尺和圆规作AB 的垂直平分线
EF ,垂足为点E ,交AD 于点F ;(不要求写作法,保留作
图痕迹)
(2)在(1)的条件下,连接
BF ,若∠CBD=75°,求∠DBF 的度数. 四、解答题(二)(本大题共3小题,每小题7分,共21分)
20.某班级准备购买一些奖品奖励春季运动会表现突出的同学,奖品分为甲、乙两种,已知购买一个甲奖
品比购买一个乙奖品多用
20元,若用400元购买甲奖品的个数是用
160元购买乙奖品个数的一半
.
(1)求购买一个甲奖品和一个乙奖品各需多少元?(2)经商谈,商店决定给予该班级每购买甲奖品3个就赠送一个乙奖品的优惠,如果该班级需要乙
奖品的个数是甲奖品的
2倍还多8个,且该班级购买两种奖项的总费用不超过
640元,那么该班级最
多可购买多少个甲奖品?
21.为弘扬中华传统文化,某校组织八年级
1000名学生参加汉字听写大赛
.为了解学生整体听写能力,赛
后随机抽查了部分学生的成绩
(得分取正整数,满分为100分)进行统计分析,并制作成图表:
组别分数段频数频率
一50.5~60.5 16 0.08
二60.5~70.5 30 0.15
三70.5~80.5 m0.25
四80.5~90.5 80 n
五90.5~100.5 24 0.12
请根据以上图表提供的信息,解答下列问题:
(1)这次随机抽查了______名学生,表中的数m_____,n______;此样本中成绩的中位数落在第_____组内;若绘制扇形统计图,则在图中“第三组”所对应扇形的圆心角的度数是______;
(2)补全频数直方图;
(3)若成绩超过80分为优秀,请你估计该校八年级学生中汉字听写能力优秀的人数.
22.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F.
(1)求证:DEF BCF
△≌△;
(2)若2,4
AD BD,求EBC的大小及CF的长.
五、解答题(三)(本大题共3小题,每小题9分,共27分)
23.如图,抛物线223
y x mx m与x轴交于A、B两点,与y轴交于点C(0,-3).
(1)求该抛物线的解析式;
(2)点D为该抛物线上的一点、且在第二象限内,连接AC,若DAB ACO,求点D的坐标;
(3)若点E为线段OC上一动点,试求22
AE EC的最小值.
24.如图,Rt△ABC中,∠BAC=90°,E是AC的中点,AE=2.经过点E作△ABE外接圆的切线交BC于点D,过点C作CF⊥BC交BE的延长线于点F,连接FD交AC于点H,FD平分∠BFC.
(1)求证:DE=DC;
(2)求证:HE=HC=1;
(3)求BD的长度.
25.如图,在平行四边形ABCD中,20cm
AB,30cm
AD,60
ABC,点Q从点B出发沿BA 向点A匀速运动,速度为2cm/s,同时,点P从点D出发沿DC向点C匀速运动,速度为3cm/s,当点P停止运动时,点Q也随之停止运动,过点P作PM AD交AD于点M,连接PQ、QM.
设运动的时间为(06)s
t t.
(1)当PQ PM时,求t的值;
(2)是否存在某一时刻t,使得PQM
△的面积是平行四边形ABCD面积的3
8
?若存在,求出相应t 的值;若不存在,请说明理由;
(3)过点M作MN AB
∥交BC于点N,是否存在某一时刻t,使得P在线段MN的垂直平分线上?
若存在,求出相应t的值;若不存在,请说明理由.。