高数公式大全全
- 格式:docx
- 大小:28.02 KB
- 文档页数:7
平方关系:sin A2( a )+cos A2( a )=1tan A2( a )+仁sec A2( a )C0t A2( a )+ 仁CSC A2( a )•积的关系:sin a=tan a*cos acos a =cot a*sin atan a=sin a*sec acot a=cos a*csc asec a=tan a*csc acsc a =sec a *cot a•倒数关系:tan a,cot a =1sin a,CSC a =1cos a,sec a =1直角三角形 ABC 中,角 A 的正弦值就等于角 A 的对边比斜边余弦等于角 A 的邻边比斜边正切等于对边比邻边 ,三角函数恒等变形公式两角和与差的三角函数:cos( a + B )=cos a,-sOs (&• sin Bcos( a B )=cos a,cos B +sin a* sin Bsin( a±B )=sin a,cos B±cos a,sin Btan( a + B )=(tan a +tan-tanf(a • tan B )tan( -B )=(tan -tan B )/(1+tan a,tan B )三角和的三角函数:sin( a + B + Y )=sin a* cos B,cos Y +cos a,sin B‘ cos ys+cos • sircos B sirsir v Y cos( a + B + Y )=cos a,cos B cosco s y sin B -ssin a cos B -sisin ar sin B‘ cos Ytan( a + B + Y )=(tan a +tan B t+ta a 丫tan B,tartan )/(• tana B B‘ tana y 丫^ tan a )辅助角公式:Asin a +Bcos a =(A A2+B A2)A(1/2)sin( ,其中sint=B/(A A2+B A2)A(1/2)cost=A/(A A2+B A2)A(1/2) tant=B/A Asin a +Bcos a =(A A2+B A2)A(1/2)cos( -t) ,tant=A/B倍角公式:sin(2 a )=2sin a,cos a =2/(tan a +cot a )cos(2 a )=cos A2( -s)八2( a )=2cos^2( -0=1- 2sin A2( a )tan(2 a )=2tan a-tOn A2( a)]•半角公式:sin( a /2)= ±/o(1a )/2)cos( a /2)= 土" ((1+cos a )/2)tan( a /2)= 土必o(1a )/(1+cos a ))=sin a /(1+cos-c©9=(1/sin a•降幕公式sin A2( a )=-cos(2 a ))/2=versin(2 a )/2cos A2( a )=(1+cos(2 a ))/2=covers(2 a )/2tan A2( a )=(tos(2 a ))/(1+cos(2 a ))•万能公式:sin a =2tan( a /2)/[1+tanT( a /2)]cos a =[ttan9( a /2)]/[1+tan9( a /2)]tan a =2tan( a /2)-(an9( a /2)]•积化和差公式:sin a •cos B=(1/2)[sin( +B-B)+)s]in(cos a •sin B=(1/2)[sin( -sin( + -B))]cos a •cos B=(1/2)[cos( + B )-+B co)]s(sin a •sin-(B1/2=)[cos( -+c B os)( -B)]•和差化积公式:sin a +sin B =2sin[( a + p )/2]cos[/2] asin (-sin B =2cos[( a + B )/2]sin[0 )/2] acos a +cos B =2cos[( a + B )/2]cos R )/2] a•三倍角公式:sin(3 a )=3sin-4ain A3( a ) cos(3 a )=4cos A3( -3)s acos a-cos B=2sin[( a + B )/2]sin[© )/2]a•推导公式tan a+cot a=2/sin2 atan a-cot a=-2cot2 a1+cos2 a =2cos A2 a1-cos2 a =2sin A2 a1+sin a =(sin a /2+cos a /2)八2•其他:sin a +sin( a +2n /n)+sin( a +2n *2/n)+sin( a +2 n *3/n)+ ........ +sit)/n]==0+2 n *(n cos a +cos( a +2 n /n)+cos( a +2n *2/n)+cos( a +2 n *3/n)+ ........ +cos-1”r+=n *1以及sin A2( a )+sin A2(-2 n/3)+sin A2( a +2n /3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设a为任意角,终边相同的角的同一三角函数的值相等:sin (2k n+ a) = sin acos (2k n+ a) = cos atan (2k n+a) = tan acot (2k n+ a) = cot a公式二:设a为任意角,n+a的三角函数值与a的三角函数值之间的关系:sin ( n+ a) = —sin a cos ( n+ a)= —cos a tan ( n+ a) = tan a cot ( n+ a) = cot a公式三:任意角a与- a的三角函数值之间的关系:sin(-a)=-sin acos(-a)= cos a tan(-a)=-tan acot(-a)=-cot a公式四:利用公式二和公式三可以得到n a与a的三角函数值之间的关系:sin ( n— a) = sin aCOS ( n— a)= —COS a tan ( n— a) =—tan a cot ( n— a) =—cot a公式五:利用公式一和公式三可以得到2n-a与a的三角函数值之间的关系:sin(2 n— a) =—sin aCOS (2 n— a) = COS atan (2 n—a) =—tan aCOt (2 n—a ) = —COt a公式六:n /2 ±a 3 n /2 土与a的三角函数值之间的关系Sin ((n /2+ a)=COS aCOS(n /2+ a)二二一sin a tan (n /2+ a)=—COt a COt (n /2+ a)=—tan aSin ((n /2—a)=COS aCOS(n /2—a)二Sin a tan (n /2—a)=COt a COt (n /2—a)=tan aSin ((3 n /2+ a)=—COS aCOS(3 n /2+ a)=Sin a tan (3 n /2+ a)=—COt a COt (3 n /2+ a)=—tan aSin ((3 n /2—a)=—COS aCOS(3n /2- a)=—Sin atan (3n /2- a)=COt aCOt (3n /2- a)=tan a(以上k€ Z)部分高等内容[编辑本段]•高等代数中三角函数的指数表示(由泰勒级数易得):sin x=[eA(ix)-eA(-ix)]/(2i) COSx=[e A(ix)+e A(-ix)]/2 ta nx=[eA(ix)-eA(-ix)]/[ieA(ix)+ieA(-ix)]泰勒展开有无穷级数,e A z=exp (z) = 1 + z/1 ! + z A2/2 ! + z A3/3 ! + z A4/4 !+•••+ z A n/n !+•••此时三角函数定义域已推广至整个复数集。
高等数学公式总结第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=± 和差角公式:s i n s i n 2s i n c o s22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin cos cos 22cos 112sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式: ::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+ ,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限常用极限:1,lim 0n n q q →∞<=;1,1n a >=;1n =ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
(tgx),=sec x (ctgx),= -CSC 2x (secx)'=secx tgx (cscx) ‘ = -cscx ctgx (a x)' = a xl na (log a x)'=1xln a(arcsin x),= . 1:J l -x 21 (arccos x)'= — 一’ j 1—x 21(arctgx)'= __21 +x 1(arcctgx )' = 一 --1 + x基本积分表:三角函数的有理式积分:导数公式:高等数学公式Jtgxdx = -1 n cosx +C Jctgxdx =1 n sin X +C Jsecxdx = In secx+tgx +CJcscxdx = In cscx-ctgx +C f 巴=fsec xdx = tgx + C ' cos x 、dx 2J ———=Jcsc xdx = -ctgx + C 'sin X 、fsecx tgxdx = secx + Cdx J 2 , 2a +x 「 dx J —2 2 x -af dxJ ""2 2 a -x' 2寸a -x1 x =一 arctg -七 a 亠n2a _ 1 . g+c X +aa -x X =arcsi n — +CaI n J cscx ctgxdx =-cscx + C xfa xd^-^ +C ln a Jshxdx = chx +CJchxdx = shx +Cdx=ln( X + J x 2±a 2) + C2=Jsin n xdx = Jcos nxdx =0 0N x 2 -a 2dx = *J x 2 -a 22口I nd n2 , _______________________+ —l n(x +J x 2 +a 2)+C 2ln X + J x 2 - a 2+C 2222 .a - X . c-x + ——arcsi n —+C2 a2usin X = --- 7,1+u,x u=tg-,dx 严1+u 2一些初等函数: 两个重要极限:-sin (a ±P)=si n^cosP ±cos。
高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1—tanα·tanβ)tan(α-β)=(tanα—tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=s inα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ—sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1—tanα·tanβ-tanβ·tanγ—tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα—4sin^3(α)cos(2α)=cos^2(α)—sin^2(α)=2cos^2(α)-1=1—2sin^2(α)cos(3α)=4cos^3(α)-3cosαtan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1—cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)—sin(α—β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=—(1/2)[cos(α+β)-cos(α—β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α—β)/2]sinα—sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα—cosβ=—2sin[(α+β)/2]sin[(α—β)/2]·推导公式tanα+cotα=2/sin2αtanα—cotα=—2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n—1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)—e^(-ix)]/(2i) cosx=[e^(ix)+e^(—ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(—ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππe e e e chx shx thx e e chx e e shx x xxx xx xx +-==+=-=----:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin coscos 22cos 1 12sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1n a >=;lim 1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
极限的运算0sin lim=∞→x x x 1s i n l i m 0=→x x x n n n)11(lim +∞→=e导数常用等价无穷小量sinx ~x tanx ~x e x -1~x ln(1+x)~x1-cosx ~22x 11-+nx ~n x a x -1~xlnaarctanx ~arcsinx ~x导数定义)(x f x x )f(x f(x)x x Δx )f(x Δx)f(x Δx 0000lim 000lim'=--→=-+→ 导数公式()a aa xxln =' ()ax x a ln 1log ='()x x 2sec tan =' ()x x 2csc cot -=' ()x x x tan sec sec ='()x x c o t c s c c s c -='()211arcsin xx -='()211arccos xx --='()211arctan x x +='()211c o t xx a r c +-='复合函数求导 [])((x f y ϕ= 若)(u f y =;)(x u ϕ=均可导则[])((x f y ϕ=可导,且x u x u y y ''='参数方程的导数⎩⎨⎧==)()(t y t x φϕ t t x x dtdx dt dy xx y y dxdy y '''=''==')( 拉格朗日中值定理))(()()(a b f a f b f -'=-ξ罗比达法则)()(lim)()(lim ,00x g x f x g x f ''=∞∞不定式对于 求极值的方法)(0x f '=0若)(0x f ''>0 则f (x 0)极小值)(0x f ''<0 则f (x 0)极大值图像的凹凸对于y=f (x)在(a b)上有是可能拐点或不存在凸的则凹的则 0)()( 0)()( 0)(=''<''>''x f x f x f x f x f不定积分Ca x a x a a x dx Cx x dx++-=-+=⎰⎰ln 2tan cos 222第一类换元积分法()[]()⎰'dx x x f ϕϕ=()[]()x d x f ϕϕ⎰第二类换元积分法⎰⎰−−→−=)()]([)()(t d t f du u f t u ϕϕϕ=⎰'dt t t f )()]([ϕϕ=F (t)+c =c t F +-)]([ϕ 常用变量替换nb ax + 令t =n b ax + 1n x ,2nx 令x=n x22x a -令x=a sint 利用sin 2t+cos 2t=122a x +令x=a tant 利用1+tan 2t=sec 2t 22a x -令x=a sect 利用1+tan 2t=sec 2t分部积分法⎰⎰'-='vdx u uv dx v u常见选用形式)(arctan arcsin ln arctan arcsin ln )(sin cos )(cos sin )(1x dP x x x dx x x x x P x x e d x P dx x x e x P n n x nx n +⎰⎰⎰⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧ 定积分变上限函数 若f (x)连续则 ⎰xa)(dt t f 可导且有[⎰xa)(dt t f ]′=f (x)(⎰ax)(dt t f )′=-f (x)x dt t f '⎪⎭⎫ ⎝⎛⎰)(x a )(ϕ=[])()(x x f ϕϕ' N-L 公式⎰ba)(dx x f =abx F )(=F (b)-F (a)奇偶函数积分性质 若f(x)为奇函数 则⎰aadx x f -)(=0若f(x)为偶函数 则⎰a adx x f -)(=2⎰adx x f 0)(奇+奇=奇 偶+偶=奇奇×奇=偶 偶×偶=偶 奇×偶=奇 求旋转体体积 y=(x)在[a,b]dV=πf 2(x)dx V=⎰badV =⎰badx x f )(2π空间解析几何 两点间距离M 1(x 1,y 1,z 1) M 2(x 2,y 2,z 2) │M 1 M 2│=212212212)()()(z z y y x x -+-+-两向量关系→a ={ a x a y a z } →b ={ b x b y b z }→a ∥→b ⇔x x b a =y y b a =zzb a →a ⊥→b = a x b x +a y b y +a z b z =0矢量的数量积性质→a ·→b =a x b x +a y b y +a z b z →a ·→b =→b ·→a →a (→b +→c )=→a →b +→a →c矢量的矢量积性质→a ×→b =zy x z y x b b b a a a①→a ∥→b ⇔→a ×→b = ②→a ×→b =-→b ×→a③→a ×(→b ×→c )=→a ×→b +→a ×→c=S 平行四边形 平面与直线 平面方程M 0 (x 0 , y 0 , z 0 )={A B C} (法向量)M (x , y , z)A(x-x 0)+B(y-y 0)+C(z-z 0)=0 (点法式方程) Ax+By+Cz+D=0 (一般式方程)当A=0 平面平行x 轴,D=0 平面过原点a x +b y +cz=1 (截距式方程) 平面的位置关系A 1x+B 1y+C 1z+D 1=0 A 2x+B 2y+C 2z+D 2=0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧=++⇔===⇔0cos 212121212121C C B B A A C C B B A A 垂直夹角平行θ 点到平面距离d=222000A CB A DCz By x +++++直线方程M 0 (x 0 , y 0 , z 0 )={l , m , n } 方向向量M 0={x-x 0 ,y-y 0 ,z-z 0}①l x x 0-=m y y 0-=nz z 0-=t 标准方程 对称方程 点向式方程②⎪⎩⎪⎨⎧+=+=+=ntz z m t y y lt x x 000 参数式 ③⎩⎨⎧=+++=+++0022221111D z C x B x A D z C x B x A 一般式={A 1 B 1 C 1}×{A 2 B 2 C 2}直线与直线的位置关系⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧==++==212121212121cos 0n n m m l l n n m m l l θ夹角直角不平行平行 平面与直线关系⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧=++=+++⎪⎪⎩⎪⎪⎨⎧=-==0A 0D A )cos(A 0002Cn Bm l Cz By x n C m B l 重合平行垂直相交θπ 简单的二次曲面 特殊曲面 球面方程圆心(x 0 ,y 0 ,z 0) 半径为r (x-x 0)2+(y-y 0)2+(z-z 0)2=r 2 椭球面方程22a x +22b y +22c z =1 柱面方程 φ (y , x)=0 ① x 2+y 2=1 圆柱面方程 ② y=x 2 抛物面方程③ 22a y -22bx =1 双曲柱面方程旋转曲面方程 f (y, z)⎪⎩⎪⎨⎧+±→22yx y z z 不变轴旋转,绕 z=221y x -- 上半单位球面x 2+y 2=1 圆柱面 z=x 2+y 2 旋转抛物面z=22y x + 上半锥面多元函数微分学 隐函数求导设F(x , y)=0 x y '=yF x F∂∂∂∂-=y x F F ''-设F(x , y , z)=0y z F z F x z F z F F F zy F F z x ''-=-=∂∂''-=-=∂∂∂∂∂∂∂∂空间曲面的切平面及法线F(x , y , z)=0 M 0(x 0 , y 0 , z 0)n ={x F ∂∂,y F ∂∂,zF ∂∂}0M 曲面法向量切平面()()()0z F y F x F0M 0M 0M 000=-∂∂+-∂∂+-∂∂z z y y x x 法线xFx x ∂∂-0=yF y y ∂∂-0=zF z z ∂∂-0二元函数z=f (x,y)的极值①⎩⎨⎧==∂∂∂00z x z 驻点②A=22x z ∂∂ B=y x z ∂∂∂2 C=22yz ∂∂③B 2-AC <0 有极值⎩⎨⎧小值大值有极 0>A 有极 0<AB 2-AC >0 无极值 B 2-AC=0 失效 二重积分⎪⎪⎩⎪⎪⎨⎧、格林公式、极坐标转换、变换积分次序、直接积分二重积分4321 极坐标 包含原点⎰⎰D)sin ,cos (θθθrdrd r r f=rdr r r f d r )sin ,cos ()(020θθθθπ⎰⎰不包含原点rdr r r f d r r )sin ,cos ()()(21θθθθθβα⎰⎰曲线积分格林公式δd y Px Q Qdy Pdx D⎰⎰⎰∂∂-∂∂=++)(L 积分曲线与路径无关yPx Q ∂∂=∂∂ 级数⎩⎨⎧≤-⎪⎩⎪⎨⎧≤<-=∑∑∑∞=∞=∞=时收敛>时发散级数)(发散(调和级数)当发散当(等比级数) 1 1 1 11 1 1 110p p p nn q q q aaq n p n n n正项级数审敛法 比值审敛法l v u n nn =∞→lim(0<l <+∞)Σu n 和Σv n 有相同的敛散性比较审敛法ρ=+∞→nn n u u 1lim0<ρ<1 Σu n 收敛 ρ>1 Σu n 发散 ρ=1 失效 交错级数 莱布尼茨定理 1、u n 大于u n-1 2、lim u n =0则Σ(-1)n-1u n 收敛 函数展开成幂级数e x=∑∞=0n !n x n=1+x+!22x +…+!n x n +…,R x ∈x -11=∑∞=0n n x =1+x+x 2…+x n +…,|x|<1 ln(1+x)= ∑∞=1n 1-n 1-n x n)( =x-22x +…+(-1)n-1n nx +…,(-1<x ≤1)收敛半径对于Σa n x n R =1lim+∞→n nn a a常微分方程 一阶微分方程 变量可分离方程dxdy=(x)(x)ϕf ⎰⎰+=C dx x f x dy)()(ϕ齐次方程dx dy =)x y (f令u=xy得y=xu则dx dy=u+x dx du f (u)= u+x dxdu一阶线性微分方程 一阶线性齐次微分方程⎰==+'-dxx P Ce y y x P y )( 0)(一阶线性非齐次微分方程⎥⎦⎤⎢⎣⎡+⎰⎰==+'⎰-C dx e x Q e y x Q y x P y dxx P dxx P )()()()()(二阶线性微分方程二阶常系数齐次线性微分方程0=+'+''qy y p y特征方程 r 2+pr+q=0(1)r 1 , r 2为相异实根 xr xr e C e C y 2121+= (2)r 为二重实根 rx e x C C y )(21+=(3)r =α ± iβ )s i n c o s (21x C x C e y xββα+= 二阶常系数非齐次线性微分方程xme x P qy y p y λ)(=+'+'' 特解 x m k e x Q x y λ)(=*其中,⎪⎩⎪⎨⎧=是二重特征根,当是单特征根,当不是特征根,当λλλ210k )(x Q m =a 0x m +a 1x m-1+…+a m-1x+a m线性代数 克莱姆法则⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++线性齐次全为线性非齐次不全为0 , 0 ,212122112222212111212111n n n n nn n n n n n n b b b b b b b x a x a x a b x a x a x a b x a x a x a1、非齐次的解nnn n nna a a a a a a a a 212222111211D = D ≠0 ⎪⎪⎩⎪⎪⎨⎧===DD n D Dn x x x2121D j 是把系数是行列式D 中第j 列元素依次用方程组右端的常数项b 1,b 2…b n 代替后得到的n 阶行列式。
最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。
2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。
- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。
-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。
-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。
- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。
-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。
- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。
高数公式大全
1.基本积分表:
三角函数的有理式积分:
一些初等函数:两个重要极限:
三角函数公式:
·诱导公式:
⎰
⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C
a x x a x dx C shx chxdx C chx shxdx C
a a dx a C
x ctgxdx x C
x dx tgx x C
ctgx xdx x dx C tgx xdx x dx x
x
)ln(ln csc csc sec sec csc sin sec cos 222
22
22
2C a
x
x a dx C x a x
a a x a dx C a x a
x a a x dx C a x
arctg a x a dx C
ctgx x xdx C tgx x xdx C
x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2
2222222⎰
⎰⎰⎰⎰++-=-+-+--=-+++++=+-=
==-C
a
x a x a x dx x a C
a x x a a x x dx a x C
a x x a a x x dx a x I n
n xdx xdx I n n n
n arcsin 22ln 22)ln(221
cos sin 22
2222222
2222222
22
2
22
2
ππ
·和差角公式:·和差化积公式:
2
sin
2sin 2cos cos 2cos
2cos 2cos cos 2sin
2cos 2sin sin 2cos
2sin
2sin sin β
αβαβαβ
αβαβαβ
αβαβαβ
αβ
αβα-+=--+=+-+=--+=+α
ββαβαβαβ
αβαβ
αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1
)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ
·倍角公式:
·半角公式:
·正弦定理:
R C
c
B b A a 2sin sin sin ===·余弦定理:
C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
定积分应用相关公式:
空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
)
,,(),,(),,(30
))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(}
,,{,0),,(0),,(0))(())(())(()()()(),,()
()()
(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y
x y x x z x z z y z y -=
-=-=-+-+-==⎪⎩
⎪⎨
⎧====-'+-'+-''-=
'-='-⎪⎩
⎪
⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:
上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖ
ϖωψϕωψϕωψϕ方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:
曲线积分:
曲面积分:
高斯公式:
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω
∑
∑
∑
∑
∑
Ω
∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂ds
A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n ϖϖ
ϖϖϖdiv )cos cos cos (...
,0div ,div )cos cos cos ()(
成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:
—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:。