谷氨酸生产工艺
- 格式:doc
- 大小:82.50 KB
- 文档页数:8
谷氨酸生产工艺流程一、前期准备工作1. 确定生产规模和产品质量要求;2. 筛选原料供应商,确保原料的质量和稳定性;3. 筛选合适的微生物菌种,进行培养和筛选。
二、谷氨酸发酵过程1. 发酵罐的选择:根据生产规模确定发酵罐的大小,通常采用不锈钢或玻璃钢材质;2. 发酵基质制备:将筛选好的原料按照一定比例混合,加入适量水进行搅拌均匀;3. 调节基质pH值:将基质加热至70℃,并加入碱性物质(如氢氧化钠)或酸性物质(如硫酸)进行调节,使pH值控制在6-7之间;4. 加入微生物菌种:将培养好的微生物菌种加入到发酵罐中,并进行搅拌均匀;5. 发酵过程控制:控制温度、搅拌速度、通气量等参数,以保证微生物菌种正常生长和代谢活动;6. 监测谷氨酸产量:通过取样分析,监测谷氨酸的产量和质量;7. 终止发酵过程:当谷氨酸产量达到预定值或微生物菌种生长停止时,终止发酵过程。
三、分离提纯过程1. 发酵液初步处理:将发酵液进行初步处理,去除杂质和微生物菌体;2. 降解蛋白质:采用酶解剂(如蛋白酶)对发酵液进行降解蛋白质,使谷氨酸与其他成分分离;3. pH值调节:通过控制pH值,使谷氨酸在溶液中处于稳定状态;4. 谷氨酸萃取:采用离子交换树脂或有机溶剂等方法对谷氨酸进行萃取和分离;5. 谷氨酸精制:通过再结晶、洗涤等工艺对萃取得到的谷氨酸进行精制。
四、包装储存1. 调整产品质量指标:根据市场需求和用户反馈意见,调整产品的颜色、味道、纯度等指标;2. 包装:选择合适的包装材料和方式,对谷氨酸进行包装;3. 储存:将包装好的谷氨酸存放在干燥、阴凉、通风的仓库中,避免阳光直射和潮湿环境。
五、质量控制1. 原料质量控制:对原料进行严格筛选和检验,确保原料的质量和稳定性;2. 发酵过程控制:通过监测发酵过程中的温度、pH值、搅拌速度等参数,保证微生物菌种正常生长和代谢活动;3. 谷氨酸产量监测:通过取样分析,监测谷氨酸的产量和质量;4. 分离提纯过程控制:通过控制pH值、温度等参数,保证谷氨酸在分离和提纯过程中处于稳定状态;5. 产品质量检验:对成品进行严格检验,确保产品符合国家相关标准及用户要求。
谷氨酸生产工艺流程
谷氨酸是一种重要的氨基酸,广泛应用于食品、饲料、医药和化工等领域。
下面将介绍一种常见的谷氨酸生产工艺流程。
首先是原料准备。
谷氨酸的生产主要依靠微生物发酵,常用的菌株有谷氨酸棒状杆菌、曲霉等。
菌种的培养需要合适的培养基,常用的培养基成分包括碳源、氮源、无机盐和微量元素等。
其中,常用的碳源有糖类、淀粉类和脂肪类,常用的氮源有尿素、氨基酸和蛋白质等。
其次是发酵过程。
将培养基加热灭菌后,转入发酵罐中,控制好温度、pH值和搅拌速度等条件,接种适量的菌种,并进行
培养。
在发酵过程中,菌株利用培养基中的碳源和氮源进行生长和代谢,并分泌出谷氨酸。
通常发酵时间为30-48小时。
然后是分离提取。
发酵结束后,需要将发酵液中的谷氨酸进行分离提取。
一般采用酸碱法进行提取,即先用酸调整发酵液的pH值使其酸化,然后用碱调整pH值使其碱化,谷氨酸因为
在酸性条件下溶解度较大,在碱性条件下溶解度变小,从而通过溶液的酸碱调节将谷氨酸分离出来。
最后是纯化和结晶。
将提取的谷氨酸溶液进行纯化和结晶工艺,以提高产品的纯度和晶体形态。
常用的纯化方法有酸沉淀、蒸发结晶和逆流结晶等。
纯化后的谷氨酸产品可以用于进一步加工和应用。
以上就是一种常见的谷氨酸生产工艺流程。
当然,不同厂家和
规模的生产工艺可能略有不同,但总体来说,这是一种经济有效的谷氨酸生产方法。
随着生物工程技术的发展,谷氨酸的生产工艺也在不断改进和创新,以提高生产效率和产品质量。
谷氨酸发酵的工艺流程
《谷氨酸发酵的工艺流程》
谷氨酸是一种重要的氨基酸,广泛应用于食品、医药和化工等领域。
发酵工艺是生产谷氨酸的主要方法之一,下面将介绍谷氨酸发酵的工艺流程。
1. 选择菌株:选择适合发酵生产的菌株是谷氨酸发酵工艺的第一步。
通常采用属于放线菌属或棒状杆菌属的菌株进行发酵。
这些菌株具有较高的谷氨酸产量和较好的耐受性。
2. 发酵培养基的配制:发酵培养基是支撑谷氨酸发酵的重要基础。
一般包括碳源、氮源、无机盐、生长因子等组成成分。
常用的碳源包括葡萄糖、麦芽糖等,氮源包括氨基酸、尿素等。
3. 发酵条件控制:发酵过程中的温度、pH值、氧气供应等条件都会影响谷氨酸的产量。
通常采用恒温发酵,温度一般控制在28-32摄氏度。
同时控制好培养基的pH值,通常在6.5-7.5之间。
氧气供应也是非常重要的,通过控制搅拌速度和通气量来保证充足的氧气供应。
4. 发酵过程监测:在发酵过程中需要对微生物生长、培养基中各种成分的消耗和产物的生成进行持续监测。
通过检测微生物生长曲线和培养基中各成分的浓度变化来掌握发酵情况,及时调整发酵条件以提高产量。
5. 发酵产物的提取与精制:发酵结束后,需要对发酵产物进行
提取和精制。
通常采用离心、过滤等方法将微生物分离,然后通过酸碱调节、浓缩、结晶等工艺步骤来得到纯净的谷氨酸产物。
通过以上工艺流程,谷氨酸发酵生产可以实现高效、稳定的产量,并且能够得到高纯度的产物,满足市场需求。
谷氨酸生产工艺流程谷氨酸是一种重要的氨基酸,具有多种生物学功能,广泛应用于食品、医药、化工等领域。
下面是谷氨酸的生产工艺流程。
1. 淀粉水解首先将淀粉加入水中进行水解,可采用传统的酸水解或者酶水解方法。
酸水解需要在酸性条件下进行,通过加入酸性物质(如盐酸)降低溶液的pH值,使淀粉分子链断裂,形成果糖和葡萄糖。
酶水解则是通过添加淀粉酶,使淀粉分子链断裂。
2. 发酵将水解后的淀粉溶液转移到发酵罐中,加入适量的谷氨酸生产菌株,如谷氨酰转氨酶阳性菌株或谷氨酸合成菌株。
发酵条件需要控制在合适的温度、pH值和营养物质供给下,促进菌株的生长和谷氨酸的合成。
此外,发酵过程中还要进行通气,提供菌株所需的氧气。
3. 提纯发酵结束后,将发酵液进行提纯。
首先将发酵液进行离心或者过滤,除去固体颗粒。
然后,通过酸碱调节和溶剂萃取等方法,将固液分离,得到谷氨酸的提纯液。
提纯液中还可能存在杂质,可以通过活性炭吸附或离子交换树脂吸附等方法去除。
4. 结晶将谷氨酸的提纯液进行结晶处理。
首先,在适当的温度下加入结晶剂,如酒精或乙醇,使谷氨酸分子互相结合形成结晶。
然后,通过过滤或离心等方法,将结晶分离出来。
5. 干燥将分离出的谷氨酸结晶进行干燥处理,除去水分。
可以采用真空干燥、喷雾干燥或者冷冻干燥等方法,在适当的温度下蒸发水分,得到干燥的谷氨酸成品。
6. 包装将干燥的谷氨酸成品进行包装,通常使用塑料袋、铝箔袋或者纸盒等包装材料,保护谷氨酸的质量和稳定性。
包装后,进行质量检验,确保谷氨酸成品符合相关标准。
以上就是谷氨酸的生产工艺流程。
整个工艺包括淀粉水解、发酵、提纯、结晶、干燥和包装等环节,通过合理控制各个步骤的条件和参数,可以有效提高谷氨酸的产量和质量,满足市场需求。
同时,在生产过程中还要注意环保和安全,做好废水、废气和废弃物的处理与排放。
谷氨酸生产工艺谷氨酸是一种重要的氨基酸,广泛应用于食品、饲料、医药和化妆品等领域。
目前,谷氨酸的生产工艺主要分为发酵法和合成法两种。
发酵法是目前谷氨酸生产的主要工艺。
该工艺首先选择适宜的微生物菌种,常用的包括谷氨酸高产突变株、大肠杆菌、芽孢杆菌和酿酒酵母等。
然后,通过发酵罐中稻糠、糖蜜、玉米糖浆等淀粉质原料的供应,微生物菌种得到充足的营养,进而产生谷氨酸。
在发酵过程中,需要控制合适的温度、pH值、氧气供应等条件,以保证产酸菌的正常生长和谷氨酸的高产。
合成法是一种人工合成谷氨酸的生产工艺。
该工艺主要通过有机化学合成的方法合成谷氨酸,被广泛应用于工业化生产。
合成法的优势是反应过程简单,产率高,纯度较高,但合成路线较长,成本较高。
目前,合成法主要采用脂肪酶法、氨基酸合成法和化学合成法等。
脂肪酶法利用酶的催化作用将谷氨酸微生物中间体转化为谷氨酸;氨基酸合成法则采用含氮化合物、氨基酸以及各种可供给氨基的物质为原料,通过一系列的反应合成谷氨酸;化学合成法主要通过有机合成方法,从不同的出发物合成谷氨酸。
无论是发酵法还是合成法,谷氨酸的提纯工艺都是非常关键的一步。
一般来说,提纯分为多级离心、膜过滤、凝胶过滤、树脂吸附、洗脱、浓缩等环节。
其中,树脂吸附是最常用的提纯方法之一,通过树脂的选择来吸附并分离谷氨酸和其他杂质。
此外,一些高级的分离技术如逆流扩散和离子交换膜电渗法也可以应用于谷氨酸的提纯过程。
谷氨酸的生产工艺对环境保护也有一定的要求。
在发酵法中,需要合理处理废水、废菌体和废弃物,以减少环境污染。
同时,在合成法中,需要控制反应条件和适当选择溶剂,以减少对环境的影响。
总体来说,谷氨酸生产工艺是一个复杂的过程,涉及微生物学、化学工程学和生物技术等多个学科的知识。
随着科学技术的不断进步,谷氨酸的生产工艺也在不断改进和创新。
未来,我们可以期待谷氨酸生产工艺的更高效、更环保和更可持续的发展。
谷氨酸的先进生产工艺谷氨酸是一种重要的氨基酸,在食品添加剂、保健品、药物、化妆品等领域有广泛的应用。
目前,谷氨酸的生产工艺主要有微生物发酵法和化学合成法两种。
微生物发酵法是目前主要的生产方法,下面将重点介绍谷氨酸的先进生产工艺。
微生物发酵法是利用谷氨酸高效产生菌株通过生物代谢反应将低价的有机废弃物转化为谷氨酸。
谷氨酸的先进生产工艺主要包括菌株选育、发酵过程优化和分离纯化技术三个方面。
首先,菌株选育是谷氨酸生产工艺的核心环节。
目前,国内外研究人员已经从多种微生物中筛选出多种高效的谷氨酸产生菌株,如变异株、突变株等。
其中,变态球菌、拟杆菌、乳酸杆菌和乳酸菌是常用的谷氨酸产生菌株。
菌株选育的目标是寻找产量高、菌种稳定、代谢特性好的菌株,并通过遗传工程手段进一步提高菌株的产酸能力和抗性。
其次,发酵过程优化是提高谷氨酸生产效果的关键。
发酵过程优化主要包括培养基优化、发酵条件调控、发酵设备升级等方面。
培养基优化是通过调整培养基组成和添加合适的添加剂来提高菌种的生长速度和产酸能力,如碳源、氮源、有机酸、氨基酸等。
发酵条件调控包括发酵温度、pH值、氧气供给、搅拌速度等,通过合理调节这些因素可以提高菌种的生理代谢活性和谷氨酸的产量。
发酵设备升级是利用现代生物工程技术,开发新的发酵设备和设备控制系统,提高谷氨酸发酵的自动化水平和生产效能。
最后,分离纯化技术是谷氨酸生产工艺中不可或缺的环节。
分离纯化技术主要包括过滤、浓缩、离心、脱色、结晶等过程。
在分离纯化过程中,采用适当的工艺条件和操作方法,可以高效地提取和纯化谷氨酸。
目前,常用的分离纯化技术包括膜分离技术、离子交换及吸附技术、凝胶过滤技术等。
这些技术既可以提高产品的纯度,又可以降低生产成本,提高谷氨酸的生产效能。
综上所述,谷氨酸的先进生产工艺主要包括菌株选育、发酵过程优化和分离纯化技术三个方面。
通过优化这些环节,可以提高谷氨酸的生产效能和产品质量,推动谷氨酸产业的发展。
谷氨酸生产工艺流程谷氨酸是一种重要的氨基酸,广泛应用于食品添加剂、医药和化妆品等领域。
本文将详细介绍谷氨酸的生产工艺流程,包括原料准备、发酵过程、提取纯化和产品制备等步骤。
1. 原料准备谷氨酸的主要原料是葡萄糖和谷氨酸菌株。
葡萄糖作为碳源提供能量和碳源,而谷氨酸菌株则是产生谷氨酸的微生物。
首先,需要选择合适的谷氨酸菌株,常用的菌株包括大肠杆菌、突变株以及其他高效产谷氨酸的菌株。
同时,还需培养出活跃和健康的种子菌。
其次,葡萄糖作为主要碳源,需要进行消毒处理并与适量的水混合成发酵基质。
此外,在基质中还可以添加一些辅助物质,如无机盐、维生素等,以提供微生物生长所需的营养物质。
2. 发酵过程发酵是谷氨酸生产的核心步骤,通过微生物菌株在发酵罐中进行培养和繁殖,产生大量的谷氨酸。
首先,将培养好的种子菌接种到发酵罐中。
发酵罐应具备适宜的温度、pH值和通气条件,以提供良好的生长环境。
同时,还需控制搅拌速度和通气量等参数,以促进菌体的生长和代谢活动。
在发酵过程中,需要监测和调节发酵液中的各项指标,如温度、pH值、溶解氧浓度、营养物质浓度等。
这些指标的控制对于提高产量和产品质量非常重要。
发酵时间一般为数十小时至数天不等,在此期间微生物会利用葡萄糖进行代谢,并产生大量的谷氨酸。
随着时间推移,发酵液中谷氨酸浓度逐渐增加。
3. 提取纯化经过发酵后,需要对含有谷氨酸的发酵液进行提取和纯化,以得到高纯度的谷氨酸产品。
首先,将发酵液通过过滤或离心等方式,去除微生物菌体和固体杂质。
然后,利用适当的方法(如离子交换、凝胶过滤、透析等)对溶液进行进一步纯化。
在纯化过程中,需要根据谷氨酸的特性选择合适的方法和条件。
例如,离子交换层析可以利用谷氨酸分子带有的正电荷与阴离子交换树脂发生吸附和解吸作用,从而实现分离和富集。
此外,在提取纯化过程中还可以进行浓缩、结晶等操作,以进一步提高产品的纯度和产量。
4. 产品制备最后一步是将提取纯化得到的谷氨酸转化为可用于工业应用或销售的成品产品形式。
谷氨酸发酵的工艺流程谷氨酸是一种重要的生物体中的氨基酸,广泛应用于食品添加剂、保健品和生化制药等领域。
谷氨酸的工业生产主要采用微生物发酵的方法,下面将介绍一种常见的谷氨酸发酵工艺流程。
1. 菌种培养:选用高产谷氨酸的菌株,如乳杆菌属、大肠杆菌等。
先将菌株接种到培养基中培养,再将培养好的菌液接种到发酵罐中进行扩大培养。
菌种培养的条件包括适宜的温度、pH值、培养基组成等。
2. 发酵罐的准备:通常采用不锈钢发酵罐,选择适宜的体积和搅拌速度。
发酵罐内要保持无菌状态,并可以自动控制温度、pH值、溶氧量等参数。
3. 发酵工艺参数设定:设定适宜的温度和pH值,一般发酵温度为30-37摄氏度,pH值为6-7。
通过自动控制系统实时监测和调控这些参数,保证发酵过程的正常进行。
4. 发酵过程:首先将适量的底物加入发酵罐中,底物包括主碳源、氮源、矿物元素等。
然后将菌种接种进入发酵罐,并继续搅拌保持良好的氧气传递。
发酵过程中,微生物利用底物产生代谢产物,包括谷氨酸。
5. 收获和提取:发酵过程一般持续3-5天,当菌体处于最佳生长阶段时,收获发酵液。
发酵液需要经过后处理,包括澄清、浓缩、精制等步骤。
澄清可以通过离心或滤过等方式进行。
浓缩可以利用蒸发、真空浓缩等方法进行。
精制包括溶剂提取、结晶、脱色等步骤,以提高谷氨酸的纯度。
6. 产品包装和贮存:将精制后的谷氨酸产品进行包装,通常采用铝箔袋或塑料瓶。
包装完成后,产品需要进行质量检验,并储存于低温、干燥、密封的环境中,以延长产品的保质期。
以上就是谷氨酸发酵的工艺流程。
随着生物技术的不断发展,谷氨酸发酵工艺也在不断改进,以提高谷氨酸的产量和纯度。
同时,工艺的经济性、环保性也是发酵工艺改进的重要方面,以实现可持续发展。
生物工程专业综合实训(2016 年 11 月谷氨酸生产工艺摘要:谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。
不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。
现代生产谷氨酸的工艺主要是利用微生物发酵提取而来.不同的发酵方法和不同的发酵条件会造成产量的很大不同.本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。
通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法. 关键词:谷氨酸;发酵;工艺;等电点。
引言谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义.不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应.医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。
过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产.不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。
谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。
用于食品内,有增香作用。
甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。
谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用.一、谷氨酸简介谷氨酸一种酸性氨基酸。
分子内含两个羧基,化学名称为α-氨基戊二酸.谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。
大量存在于谷类蛋白质中,动物脑中含量也较多。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
谷氨酸生产工艺生物技术081 郁海东 08010071摘要:谷氨酸,是一种酸性氨基酸。
分子内含两个羧基,化学名称为α-氨基戊二酸。
谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。
大量存在于谷类蛋白质中,动物脑中含量也较多。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
目前,我国许多工厂采用多种方法来提高谷氨酸产率,如选育高产菌种、改进发酵工艺、搞好发酵控制、引进微机控制、增加控制参数等。
这些方法对于提高谷氨酸产率非常有效。
谷氨酸是生产味精的主要原料,随着发酵法生产谷氨酸技术的发展,我国味精生产始于1923年,至今已有80多年历史,随着科学技术的不断进步,味精生产技术也在不断变革,由创建之初的以面筋、豆粕为原料水解法生产工艺,改变为现在以淀粉为原料发酵法生产工艺,发酵法生产工艺从1964年在上海味精厂首次投入生产以来,发酵法生产谷氨酸的生产技术进步较大,尤其是近几年随着菌种的突破以及新技术,新设备的应用进展更快,进入九十年代,尤其九五年后,技术进步较快,目前行业最好水平时(仅少数厂家)制糖收率99%以上,发酵产酸11-12%,转化率59-62%,提取收率96-98%精制收率96%,与80年代比较全行业平均制糖收率提高了10%,发酵产酸率提高了117%,转化率提高了43%,提取收率提高了20%,精制收率提高了8.8%,综合技术指标淀粉消耗下降了166%关键词:菌种、培养基选择、发酵工艺、分离纯化、质量控制谷氨酸发酵的工艺流程菌种的选育,培养基的配制,斜面培养,一级种子培养,二级种子培养,发酵,发酵液。
谷氨酸菌种的生产谷氨酸生产菌为谷氨酸杆菌。
乳糖发酵短杆菌。
黄色短杆菌。
我国主要使用的是北京棒杆菌D110、北京棒杆菌ASI。
299、锯齿棒杆菌等。
谷氨酸生产菌种保藏常用液氮保存法。
在已报道的谷氨酸生产菌种中,除牙胞杆菌外,他们都有一些共同的特点:革兰氏阳性,菌体为球形、短杆至棒状、不形成芽孢,没有鞭毛、不能运动。
谷氨酸发酵生产工艺设计引言谷氨酸(Glutamic acid)是一种具有重要生理功能的氨基酸,在食品添加剂、医药和化工等领域得到广泛应用。
谷氨酸的发酵生产是目前主要的生产方式之一,具有高效、环保和经济的特点。
本文将介绍谷氨酸发酵生产工艺的设计要点和步骤,旨在提供一个指导性的参考。
1. 发酵菌种的选择在谷氨酸的发酵生产中,选择合适的菌种是非常重要的。
常用的菌种包括诺辛谷氨酸菌、泛酰谷氨酸菌等。
选择菌种要考虑以下因素:1.菌种对底物的利用能力:菌种应具备对底物(如糖类)的高效利用能力,能够快速合成谷氨酸。
2.谷氨酸产量和产率:菌株应具有较高的产量和产率,以提高生产效率。
3.耐受性和稳定性:菌株应具备较强的耐受性,能够适应不良环境条件,并保持稳定的发酵性能。
2. 发酵培养基的配方设计发酵培养基是谷氨酸发酵生产过程中提供营养物质和能量的介质。
设计合理的发酵培养基可以提高菌株的生长速度和谷氨酸的产量。
发酵培养基的配方设计要考虑以下因素:•碳源:常用的碳源包括葡萄糖、淀粉和甘蔗汁等。
碳源的选择应考虑菌株的利用能力和成本因素。
•氮源:氮源是合成蛋白质和谷氨酸的重要原料,常用的氮源包括氨基酸和无机盐等。
氮源的选择应满足菌株对氮元素的需求。
•矿盐和微量元素:矿盐和微量元素对菌株的生长和代谢过程起到重要作用,应根据菌株的需求进行添加。
•pH值和温度:发酵过程中,适宜的pH值和温度对菌株的生长和产酸能力影响较大,应根据菌株的生长特性进行调控。
3. 发酵过程的控制策略发酵过程的控制是谷氨酸发酵生产的关键环节之一,涉及菌种的培养、发酵液的供给和收集、废液的处理等方面。
控制发酵过程可以从以下几个方面进行:•菌种的培养和引种:选取适宜的菌株,进行菌种的预培养和引种,保证发酵罐内菌种的活力和数量充足。
•发酵液的供给和收集:根据菌株的需求,在发酵过程中及时供给合适的培养基,同时及时收集产生的发酵液。
•pH值和温度的调控:通过控制培养基的酸碱度和发酵罐的温度,保持适宜的生长环境。
完整版)各种氨基酸的生产工艺本文介绍了谷氨酸的生产工艺,其中包括等电离交工艺方法、连续等电工艺、发酵法生产谷氨酸的谷氨酸提取工艺、水解等电点法、低温等电点法和直接常温等电点法。
等电离交工艺方法是从发酵液中提取谷氨酸的一种方法。
该方法的缺点是废水量大,治理成本高,酸碱用量大。
连续等电工艺方法将谷氨酸发酵液适当浓缩后进行结晶,虽然水量相对较少,但氨酸提取率及产品质量较差。
发酵法生产谷氨酸的谷氨酸提取工艺是通过超滤膜进行超滤,然后进行结晶、分离、洗涤等步骤得到谷氨酸晶体。
该方法设备简单,废水量减少,生产成本低,酸碱用量省。
水解等电点法是将发酵液浓缩后进行盐酸水解,然后进行过滤、脱色、浓缩等步骤得到谷氨酸晶体。
该方法设备简单,废水量减少,生产成本低,酸碱用量省。
低温等电点法和直接常温等电点法也是从发酵液中提取谷氨酸的方法,它们的优点都是设备简单,废水量减少,生产成本低,酸碱用量省。
发酵法制备谷氨酸晶体的工艺流程如下:首先将发酵液加入硫酸中,调节pH值为4.0-4.5,进行育晶2-4小时,然后再加入硫酸,调节pH值为3.5-3.8,再进行育晶2小时,最后加入硫酸,调节pH值为3.0-3.2,进行育晶2小时。
冷却降温后,进行搅拌16-20小时,沉淀2-4小时即可获得谷氨酸晶体。
该工艺具有设备简单、操作容易、生产周期短、酸碱用量省等优点。
L-亮氨酸的制备过程分为6个步骤。
首先,在浓缩罐中通入一次母液,加入蒸汽进行浓缩,温度为120度,气压为-0.09Mpa,浓缩时间为6小时,得到结晶液。
然后将结晶液进入一次中和罐中,加入硫酸和纯水进行中和,温度为80度,中和时间为4小时,过滤后得到滤液和滤渣。
接着将滤渣进入氨解罐中,加入氨水、纯水和蒸汽进行氨解,温度为80度,氨解时间为3小时,过滤后得到滤液和滤渣。
将滤渣进入脱色罐中,加入蒸汽、纯水和活性炭进行脱色,温度为80度,脱色时间为2小时,过滤后得到滤液和滤渣。
将滤液进入二次中和罐中,加入氨水和蒸汽进行中和,温度为80度,中和时间为4小时,过滤后得到滤液和滤渣。
谷氨酸提取工艺
嘿,咱今儿就来讲讲谷氨酸提取工艺这档子事儿。
你说这谷氨酸啊,就像是烹饪里的魔法调料,能让食物变得超级美味。
那要怎么把它从各种材料里给弄出来呢?这可就有讲究啦!
咱先得找到合适的原料,就好像要挑到好食材才能做出美味佳肴一样。
然后呢,通过一系列的步骤,就像一场奇妙的冒险,把谷氨酸一点点地分离出来。
想象一下,就像是在一个大迷宫里找宝贝,得沿着正确的路走,不能跑偏啦。
这过程中得细心,得耐心,要是马虎一点,那宝贝可就找不着咯!
在提取的时候,温度、酸碱度这些条件都得把握好,这就跟咱炒菜掌握火候似的,火大了不行,小了也不行。
温度高了可能就把谷氨酸给弄坏了,低了呢又提取不出来,你说难不难?
还有啊,不同的提取方法就像是不同的武功秘籍,各有各的厉害之处。
有的方法简单直接,就像直拳出击;有的方法则比较复杂,像是一套组合拳。
但不管哪种方法,目的都是为了把谷氨酸顺利地拿到手。
比如说发酵法,这就像是让微生物们帮咱干活儿,它们在那里努力地生产谷氨酸,咱就等着收获就行啦。
这多神奇啊!
提取出来的谷氨酸,那可是宝贝呀!可以用来做各种好吃的调味料,让咱的饭菜更可口。
你想想,要是没有谷氨酸,那很多美味可就不存在啦,那该多可惜呀!
所以说呀,这谷氨酸提取工艺可真是个了不起的技术。
它就像是一个神奇的魔法,能把普通的东西变得不普通。
咱得好好研究它,让它为我们的生活增添更多的美味和乐趣。
总之呢,谷氨酸提取工艺是个很有意思也很重要的事儿,咱可不能小瞧它。
只有把这个工艺掌握好了,才能让谷氨酸更好地为我们服务呀!
原创不易,请尊重原创,谢谢!。
各种氨基酸的生产工艺1、谷氨酸(1)等电离交工艺方法——从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0-3.2),温度降到10以下沉淀,离心分离谷氨酸,再将上清液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗脱下来的高流分再用硫酸调PH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。
该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。
(2)连续等电工艺——将谷氨酸发酵液适当浓缩后控制40℃左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40℃进行结晶。
该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。
(3)发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20〜3.25,然后进入常温的等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整pH值至4.5〜7,蒸发、浓缩、再在第三调酸罐中调pH值至3.20〜3.25 后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。
(4)水解等电点法发酵液--- 浓缩(78.9kPa,0.15MPa蒸汽)——盐酸水解(130 ℃, 4h ) ——过滤 ---- 滤液脱色——浓缩——中和,调pH至3.0-3.2(NaOH或发酵液)——低温放置,析晶谷氨酸晶体此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省(5)低温等电点法发酵液--- 边冷却边加硫酸调节pH4.0-4.5 --- 加晶种,育晶2h --- 边冷却边加硫酸调至pH3.0-3.2 ---- 冷却降温 ---- 搅拌16h ------ 4 ℃ 静置4h ---- 离心分离------ 谷氨酸晶体此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省(6)直接常温等电点法发酵液加硫酸调节pH4.0-4.5 -------- 育晶2-4h --- 加硫酸调至pH3.5-3.8 ---- 育晶2h ---- 加硫酸调至pH3.0-3.2 -----育晶2h ----- 冷却降温------ 搅拌16-20h ----- 沉淀2-4h ----- 谷氨酸晶体此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。
谷氨酸分离提取工艺进展一、本文概述谷氨酸,作为一种重要的氨基酸,在生物体内发挥着至关重要的作用,包括蛋白质合成、能量代谢、神经传导等多个方面。
近年来,随着生物技术的不断发展和人们对谷氨酸需求量的增加,谷氨酸的分离提取工艺受到了广泛关注。
本文旨在综述谷氨酸分离提取工艺的最新进展,包括传统的提取方法、新型的分离技术,以及工艺优化和经济效益分析等方面。
通过对这些内容的探讨,希望能够为谷氨酸的生产和应用提供有益的参考,推动相关产业的可持续发展。
二、谷氨酸的传统分离提取工艺谷氨酸作为一种重要的氨基酸,其分离提取工艺一直是生物化学领域的研究重点。
传统的谷氨酸分离提取工艺主要基于发酵液的预处理等电点沉淀、离子交换、结晶和精制等步骤。
发酵液预处理是关键的一步,旨在去除发酵液中的杂质,如蛋白质、糖类、无机盐等,以提高后续分离提取的效率。
这一步通常包括离心、过滤和调节pH值等操作。
接下来,等电点沉淀法是利用谷氨酸在特定pH值下溶解度降低的特性,通过调整溶液的pH值至谷氨酸的等电点,使其沉淀析出。
这一方法操作简便,但谷氨酸的纯度和收率往往受到等电点附近其他杂质的干扰。
离子交换法则是利用离子交换树脂对谷氨酸的选择性吸附能力,将谷氨酸从发酵液中分离出来。
此方法对谷氨酸的纯度提升效果显著,但设备投资和操作成本相对较高。
在结晶步骤中,通过控制温度、浓度和pH值等条件,使谷氨酸以晶体的形式析出,进一步提高其纯度。
然而,结晶过程中可能出现的杂质共结晶现象会影响谷氨酸的质量。
精制步骤通常包括重结晶、脱色、脱盐等操作,以进一步提高谷氨酸的纯度。
精制后的谷氨酸产品可以满足不同领域的应用需求。
尽管传统的谷氨酸分离提取工艺已经相对成熟,但在操作成本、产品纯度、环境友好性等方面仍有改进空间。
因此,研究者们一直在探索更加高效、环保的谷氨酸分离提取新工艺。
三、谷氨酸分离提取工艺的新进展近年来,随着科学技术的不断进步,谷氨酸的分离提取工艺也取得了显著的进展。
常用的谷氨酸生产工艺流程英文回答:Glutamic Acid Production Processes.Glutamic acid is an important amino acid that has a wide range of applications in food, pharmaceuticals, and other industries. It can be produced by microbial fermentation, chemical synthesis, or enzymatic hydrolysis of proteins.Microbial Fermentation.Microbial fermentation is the most common method for producing glutamic acid. In this process, a strain of bacteria (Corynebacterium glutamicum) is used to convert glucose into glutamic acid. The bacteria are grown in a fermenter under controlled conditions of temperature, pH, and oxygenation. The glutamic acid is then extracted from the fermentation broth and purified.Chemical Synthesis.Glutamic acid can also be produced by chemical synthesis. This process involves the reaction of ammonia with acrylic acid. The resulting product is then converted into glutamic acid by enzymatic hydrolysis.Enzymatic Hydrolysis of Proteins.Enzymatic hydrolysis of proteins is another method for producing glutamic acid. This process involves the use of enzymes to break down proteins into their constituent amino acids. Glutamic acid is one of the most abundant amino acids in proteins, so this process can be used to produce glutamic acid from a wide range of protein sources.Comparison of Production Methods.The three main methods for producing glutamic acid have advantages and disadvantages.Microbial fermentation is the most efficient and cost-effective method for producing glutamic acid. However, it requires a high level of technical expertise and can be difficult to scale up.Chemical synthesis is a more direct method for producing glutamic acid, but it is less efficient and more expensive than microbial fermentation.Enzymatic hydrolysis of proteins is a relatively new method for producing glutamic acid. It is still under development, but it has the potential to be more efficient and cost-effective than microbial fermentation.中文回答:谷氨酸生产工艺。
生物工程专业综合实训
(2016 年 11 月
谷氨酸生产工艺
摘要:
谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。
不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。
现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。
不同的发酵方法和不同的发酵条件会造成产量的很大不同。
本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。
通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。
关键词:谷氨酸;发酵;工艺;等电点。
引言
谷氨酸是一种酸性氨基酸,是生物机体氮代的基本氨基酸之一,在代上具有重要意义。
不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸在生物体的蛋白质代过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。
过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。
不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。
谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。
谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。
用于食品,有增香作用。
甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。
谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。
一、谷氨酸简介
谷氨酸一种酸性氨基酸。
分子含两个羧基,化学名称为α-氨基戊二酸。
谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。
大量存在于谷类蛋白质中,动物脑中含量也较多。
谷氨酸在生物体的蛋白质代过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。
食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。
过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。
谷氨酸是生物机体氮代的基本氨基酸之一,在代上具有重要意义。
L-谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。
多种食品以及人体都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。
L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。
谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。
需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。
受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。
供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。
这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。
有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。
这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。
二、实训容
菌种的培养、种子扩培、发酵、提取、脱色结晶干燥、谷氨酸成品
三、实验材料
(一)菌种:天津棒杆菌
(二)药品:胰蛋白胨、酵母提取物、NaCl、NaOH、葡萄糖、尿素、硫酸镁、磷酸二氢钾、D-生物素、硫酸亚铁、硫酸锰、消泡剂、氨水、
1mol/LHCl、蒸馏水、1mol/LNaOH、无水乙醇
(三)设备:恒温培养箱、高压蒸汽灭菌锅、发酵罐、721分光光度计、离心机、磁力搅拌器、天平、恒温振荡摇床
四、实验方法
(一)斜面菌种制备
无菌条件下,从冷藏的天津棒杆菌的斜面上,挑取适量菌体涂在LB培养
基的斜面上,然后置37℃的恒温箱培养20—24h。
我们采用LB培养基制
作固体试管斜面,它是一种常用培养基,LB培养基灭菌条件:在高压蒸
汽灭菌锅保持121℃,0.14Mpa下,20min即可,分装试管,每试管约5
—10ml(视试管大小而定)。
(二)种子培养基的制备与灭菌
表2 一级种子培养基配方表(400mL)
成分配比
葡萄糖 2.5%(10g)
尿素0.5%(2g)
硫酸镁0.04%(0.16g)
磷酸二氢钾0.1%(0.4g)
D-生物素(2.5-3.5)2.8mg/L
2⨯106-g/L
硫酸亚铁
2⨯106-g/L
硫酸锰
调pH值7.0,121℃,0.14Mpa下,灭菌20min即可。
一级扩培:32℃,180—200r/min,培养10—12h。
(三)发酵培养基配方表
表3 发酵培养基配方表(2L)
成分浓度
葡萄糖125-150g/L(250g-300g)
20g/L(40g)
尿素
1-1.5g/L(2.5g)
磷酸二氢钾
0.25-1.0g/L(1.1g)
硫酸镁
2⨯106-g/L
硫酸亚铁
2⨯106-g/L
硫酸锰
D-生物素(0.4—0.8)0.6mg/L
按发酵培养基成分配比,配制培养基,调节pH值至6.5,进行灭菌。
灭菌条件:在高压蒸汽灭菌锅保持121℃,0.14Mpa下,灭菌20min即可。
四、发酵过程
发酵液2.0L装入发酵罐,离座灭菌。
接入电源,将已灭菌的发酵培养基通入无菌空气,调整好发酵罐的各类初始参数:温度为32℃、pH7.5、搅拌180r/min、泡沫和消泡剂(豆油)自动调节等。
12h后观察是否生长杂菌,再将无水乙醇倒入接种口的环槽中,点燃后,进行无菌接种操作,接种量一般为10%。
通气量为0.8—1.0m /h,搅拌速率为60r/min,全程用消泡剂消泡,发酵过程通氨,当接种后发酵pH低于6.5时就可以开始通氨,通氨量的多少参考pH值,温度采用变温控制,具体过程见表4。
谷氨酸的发酵周期约为30h,每隔2h测一次天津棒杆菌的菌丝浓度,采用721分光光度计在620nm下测发酵液OD值,同时测定pH 值。
在菌体接近衰亡期前放罐,得到谷氨酸发酵液。
表4 发酵过程工艺控制
时间/h 温度/℃pH 搅拌速度/min1-
0—6 32 7.5 250
6—10 32 7.2 300
10—23 34 7.2 300
五、谷氨酸提取方法-等电点
将放罐的发酵液先测定放罐体积、pH、谷氨酸含量和温度。
取400ml发酵液,其余的装入锥形瓶封好放入冰箱中保存待用。
离心(转速为5000r/min)去除菌体。
加入盐酸溶液(1mol/L),调节发酵液pH值为4~4.5,开搅拌,育晶2h。
之后再加盐酸溶液(1mol/L),调节发酵液pH值为3.5~3.8,育晶2h。
然后再加盐酸溶液(1mol/L),调节发酵液pH值为3.0~3.2,育晶16h,静置沉淀,母液和谷氨酸晶体分离。
六、实验结果(OD值及PH值)
七、结果讨论
1.在整个发酵过程OD值一直是负的,可能是以下几点原因造成的:
(1)在菌种摇床扩培阶段培养时间过短,造成菌种数量不够。
(2)在发酵罐接入菌种培养后,有一段时间发酵罐温度过高可能造成细菌大量死亡,导致细菌产物减少或根本没有。
(3)发酵过程条件没有控制好,过酸或过碱都会导致菌种生长不良。
2.在调节发酵液pH值可能由于试纸测量不太精准。
导致发酵条件不好,产物没有提取不出来。
3.在本实验中灭菌十分重要,如果灭菌不彻底,导致杂菌污染。
杂菌会和菌种争夺养分导致菌种生长不良,其次杂菌的代产物可能威胁菌种的生理活性。
八、心得体会
经过一个多星期的谷氨酸生产综合实训,让我学到很多知识。
书中学到的理
论知识可以很好的转换为实践,加深我脑海中的知识。
本次实验涉及多个方面,不再是以前单一因素对实验的影响,而是多个因素:通气量,pH,温度,营养物质等共同作用来生产谷氨酸。
任意一个因素的改变都会造成谷氨酸的产量变动很大。
当然菌种的生理活性和数量也是一个重要因素,生理活性高意味着产量就高。
整个发酵过程不断通入氧气,保障菌种可以很好进行有氧呼吸将葡萄糖转换为谷氨酸,并且通气量是随着时间而改变的。
当菌种生长到一定时期,菌种数量就基本不变。
而就行初级代和次级代来产生谷氨酸。
其中整个发酵过程中OD值一直是负的,并且最后也没有谷氨酸产生。
最大的可能性就是发酵液中的菌种数量太少或者可能由于某种因素菌种死掉了如温度过高,pH。
最后要感欣老师在整个发酵过程对我们的耐心指导和陪伴。