上海市鲁迅中学2020-2021学年高一上学期期中考试数学试题 答案和解析
- 格式:docx
- 大小:262.31 KB
- 文档页数:9
上海高一第一学期期中考试数学试卷一. 填空题 1. 不等式13x≤的解集是 2. 已知正数x 、y 满足1x y +=,则14x y+的最小值为 3. 已知关于x 的不等式210kx kx -+≤解集为空集,则实数k 的取值范围是4.32a b-= (其中0a >,0b >)5. 不等式||4|1|x x <-+的解集是6. 已知关于x 的方程221(1)104x k x k -+++=有两个实数根1x 、2x , 若2212126x x x x +=-15,则k 的值为 7. 若不等式|4||3|x x a +--≤对一切实数x ∈R 恒成立,则实数a 的取值范围是 8. 已知关于x 的不等式2(5)()0mx x m --<的解集为A ,若2A ∈且3A ∉,则实数m 的 取值范围为9. 已知集合2{(,)|1}A x y y x ax ==-+-,{(,)|3,03}B x y x y x =+=≤≤,若A B 中有且仅有一个元素,则实数a 的取值范围10. 已知正数a 、b 满足2(2)4a b a b +=,则a b +的最小值为二. 选择题11. 下列条件中,使“020x x >⎧⎨-<⎩”成立的充分不必要条件是( )A. 01x <<B. 02x <<C. 03x <<D. 11x -<< 12. 若,,a b c ∈R ,且a b >,则下列不等式中,一定成立的是( )A. a b b c +>-B. ac bc ≥C.20c a b>- D. 2()0a b c -≥ 13. 设全集U =R ,{|4A x x =<-或3}x ≥,{|16}B x x =-<<,则集合{|13}x x -<<是( ) A. AB B. A B C. A B D. A B14. 定义:区间[,]a b ,(,]a b ,(,)a b ,[,)a b 的长度均为b a -,若不等式1212m x x +≥--(0m ≠)的解集是互不相交区间的并集,则该不等式的解集中所有区间的长度之和为l ,则( )A. 当0m >时,l =B. 当0m >时,3l m=C. 当0m <时,l =D. 当0m <时,3l m=-三. 解答题15.(1)已知35a b m ==,且112a b+=,求实数m 的值; (2)已知lg 2a =,lg3b =,试用a 、b 表示2log 3,12log 25.16.(1)当1x >时,求证:2211x x x x+>+; (2)已知x ∈R ,21a x x =-+,4b x =-,22c x x =-, 求证:a 、b 、c 至少有一个不小于1.17. 已知函数2()(41)4f x ax a x =-++(a ∈R ).(1)若关于x 的不等式()f x b ≥的解集为{|12}x x ≤≤,求实数a 、b 的值; (2)解关于x 的不等式()0f x >.18. 设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B . (1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由; (3)若A B ≠∅,求实数a 的取值范围.四. 附加题19. 对任意a ∈R ,|1||1|a a ++-的最小值为A .(1)若三个正数x 、y 、z 满足x y z A ++=,证明:2222x y z y z x++≥; (2)若三个正数x 、y 、z 满足x y z A ++=,且2221(2)(1)()3x y z m -+-++≥恒成立,求实数m 的取值范围.20. 已知集合12{,,,}n A a a a =⋅⋅⋅中的元素都是正整数,且12n a a a <<⋅⋅⋅<,集合A 具有性质M :对任意的,x y A ∈,且x y ≠,都有||25xy x y -≥. (1)判断集合{1,2,3,4}是否具有性质M ; (2)求证:111125n n a a --≥; (3)求集合A 中元素个数的最大值,并说明理由.参考答案一. 填空题1. 1(,0)[,)3-∞+∞ 2. 9 3. [0,4) 4. a 5. 53(,)22- 6. 4 7. 7a ≥ 8. 55[,)(4,9]329. 103a >或3a = 10. 2【10解析】223240a b a b +-=,求根公式得b a ==-+,∴2a b +===二. 选择题11. A 12. D 13. C 14. B三. 解答题15.(1)m =(2)b a ,222aa b-+. 16.(1)证明略;(2)证明略.17.(1)1a =-,6b =;(2)当0a <时,解集为1{|4}x x a<<;当0a =时,解集为{|4}x x <; 当104a <<时,解集为{|4x x <或1}x a >;当14a =时,解集为{|4}x x ≠;当14a >时,解集为1{|x x a<或4}x >.18.(1){|2A x x a =>+或1}x a <-;(2)不存在;(3)01a <<. 19.(1)证明略;(2)(,0][2,)-∞+∞.20.(1)具有性质M ;(2)证明略;(3)集合A 中元素个数的最大值是9.上海高一第一学期数学期中考试试卷满分:100分 考试时间:90分钟一、 填空题(每小题3分,满分36分)1.已知集合{}1,A x =,则x 的取值范围是___________________.2.命题“若0>a 且0>b ,则0ab >”的否命题为__ _ ____ . 3.已知集合M ⊂≠{4,7,8},则这样的集合M 共有 个.4.用描述法表示“平面直角坐标系内第四象限的点组成的集合”:______________ ___. 5.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,() .U A C B ⋂= 6.11 .x<不等式的解集是 7.不等式|2x -1|< 2的解集是 . 8. 已知0x >,当2x x+取到最小值时,x 的值为_____ _. 9.已知集合}1|{≤=x x M ,}|{t x x P >=,若M P ⋂=∅,则实数t 的取值范围是 .10. 关于x 的不等式22210x kx k k -++->的解集为{},x x a x R ≠∈,则实数a =___________.11. 已知24120x x +->是8x a -≤≤的必要非充分条件,则实数a 的取值范围是______________________。
2020-2021高一数学上期中试卷(及答案)(5)一、选择题1.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭2.如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>3.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭4.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<5.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.56.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)7.设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( ) A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =8.已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1- 9.函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,311.若a >b >0,0<c <1,则 A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b12.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______.14.函数()12x f x =-的定义域是__________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.函数f(x)为奇函数,且x>0时,f(x)=x +1,则当x<0时,f(x)=________. 17.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.18.设()f x 是定义在R 上的奇函数,且()y f x =的图像关于直线12x =对称,则(1)(2)(3)(4)(5)f f f f f ++++= .19.已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. 若关于x 的方程()0f x m -=有四个不同的实数解,则实数m 的取值范围是_____. 20.已知函数在区间,上恒有则实数的取值范围是_____.三、解答题21.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元, (1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元? 22.设函数()(0.af x x x x=+≠且x ,)a R ∈. (1)判断()f x 的奇偶性,并用定义证明; (2)若不等式()12262xxxf <-++在[]0,2上恒成立,试求实数a 的取值范围; (3)()11,0,12x g x x x -⎡⎤=∈⎢⎥+⎣⎦的值域为.A 函数()f x 在x A ∈上的最大值为M ,最小值为m ,若2m M >成立,求正数a 的取值范围.23.已知()f x 是定义在()1,1-上的奇函数,且当01x <<时,()442xx f x =+,(1)求()f x 在()1,0-上的解析式;(2)求()f x 在()1,0-上的值域;(3)求13520172018201820182018f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L 的值. 24.已知函数()22f x ax ax b =-+()0a >在[]2,3上的值域为[]1,4. (1)求a ,b 的值; (2)设函数()()f xg x x=,若存在[]2,4x ∈,使得不等式()22log 2log 0g x k x -≥成立,求k 的取值范围.25.已知()y f x =是定义域为R 的奇函数,当[)0,x ∈+∞时,()22f x x x =-. (1)写出函数()y f x =的解析式;(2)若方程()f x a =恰3有个不同的解,求a 的取值范围. 26.设a 为实数,函数()()21f x x x a x R =+-+∈.(1)若函数()f x 是偶函数,求实数a 的值; (2)若2a =,求函数()f x 的最小值;(3)对于函数()y m x =,在定义域内给定区间[],a b ,如果存在()00x a x b <<,满足()0()()m b m a m x b a-=-,则称函数()m x 是区间[],a b 上的“平均值函数”,0x 是它的一个“均值点”.如函数2y x =是[]1,1-上的平均值函数,0就是它的均值点.现有函数()21g x x mx =-++是区间[]1,1-上的平均值函数,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.2.A解析:A 【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭,把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得3223b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.3.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.4.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.5.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.6.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.7.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.8.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.9.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.10.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭. 故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.11.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.二、填空题13.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:解析:(1,3](4,)+∞U . 【解析】 【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<…或4λ>,即λ的取值范围是:(1,3](4,)+∞U 故答案为:(1,3](4,)+∞U .【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.14.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填解析:1【解析】当x <0时,-x >0,∴f (-x )=1,又f (-x )=-f (x ),∴f (x )=1,故填1.17.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.18.0【解析】试题分析:的图像关于直线对称所以又是定义在上的奇函数所以所以考点:函数图象的中心对称和轴对称解析:0 【解析】试题分析:()y f x =的图像关于直线12x =对称,所以()(1)f x f x =-,又()f x 是定义在R 上的奇函数,所以(5)(15)(4)(4)f f f f =-=-=-,(3)(13)(2)(2)f f f f =-=-=-,(1)(11)(0)0f f f =-==,所以(1)(2)(3)(4)(5)0f f f f f ++++=.考点:函数图象的中心对称和轴对称.19.【解析】【分析】若方程有四个不同的实数解则函数与直线有4个交点作出函数的图象由数形结合法分析即可得答案【详解】因为函数是定义在R 上的偶函数且当时所以函数图象关于轴对称作出函数的图象:若方程有四个不同 解析:(1,0)-【解析】 【分析】若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点,作出函数()f x 的图象,由数形结合法分析即可得答案. 【详解】因为函数()f x 是定义在R 上的偶函数且当0x ≥时,2()2f x x x =-,所以函数()f x 图象关于y 轴对称, 作出函数()f x 的图象:若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点, 由图象可知:10m -<<时,即有4个交点. 故m 的取值范围是(1,0)-, 故答案为:(1,0)- 【点睛】本题主要考查了偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,数形结合,属于中档题.20.(131)【解析】【分析】根据对数函数的图象和性质可得函数f (x )=loga (2x ﹣a )在区间1223上恒有f (x )>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】 解析:【解析】 【分析】根据对数函数的图象和性质可得,函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0,即,或,分别解不等式组,可得答案.【详解】若函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0,则,或当时,解得<a <1,当时,不等式无解.综上实数的取值范围是(,1) 故答案为(,1). 【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.三、解答题21.(1)()11,(),(0)82f x xg x x x ==≥;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元. 【解析】 【分析】(1)投资债券等稳健型产品的收益()f x 与投资额x 成正比,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,这时可构造出一个关于收益y 的函数,然后利用求函数最大值的方法进行求解. 【详解】(1)依题意设()1,()f x k x g x k x ==,1211(1),(1)82f kg k ====,()1,()0)8f x x g x x ==≥; (2)设投资股票等风险型产品为x 万元, 则投资债券等稳健型产品为20x -万元,1(20)()(20)8y f x g x x =-+=-212)3,0208x =-+≤≤Q ,2,4x ==万元时,收益最大max 3y =万元, 20万元资金,投资债券等稳健型产品为16万元, 投资股票等风险型产品为4万元,投资收益最大为3万元. 【点睛】本题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等基础知识与基本方法,属于中档题.22.(1)奇函数;见解析(2)7a <-;(3)15,153⎛⎫⎪⎝⎭【解析】 【分析】(1)可看出()f x 是奇函数,根据奇函数的定义证明即可;(2)由题意可得出22(2)162x xa <-++⋅在[]0,2上恒成立,然后令2x t =,[]1,4t ∈,从而得出2261y t t =-++,只需min a y <,配方求出y 的最小值,即可求解;(3)容易求出1,13A ⎡⎤=⎢⎥⎣⎦,从而得出1,13x ⎡⎤∈⎢⎥⎣⎦时,2()()min max f x f x >,可讨论a :容易得出0a ≤时,不符合题意;0a >时,可知()f x 在(上是减函数,在)+∞上是增函数,从而可讨论109a <≤,1a ≥和119a <<,然后分别求出()f x 在1,13⎡⎤⎢⎥⎣⎦上的最小值和最大值,根据2m M >求出a 的范围即可. 【详解】()()1f x Q 的定义域为()(),00,-∞⋃+∞,且()()af x x f x x-=-+=--, ()f x ∴为奇函数;()2若不等式()12262x x xf <-++在[]0,2上恒成立, 即122622xxx x a +<-++在[]0,2上恒成立,即22(2)162x x a <-++⋅在[]0,2上恒成立, 令2x t =,则[]1,4t ∈,223112612()22y t t t =-++=--+, ∴当4t =,即2x =时,函数取最小值7-,故7a <-;()()123111x g x x x -==-+++是10,2⎡⎤⎢⎥⎣⎦上的减函数, ()g x ∴在10,2x ⎡⎤∈⎢⎥⎣⎦上的值域为()][11,0,123A g g ⎡⎤⎛⎫== ⎪⎢⎥⎝⎭⎣⎦,()f x ∴在区间1,13⎡⎤⎢⎥⎣⎦上,恒有2()()min max f x f x >,0a <①时,()f x 在1,13⎡⎤⎢⎥⎣⎦上单调递增,()()11max f x f a ∴==+,11()333min f x f a ⎛⎫==+ ⎪⎝⎭,12313a a ⎛⎫∴+>+ ⎪⎝⎭,解得115a >,不满足0a <;0a =②时,()f x x =在1,13⎡⎤⎢⎥⎣⎦上是增函数,1()1,()3max min f x f x ∴==,1213⨯<,不满足题意;0a >③时,()f x 在(上单调递减,在)+∞上单调递增,13≤,即109a <≤时,()f x 在1,13⎡⎤⎢⎥⎣⎦上是增函数,11()333min f x f a ⎛⎫∴==+ ⎪⎝⎭,()()11max f x f a ==+,12313a a ⎛⎫∴+>+ ⎪⎝⎭,解得11159a <≤;1≥,即1a ≥时,()f x 在1,13⎡⎤⎢⎥⎣⎦上单调递减,()()11min f x f a ∴==+,11()333max f x f a ⎛⎫==+ ⎪⎝⎭,()12133a a ∴+>+,解得513a ≤<;13)13<<,即119a <<时,()f x 在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,()min f x f∴==()113,1133f a f a ⎛⎫=+=+ ⎪⎝⎭,当1313a a +≥+,即113a ≤<时,133a >+,a <<,113a ∴≤<,当1313a a +<+,即1193a <<时,1a >+,解得77a -<<+1193a ∴<<, 综上,a 的取值范围是15,153⎛⎫ ⎪⎝⎭. 【点睛】本题考查了奇函数的定义及证明,指数函数的单调性,配方求二次函数最值的方法,换元法求函数最值的方法,函数()af x x x=+的单调性,根据函数单调性求函数在闭区间上的最值的方法,考查了计算和推理能力,属于中档题. 23.(1)()1124x f x -=+⋅(2)2133,⎛⎫-- ⎪⎝⎭(3)10092 【解析】 【分析】(1)令0x <<-1,则01x <-<,代入解析式可求得()f x -.再根据奇函数性质即可求得()f x 在()1,0-上的解析式;(2)利用分析法,先求得当0x <<-1时,4x 的值域,即可逐步得到()f x 在()1,0-上的值域; (3)根据函数解析式及所求式子的特征,检验()()1f x f x +-的值,即可由函数的性质求解. 【详解】(1)当0x <<-1时,01x <-<,()4142124x x xf x ---==++⋅, 因为()f x 是()1,1-上的奇函数 所以()()1124x f x f x -=--=+⋅, (2)当0x <<-1时,14,14x⎛⎫∈ ⎪⎝⎭,3124,32x ⎛⎫+⋅∈ ⎪⎝⎭,121,12433x -⎛⎫∈-- ⎪+⋅⎝⎭,所以()f x 在()1,0-上的值域为21,33⎛⎫-- ⎪⎝⎭; (3)当01x <<时,()442x x f x =+,()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅, 所以1201732015520131201820182018201820182018f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L , 故135********20182018201820182f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L . 【点睛】本题考查了奇函数的性质及解析式求法,利用分析法求函数的值域,函数性质的推断与证明,对所给条件的分析能力要求较高,属于中档题. 24.(1)1,1a b == (2) 1,8⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)先求得函数()f x 的对称轴,然后根据函数()f x 在[]2,3上的单调性列方程组,解方程组求得,a b 的值.(2)由(1)求得函数()f x 的解析式,进而求得()g x 的解析式,将不等式()22log 2log 0g x k x -≥分离常数2k ,利用换元法,结合二次函数的性质,求得k 的取值范围. 【详解】(1)由已知可得()()21f x a x b a =-+-,对称轴为1x =. 因为0a >,所以()f x 在[]2,3上单调递增,所以()()21,34,f f ⎧=⎪⎨=⎪⎩即1,44,a b a a b a +-=⎧⎨+-=⎩解得1,1,a b =⎧⎨=⎩(2)由(1)可得()221f x x x =-+,则()()12f x g x x x x==+-. 因为()22log 2log 0g x k x -≥,所以2221log 22log log x k x x+-≥. 又[]2,4x ∈,所以()2221221log log k xx ≤-+.令21log t x=,则2221k t t ≤-+. 因为[]2,4x ∈,所以1,12x ⎡⎤∈⎢⎥⎣⎦. 记()221h t t t =-+,1,12t ⎡⎤∈⎢⎥⎣⎦,所以当12t =时,()max 14h t =,所以124k ≤,解得18k ≤,故k 的取值范围是1,8⎛⎤-∞ ⎥⎝⎦.【点睛】本小题主要考查根据二次函数的对称轴、单调性和值域求解析式,考查存在性问题的求解策略,考查化归与转化的数学思想方法,属于中档题.25.(1) ()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩ (2) ()1,1-【解析】 【分析】(1)由奇函数的定义求解析式,即设0x <,则有x ->0,利用()f x -可求得()f x ,然后写出完整的函数式;(2)作出函数()f x 的图象,确定()f x 的极值和单调性,由图象与直线y a =有三个交点可得a 的范围. 【详解】解:(1)当(),0x ∈-∞时,()0,x -∈+∞,()f x Q 是奇函数,()()f x f x ∴=--=-()()2222x x x x ⎡⎤---=--⎣⎦()222,02,0x x x f x x x x ⎧-≥∴=⎨--<⎩.(2)当[)0,x ∈+∞时,()()22211f x x x =-=--,最小值为1-;当(),0x ∈-∞,()()22211f x x x x =--=-+,最大值为1.据此可作出函数的图象,如图所示,根据图象得,若方程()f x a =恰有3个不同的解,则a 的取值范围是()1,1-. 【点睛】本题考查函数奇偶性,考查函数零点与方程根的关系.在求函数零点个数(或方程解的个数)时,可把问题转化为一个的函数图象和一条直线的交点个数问题,这里函数通常是确定的函数,直线是动直线,由动直线的运动可得参数取值范围. 26.(1);(2);(3)()0,2【解析】试题分析:(1)考察偶函数的定义,利用通过整理即可得到;(2)此函数是一个含有绝对值的函数,解决此类问题的基本方法是写成分段函数的形式,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<,要求函数的最小值,要分别在每一段上求出最小值,取这两段中的最小值;(3)此问题是一个新概念问题,这种类型都可转化为我们学过的问题,此题定义了一个均值点的概念,我们通过概念可把题目转化为“存在()01,1x ∈-,使得()0g x m =”从而转化为一元二次方程有解问题.试题解析:解:(1)()f x Q 是偶函数,()()f x f x ∴-=在R 上恒成立, 即()2211x x a x x a -+--+=+-+,所以x a x a +=-得0ax =x R ∈Q 0a ∴=(2)当2a =时,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<所以()f x 在[)2,+∞上的最小值为()25f =, ()f x 在(),2-∞上的的最小值为f ()=,因为<5,所以函数()f x 的最小值为.(3)因为函数()21g x x mx =-++是区间[]1,1-上的平均值函数, 所以存在()01,1x ∈-,使()0(1)(1)1(1g g g x --=--)而(1)(1)1(1g g m --=--),存在()01,1x ∈-,使得()0g x m =即关于x 的方程21x mx m -++=在()1,1-内有解; 由21x mx m -++=得210x mx m -+-=解得121,1x x m ==-所以111m -<-<即02m << 故m 的取值范围是()0,2考点:函数奇偶性定义;分段函数求最值;含参一元二次方程有解问题.。
上海市上海中学【最新】高一上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.若集合2{|20}M x x x =+=,{0,1,2}N =,则M N ⋃=________2.不等式4021x x -<-的解是________ 3.函数2()41([1,1])f x x x x =-++∈-的最大值等于____________.4.命题“若1x =且2y =,则3x y +=”的逆否命题是________5.若集合7{|||}5x x Z x m ∈-<且中只有一个元素,则实数m 的取值范围是________ 6.已知“125m x m -<<+”是“23x <<”成立的必要非充分条件,请你写出符合条件的实数m 的一个值________7.已知正实数x 、y 满足22x y xy +=,则x y +的最小值为________8.若集合2{|320}A x x x =-+≤,{|}B x x a =<,若A B ⊆,则最小的整数a 为_______9.若关于x 的不等式|1|||2x x a a -+-<上的解集为∅,则实数a 的取值范围是________10.关于x 的不等式210x kx k -+-<,当(1,2)x ∈时恒成立,则实数k 的取值范围是____11.若三个二次函数2443y x ax a =+-+,22(1)y x a x a =+-+,222y x ax a =--+表示的图像中至少有一条与x 轴有交点,则实数a 的取值集合是________12.上海中学在每学年的上学期会举行体育嘉年华活动,假设在今年的活动中共设了8个体育项目,高一某班的班主任参加了其中的若干个项目,甲、乙、丙三位同学猜测该老师参加的项目见下表:(“×”表示未参加,“√”表示参加)老师告诉甲、乙、丙:“你们分别猜对5次、5次、6次”,由此请你猜测该老师参加的体育项目编号依次为________二、单选题13.设,x y R ∈,“||||1x y +>”一个充分条件是()A .||1x ≥B .||1x y +≥C .2y ≤-D .1||2x ≥或1||2y ≥ 14.不等式||x x x >的解集是() A .{|01}x x << B .{|1x x >或1}x <- C .{|1x x >或10}x -<<D .{|1x x <-或01}x << 15.对三个正实数a 、b 、c ,下列说法正确的是()A .存在(a 、b 、c )的一组值,使得1a b +、1b c +、1c a +均小于2B .存在(a 、b 、c )的一组值,使得1a b +、1b c +、1c a +中恰有两个小于2 C .对(a 、b 、c )任意值,1a b +、1b c +、1c a+都不小于2 D .对(a 、b 、c )任意值,1a b +、1b c +、1c a +中至多有两个不小于216.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .16三、解答题17.设二次函数2()f x x ax b =++的图像过原点,且集合{|()}A x f x x ==为单元集,求a 、b 的值.18.解下列不等式:(1)21331x x -<-;(2)2|22||21|x x x -+>-.19.已知集合2{|20}A x x px q =+-=,22{|420}B x x qx q p =+-+=(其中p 、q 为实数),判断“1p q ==”是“()1A B ∈”的什么条件,并说明理由.20.已知函数2()(1)||f x x x x a =+--.(1)若1a =-,解不等式()1f x >;(2)是否存在实数a ,使不等式()23f x x ≥-对一切实数x ∈R 恒成立?若存在,求出a 的取值范围,若不存在,请说明理由.21.已知二次函数2()f x ax bx c =++(0a >).(1)若1a =,图像()f x 与x 轴的两个不同交点的横坐标都在(2,1)--内,求证:(2)(0,1)f -∈;(2)若存在0x Z ∈,满足01|()|4f x ≤,则称0x 为函数()f x 的一个“近似整零点”,若()f x 有四个不同的“近似整零点”,求a 的最大值.参考答案1.{2,0,1,2}-【解析】【分析】计算求得集合M ,根据并集定义求得结果.【详解】{}{}2202,0M x x x =+==- {}2,0,1,2MN ∴=- 本题正确结果:2,0,1,2【点睛】 本题考查集合运算中的并集运算,属于基础题.2.1(,4)2【分析】将分式不等式转化为一元二次不等式,解一元二次不等式求得结果.【详解】由4021x x -<-得:()()4210x x --<,解得:142x << 1,42x ⎛⎫∴∈ ⎪⎝⎭本题正确结果:1,42⎛⎫⎪⎝⎭ 【点睛】本题考查分式不等式的求解,关键是能够将分式不等式转化为一元二次不等式,属于基础题. 3.【解析】试题分析:∵函数()()[]()2241251,1f x x x x x =-++=--+∈-,∴函数在上是增函数,故当时,函数取得最大值为,故答案为.考点:二次函数在闭区间上的最值.4.若3x y +≠,则1x ≠或2y ≠ 【分析】根据逆否命题定义直接写出结果.【详解】由逆否命题定义可得原命题的逆否命题为:“若3x y +≠,则1x ≠或2y ≠”本题正确结果:若3x y +≠,则1x ≠或2y ≠【点睛】本题考查命题中逆否命题的定义,注意或与且的交换,属于基础题.5.23(,]55【分析】 解绝对值不等式可得7755m x m -<<+且0m >,由75y x =-图象关于75x =对称可知整数解为1x =或2,分别在两种情况下得到不等式组,解不等式组求得结果.【详解】 由75x m -<得:7755m x m -<<+且0m > 75y x =-图象关于75x =对称 ∴当整数解为1x =时,7015725m m ⎧≤-<⎪⎪⎨⎪+≤⎪⎩,解得:2355m <≤ 当整数解为2x =时,7157235m m ⎧-≥⎪⎪⎨⎪<+≤⎪⎩,无解 综上所述:23,55m ⎛⎤∈ ⎥⎝⎦ 本题正确结果:23,55⎛⎤⎥⎝⎦【点睛】本题考查根据集合中元素的个数求解参数范围问题,关键是能够根据不等式的解,确定整数解的可能的取值,从而构造出不等式组.6.0(答案不唯一,只需满足13m -<<即可)【分析】根据必要非充分条件的定义可知解集的包含关系,从而得到不等式组,解不等式组求得m 范围后,写出一个符合范围的值即可.【详解】由必要非充分条件的定义可知:12512253m m m m -<+⎧⎪-≤⎨⎪+≥⎩,解得:13m -≤≤,经检验m=-1或3时,满足题意,∴符合条件的实数m 的一个值为0(答案不唯一,只需满足13m -≤≤即可)【点睛】本题考查根据必要非充分条件求解参数值的问题,属于常考题型.7.32【分析】 将已知等式变为1112y x +=,利用()112x y x y y x ⎛⎫+=++ ⎪⎝⎭可构造出符合基本不等式的形式,利用基本不等式可求得最小值.【详解】由22x y xy +=得:1112y x += ()113222x y x y x y y x y x ⎛⎫∴+=++=++ ⎪⎝⎭ 0x ,0y > 0x y ∴>,02y x>2x y y x ∴+≥=2x y y x =,即y =时取等号) x y ∴+的最小值为32+本题正确结果:32+ 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活运用和为1的式子构造出符合基本不等式的形式.8.3【分析】求解出集合A 后,根据集合的包含关系可求得2a >,从而得到最小的整数a 的值.【详解】 由题意得:()(){}{}12012A x x x x x =--≤=≤≤ A B ⊆ 2a ∴> ∴最小的整数a 为3本题正确结果:3【点睛】本题考查根据集合的包含关系求解参数值的问题,属于基础题.9.1,3⎛⎤-∞ ⎥⎝⎦【分析】当0a ≤时,解集为∅,满足题意;当0a >时,利用绝对值三角不等式可求得11x x a a -+-≥-,根据解集为∅可得12a a -≥,解不等式求得结果.【详解】当0a ≤时,解集为∅,满足题意当0a >时,()111x x a x x a a -+-≥---=-不等式解集为∅ 12a a ∴-≥,即12a a -≥或12a a -≤-,解得:13a ≤ 103a ∴<≤ 综上所述:1,3a ⎛⎤∈-∞ ⎥⎝⎦本题正确结果:1,3⎛⎤-∞ ⎥⎝⎦【点睛】本题考查根据绝对值不等式的解集求解参数范围的问题,涉及到绝对值三角不等式的应用、绝对值不等式的解法等知识,属于常考题型.10.[)3,+∞【分析】采用分离变量的方法得到1k x >+,通过1x +的范围求得k 的取值范围.【详解】由210x kx k -+-<得:()211x k x -<- 当()1,2x ∈时,10x -> 2111x k x x -∴>=+- 又()12,3x +∈ 3k ∴≥,即k 的取值范围为[)3,+∞本题正确结果:[)3,+∞【点睛】本题考查一元二次不等式在区间内恒成立问题的求解,关键是能够通过分离变量的方法将问题转化为所求变量与函数最值之间的关系.11.3(,][1,)2-∞--+∞【分析】当三个二次函数图象与x 轴均无交点时,可知判别式均小于零,从而构造出不等式组,解不等式组求得a 的范围;取补集即可得到至少有一条与x 轴有交点时,a 的取值范围.【详解】 当三个二次函数图象与x 轴都无交点时,()()2122223164340140480a a a a a a ⎧∆=--<⎪⎪∆=--<⎨⎪∆=+<⎪⎩ 解得:312a -<<- ∴三个二次函数图象至少一条与x 轴有交点时,[)3,1,2a ⎛⎤∈-∞--+∞ ⎥⎝⎦ 本题正确结果:[)3,1,2⎛⎤-∞--+∞ ⎥⎝⎦【点睛】 本题考查根据二次函数图象确定参数取值范围的问题,关键是能够通过求解对立事件中参数的范围,取补集得到所求事件中的参数的范围.12.1,3【分析】通过表格可发现只有项目4和项目5的猜测,丙与甲、乙均不同;从这两个项目角度出发,分为丙全猜错、全猜对和猜对1个三种情况;全猜错时,可验证出符合题意;另外两种情况下,甲、乙不能保证均猜对5次,由此可得到符合题意的情况.【详解】丙共猜对6次,猜错2次,其中项目4和项目5与甲、乙猜测均不同,则可分为以下情况:①若丙只有项目4和项目5猜错,其余猜测全正确此时甲猜对5次,乙猜对5次,满足题意 ∴老师参加项目1和项目3②若丙项目4和项目5均猜对,则甲、乙两个项目均猜错∴在项目1,2,3,6,7,8中,甲、乙每人只能错1次项目1,2,3,6,7,8,甲、乙猜测均不同 ∴不可能每人只错1次∴假设不成立③若丙项目4和项目5只猜对1项,则甲、乙两个项目中均猜对1次∴在项目1,2,3,6,7,8中,甲、乙每人只能错2次项目1,2,3,6,7,8,甲、乙猜测均不同 ∴不可能每人只错2次∴假设不成立综上所述:老师参加了项目1和项目3本题正确结果:1,3【点睛】本题考查逻辑推理的相关知识,关键是能够通过所给条件的差异性分析,找到合适的切入点,利用彼此的制约关系来进行判断,属于中档题.13.C【分析】通过反例可依次排除,,A B D 选项;通过绝对值的性质可证明C 正确.【详解】 当1x =时,若0y =,则1x y +=,则A 错误当1x =,0y =时,满足11x y +=≥,此时1x y +=,则B 错误当2y ≤-时,2y ≥,又0x ≥,则21x y +≥>,充分条件成立,C 正确命题“若12x ≥或12y ≥,则1x y +>”的逆否命题为:“若1x y +≤,则12x <且12y <” 当1x =,0y =时,11x y +=≤,此时12x >,可知逆否命题为假 ∴原命题为假,即充分条件不成立,则D 错误本题正确选项:C【点睛】本题考查充分条件的判定,此类问题通常采用特殊值排除的方式找到正确结果.14.C【分析】分别在0x ≥和0x <两种情况下去掉绝对值符号得到不等式,解不等式求得结果.【详解】当0x ≥时,原不等式等价于:2x x >,解得:1x >当0x <时,原不等式等价于:2x x ->,解得:10x -<<x x x ∴>的解集为:{1x x >或}10x -<<本题正确选项:C【点睛】本题考查绝对值不等式的求解,关键是能够通过分类讨论去除绝对值符号,属于基础题. 15.B【分析】 假设12a b +<,12b c +<,可根据正实数的条件确定122b <<,根据不等关系可得11212bc a b b +>+--,利用函数思想可求得1132122b b b +≥--,即12c a+>恒成立,从而排除A ;通过特殊值可验证出B 正确,,C D 错误.【详解】若1a b +、1b c +、1c a +均小于2,则1a b +11++6b c c a++<, 但由基本不等式可得1a b +11++6b c c a ++≥ ∴1a b +、1b c +、1c a +不能均小于2,则A 错误 当12a =,1b =,2c =时 1131222a b +=+=<,1131222b c +=+=<,12242c a+=+=> ∴存在(),,a b c 的一组值,使得1a b +、1b c +、1c a +中恰有两个小于2,则B 正确 当1a b ==,12c =时 1112a b +=+=,11232b c +=+=>,1131222c a +=+=< ∴存在(),,a b c 的一组值,使得1a b +、1b c +、1c a +中有小于2的值,则C 错误 当2a b c ===时,11115222a b c b c a +=+=+=+= ∴存在(),,a b c 的一组值,使得1a b +、1b c +、1c a +均不小于2,则D 错误 本题正确选项:B【点睛】本题考查含逻辑联结词的命题真假性的判断,通常可采用特殊值的方式来进行排除;难点是本题中对于存在命题的排除,需借用函数恒成立的思想来进行求解,通过证明任意性来得到结论.16.A【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论.【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个,且2,4不能同时出现,同时出现共有4个,所以满足题意的集合M 的个数为11个,故选A.【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.17.1a =,0b =.【分析】根据()00f =求得b ;利用()f x x =有唯一解得到判别式等于零,从而求得a .【详解】()f x 过原点,即()00f = 0b ∴=(){}A x f x x ==为单元集 2x ax x ∴+=有唯一解()210a ∴∆=-=,解得:1a =【点睛】本题考查二次函数解析式的求解,关键是能够根据一元二次方程根的个数构造方程,属于基础题.18.(1)(,2)(1,5)-∞-;(2)(,1)(3,)-∞+∞.【分析】(1)移项通分,将分式不等式转化为一元高次不等式()()()5210x x x -+-<来进行求解;(2)根据绝对值不等式的解法,将不等式化为22221x x x -+>-或22212x x x -+<-,由一元二次不等式的解法求得结果.【详解】 (1)由21331x x -<-得:()()22252131333310301111x x x x x x x x x x x -+---+---===<---- 即:()()()5210x x x -+-<,解得:()(),21,5x ∈-∞-∴不等式解集为:()(),21,5-∞- (2)由22221x x x -+>-得:22221x x x -+>-或22212x x x -+<-即:()()243130x x x x -+=-->或210x +<,解得:1x <或3x > ∴不等式解集为:()(),13,-∞⋃+∞【点睛】本题考查分式不等式和绝对值不等式的求解,涉及到一元高次不等式的解法,属于基础题. 19.充分不必要条件.【分析】当1p q ==时,分别求解出集合A 和集合B ,得到A B ,可知()1A B ∈,充分条件成立;当()1A B ∈时,将1x =代入集合A 和集合B 可构造方程组求得,p q ,从而可知必要条件不成立,从而得到结论.【详解】当1p q ==时,{}{}2202,1A x x x =+-==-,{}{}2202,1B x x x =+-==- {}2,1A B ∴=- ()1A B ∴∈ ∴充分条件成立当()1A B ∈时,1A ∈且1B ∈21201420p q q q p +-=⎧∴⎨+-+=⎩,解得:11p q =⎧⎨=⎩或1214p q ⎧=-⎪⎪⎨⎪=⎪⎩∴必要条件不成立 综上所述:“1p q ==”是“()1AB ∈”的充分不必要条件【点睛】本题考查充分条件与必要条件的判定,涉及到元素和集合的关系的应用,属于基础题. 20.(1)(1,)+∞;(2)存在,[3,1]a ∈-满足题意,详见解析【分析】(1)分别在1x ≤-和1x >-两种情况下去掉绝对值符号得到不等式,解不等式求得解集;(2)当1x =时,可验证恒成立,则a R ∈;当1x >时,将不等式变为2231x x x a x -+--≥-,由于22301x x x -+-<-,可知不等式恒成立,得到a R ∈;当1x <时,将不等式转化为22232311x x x x x a x x -+-+-≤-≤--,通过分离变量的方式得到a 与函数22331x x y x -+=-和31x y x -=-的大小关系,通过求解函数最值得到[]3,1a ∈-;将三种情况取交集得到最终结果. 【详解】(1)当1a =-时,()()211f x x x x =+-+ 当1x ≤-时,()1f x >等价于()2211x x -->,解集为∅当1x >-时,()1f x >等价于()2211x x +->,解得:1x > 综上所述:不等式()1f x >的解集为:()1,+∞(2)()23f x x ≥-等价于()2123x x a x x --≥-+- 当1x =时,不等式为:02≥-,恒成立 a R ∴∈当1x >时,不等式为:2231x x x a x -+--≥- 2230x x -+-<恒成立且10x -> 22301x x x -+-∴<- 又0x a -≥ a R ∴∈当1x <时,不等式为:2231x x x a x -+--≤- 即22232311x x x x x a x x -+-+-≤-≤-- 222323311x x x x a x x x -+--+∴≥-=--且223311x x x a x x x -+-≤-=-- 令()2233221111x x y x x x -+==-++-- 当1x <时,10x -<()22141x x ∴-+≤-=--(当且仅当0x =时取等号) 413y ∴≤-+=- 3a ∴≥-令32111x y x x -==--- 当1x <时,1y > 1a ∴≤则当1x <时,[]3,1a ∈-综上所述:当[]3,1a ∈-时,()23f x x ≥-对x ∈R 恒成立【点睛】本题考查绝对值不等式的解法、绝对值不等式中恒成立问题的求解;解决恒成立问题常用的方法为分离变量的方式,将问题转化为参数与函数最值之间的比较,本题中需根据自变量的范围讨论分离变量所得函数的形式.21.(1)证明见解析;(2)14 【分析】(1)根据()f x 与x 轴两个不同交点横坐标的位置可得不等式组,从而得到可行域;利用线性规划求解出最值,从而得到()2f -的取值范围;(2)设四个“近似整零点”为3m +,2m +,1m +,m (m Z ∈),可得()()()()3214f m f m f m f m a ++-+++=⎡⎤⎣⎦,结合()()()()()()()()321321f m f m f m f m f m f m f m f m ++-+++≤++++++⎡⎤⎣⎦可构造出不等式,解不等式求得最大值.【详解】(1)当1a =时,()2f x x bx c =++ ()f x 与x 轴交点横坐标都在()2,1--内()()()240242011021200b c f b c f b c b f c ⎧∆=->⎪-=-+>⎪⎪-=-+>∴⎨⎪-<-<-⎪⎪=>⎩,即240241240b c b c b c b c ⎧->⎪-<⎪⎪-<⎨⎪<<⎪⎪>⎩可得可行域如下图所示(不包含曲线和直线上的点):令()242z f b c =-=-+,则24c b z =+-当24c b z =+-过C 时,max 14411z z ==-+=当24c b z =+-与24b c -=重合时,min 20z z ==又()min max 2z f z <-< ()()20,1f ∴-∈(2)取四个连续整数作为近似整零点:3m +,2m +,1m +,m (m Z ∈)则()()()()22333f m f m a m b m c am bm c ++=+++++++ ()()()()()()22212211f m f m a m b m c a m b m c +++=+++++++++整理可得:()()()()3214f m f m f m f m a ++-+++=⎡⎤⎣⎦又()()()()()()()32132f m f m f m f m f m f m f m ++-+++≤+++++⎡⎤⎣⎦()11414f m +≤⨯= 41a ∴≤,解得:14a ≤a ∴的最大值为14【点睛】本题考查二次函数图象与性质的综合应用问题,涉及到根据函数与x 轴交点位置确定参数范围、线性规划求解最值问题、新定义运算的求解等知识;本题难点在于能够得到四个连续整数对应的函数值之间的关系,从而构造出关于a 的不等式来进行求解,属于难题.。
2020年高一数学上期中试题(含答案)一、选择题1.函数y =2x 2–e |x |在[–2,2]的图像大致为( )A .B .C .D .2.函数2y 34x x =--+ )A .(41)--,B .(41)-,C .(11)-, D .(11]-, 3.三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<< B .0.320.3log 220.3<<C .20.30.30.3log 22<<D .20.30.30.32log 2<<4.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)75.函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .522 C .32D .26.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .17.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<8.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-9.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭10.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-11.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______. 14.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.15.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________. 16.已知函数f(x)=log a x +x -b(a >0,且a≠1).当2<a <3<b <4时,函数f(x)的零点为x 0∈(n ,n +1),n ∈N *,则n= .17.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 18.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.19.函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______.20.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.三、解答题21.已知函数()()log 1xa f x a =-(0a >,1a ≠)(1)当12a =时,求函数()f x 的定义域; (2)当1a >时,求关于x 的不等式()()1f x f <的解集;(3)当2a =时,若不等式()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,求实数m 的取值范围.22.已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =. (1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 23.已知函数()()log 0,1a f x x a a =>≠,且()()321f f -=. (1)若()()3225f m f m -<+,求实数m 的取值范围; (2)求使3227log 2f x x ⎛⎫-= ⎪⎝⎭成立的x 的值. 24.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?25.已知函数()lg(2)lg(2)f x x x =++-. (1)求函数()y f x =的定义域; (2)判断函数()y f x =的奇偶性; (3)若(2)()f m f m -<,求m 的取值范围.26.某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120)x 剟时,每小时的油耗(所需要的汽油量)为14500()5x k x-+升,其中k 为常数,且60100k 剟. (1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:函数f (x )=2x 2–e |x|在[–2,2]上是偶函数,其图象关于轴对称,因为,所以排除选项;当时,有一零点,设为,当时,为减函数,当时,为增函数.故选D2.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C3.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A .【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.4.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.5.B解析:B 【解析】 【分析】根据二次函数的图象和性质,求出最大值和最小值对应的x 的取值,然后利用数形结合即可得到结论. 【详解】当x≥0时,f (x )=x (|x|﹣1)=x 2﹣x=(x ﹣12)2﹣1144≥-, 当x <0时,f (x )=x (|x|﹣1)=﹣x 2﹣x=﹣(x+12)2+14, 作出函数f (x )的图象如图:当x≥0时,由f (x )=x 2﹣x=2,解得x=2. 当x=12时,f (12)=14-.当x <0时,由f (x )=)=﹣x 2﹣x=14-. 即4x 2+4x ﹣1=0,解得x=24444432248-±+⨯-±=⨯=4421282-±-±=, ∴此时x=122--, ∵[m,n]上的最小值为14-,最大值为2, ∴n=2,12122m --≤≤, ∴n﹣m 的最大值为2﹣122--=5222+, 故选:B .【点睛】本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.6.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.7.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.8.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a af x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.9.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.10.B解析:B 【解析】 【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.11.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.12.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.二、填空题13.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:解析:(1,3](4,)+∞U . 【解析】 【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<…或4λ>,即λ的取值范围是:(1,3](4,)+∞U 故答案为:(1,3](4,)+∞U .【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.14.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)-??【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.15.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.16.2【解析】【分析】把要求零点的函数变成两个基本初等函数根据所给的ab 的值可以判断两个函数的交点的所在的位置同所给的区间进行比较得到n 的值【详解】设函数y=logaxm=﹣x+b 根据2<a <3<b <4解析:2 【解析】 【分析】把要求零点的函数,变成两个基本初等函数,根据所给的a ,b 的值,可以判断两个函数的交点的所在的位置,同所给的区间进行比较,得到n 的值. 【详解】设函数y=log a x ,m=﹣x+b 根据2<a <3<b <4,对于函数y=log a x 在x=2时,一定得到一个值小于1,而b-2>1,x=3时,对数值在1和2 之间,b-3<1在同一坐标系中画出两个函数的图象, 判断两个函数的图形的交点在(2,3)之间,∴函数f (x )的零点x 0∈(n ,n+1)时,n=2.故答案为2.考点:二分法求方程的近似解;对数函数的图象与性质.17.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭,则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.18.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200 【解析】 【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数. 【详解】 设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000, 当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200. 【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键.19.【解析】【分析】首先保证真数位置在上恒成立得到的范围要求再分和进行讨论由复合函数的单调性得到关于的不等式得到答案【详解】函数所以真数位置上的在上恒成立由一次函数保号性可知当时外层函数为减函数要使为减 解析:()1,2【解析】 【分析】首先保证真数位置20ax ->在[]0,1x ∈上恒成立,得到a 的范围要求,再分01a <<和1a >进行讨论,由复合函数的单调性,得到关于a 的不等式,得到答案.【详解】函数()()log 2a f x ax =-,所以真数位置上的20ax ->在[]0,1x ∈上恒成立, 由一次函数保号性可知,2a <,当01a <<时,外层函数log a y t =为减函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为增函数, 所以0a ->,即0a <,所以a ∈∅, 当1a >时,外层函数log a y t =为增函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为减函数, 所以0a -<,即0a >,所以1a >, 综上可得a 的范围为()1,2. 故答案为()1,2. 【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.20.【解析】【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实 解析:[)1,0-【解析】 【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.三、解答题21.(1)(),0-∞;(2)()0,1;(3)21,log 3⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭.【解析】 【分析】(1)由a x -1>0,得a x >1 下面分类讨论:当a >1时,x >0;当0<a <1时,x <0即可求得f (x )的定义域(2)根据函数的单调性解答即可;(3)令()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈可知()g x 在[1,3]上是单调增函数,只需求出最小值即可. 【详解】本题考查恒成立问题. (1)当12a =时,()121log 12x f x ⎛⎫=- ⎪⎝⎭,故:1102x ->,解得:0x <,故函数()f x 的定义域为(),0-∞;(2)由题意知,()()log 1xa f x a =-(1a >),定义域为()0,x ∈+∞,用定义法易知()f x 为()0,x ∈+∞上的增函数,由()()1f x f <,知:01x x >⎧⎨<⎩,∴()0,1x ∈.(3)设()()()2221log 12log 21x xx g x f x ⎛⎫-=-+= ⎪+⎝⎭,[]1,3x ∈,设21212121x x xt -==-++,[]1,3x ∈,故[]213,9x+∈,2171,2139x t ⎡⎤=-∈⎢⎥+⎣⎦,故:()min 211log 33g x g ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 又∵()()2log 12xf x m -+>对任意实数[]1,3x ∈恒成立,故:()min 21log 3m g x ⎛⎫<= ⎪⎝⎭. 【点睛】本题主要考查对数函数有关的定义域、单调性、值域的问题,属于中档题.22.(1)2()1f x x x =-+;(2)39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3){}0[1,4)⋃. 【解析】试题分析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,列出方程,求得,,a b c 的值,即可求解函数的解析式;(2)由()g x ,根据函数()g x 在[1,5]-上是单调函数,列出不等式组,即可求解实数t 的取值范围;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,即要求函数()h x 在(1,2)-上有唯一的零点,分类讨论即可求解实数m 的取值范围.试题解析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,故220a a b =⎧⎨+=⎩, 又由(0)1f =得1c =,解得1a =,1b =-,1c =,所以2()1f x x x =-+;(2)因为22221(21)()()2(21)1124t t g x f x tx x t x ++⎛⎫=-=-++=-+- ⎪⎝⎭, 又函数()g x 在[1,5]-上是单调函数,故2111t +≤-或2151t +≥, 解得32t ≤-或92t ≥,故实数t 的取值范围是39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,(1,2)x ∈-,即要求函数()h x 在(1,2)-上有唯一的零点, ①(1)0h -=,则4m =,代入原方程得1x =-或3,不合题意;②若(2)0h =,则1m =,代入原方程得0x =或2,满足题意,故1m =成立; ③若0∆=,则0m =,代入原方程得1x =,满足题意,故0m =成立; ④若4m ≠且1m ≠且0m ≠时,由(1)40{(2)10h m h m -=->=-<得14m <<,综上,实数m 的取值范围是{}0[1,4)⋃. 考点:函数的解析式;函数的单调性及其应用.23.(1)2,73⎛⎫⎪⎝⎭;(2)12-或4.【解析】 【分析】(1)先利用对数运算求出32a =,可得出函数()y f x =在其定义域上是增函数,由()()3225f m f m -<+得出25320m m +>->,解出即可;(2)由题意得出272x x -=,解该方程即可. 【详解】(1)()log a f x x =Q ,则()()332log 3log 2log 12a a af f -=-==,解得32a =,()32log f x x ∴=是()0,∞+上的增函数,由()()3225f m f m -<+,得25320m m +>->,解得273m <<. 因此,实数m 的取值范围是2,73⎛⎫ ⎪⎝⎭; (2)()332227log log 2f x x x ⎛⎫=-= ⎪⎝⎭Q ,得272x x -=,化简得22740x x --=, 解得4x =或12x =-.【点睛】本题考查对数运算以及利用对数函数的单调性解不等式,在底数范围不确定的情况下还需对底数的范围进行分类讨论,同时在解题时还应注意真数大于零,考查运算求解能力,属于中等题.24.(Ⅰ)()27530225,02,75030,2 5.1x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩(Ⅱ)当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【解析】 【分析】(1)根据题意可得f (x )=15w (x )﹣30x ,则化为分段函数即可,(2)根据分段函数的解析式即可求出最大利润. 【详解】(Ⅰ)由已知()()()1520101530f x W x x x W x x =--=-()2155330,02,501530,251x x x x x x x ⎧⨯+-≤≤⎪=⎨⨯-<≤⎪+⎩27530225,02,75030,2 5.1x x x x x x x ⎧-+≤≤⎪=⎨-<≤⎪+⎩ (Ⅱ)由(Ⅰ)得()()22175222,02,7530225,02,5=75030,2 5.25780301,2 5.11x x x x x f x x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩当02x ≤≤时,()()max 2465f x f ==; 当25x <≤时,()()257803011f x x x ⎡⎤=-++⎢⎥+⎣⎦ ()2578030214801x x≤-⨯⋅+=+当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元. 【点睛】本题考查了函数的应用、基本不等式的性质,考查了推理能力与计算能力,属于中档题. 25.(1){|22}x x -<<(2)偶函数(3)01m << 【解析】 【分析】 【详解】(Ⅰ)要使函数有意义,则,得.函数的定义域为. (Ⅱ)由(Ⅰ)可知,函数的定义域为,关于原点对称,对任意,.由函数奇偶性可知,函数为偶函数.(Ⅲ)函数由复合函数单调性判断法则知,当时,函数为减函数又函数为偶函数,不等式等价于,得.26.(1)[60,100];(2)当75100k 剟,该汽车行驶100千米的油耗的最小值为220900k -升;46【解析】 【分析】(1)将120x =代入每小时的油耗,解方程可得100=k ,由题意可得14500(100)95x x-+„,解不等式可得x 的范围; (2)设该汽车行驶100千米油耗为y 升,由题意可得10014500()5y x k x x=-+g ,换元令1t x =、化简整理可得t 的二次函数,讨论t 的范围和对称轴的关系,即可得到所求最小值. 【详解】 解:(1)由题意可得当120x =时,1450014500()(120)11.555120x k k x -+=-+=, 解得100=k ,由14500(100)95x x-+„, 即214545000x x -+„,解得45100x 剟, 又60120x 剟,可得60100x 剟, 每小时的油耗不超过9升,x 的取值范围为[60,100]; (2)设该汽车行驶100千米油耗为y 升,则 2100145002090000()20(60120)5k y x k x x x x x=-+=-+g 剟, 令1t x=,则1[120t ∈,1]60,即有22290000202090000()209000900k k y t kt t =-+=-+-, 对称轴为9000k t =,由60100k 剟,可得1[9000150k ∈,1]90,①若19000120k …即75100k 剟, 则当9000k t =,即9000x k=时,220900min k y =-;②若19000120k <即6075k <„, 则当1120t =,即120x =时,10546min ky =-. 答:当75100k 剟,该汽车行驶100千米的油耗的最小值为220900k -升;46【点睛】本题考查函数模型在实际问题中的运用,考查函数的最值求法,注意运用换元法和二次函数的最值求法,考查运算能力,属于中档题.。
2020-2021学年上海市某校高一(上)期中数学试卷一、填空题:(每小题3分,满分36分)1. 当a <b 时,化简√(a −b)2=________. 【答案】 b −a 【考点】有理数指数幂的运算性质及化简求值 【解析】根据a −b 的符号,去绝对值求出答案即可. 【解答】a <b 即a −b <0,故√(a −b)2=|a −b|=b −a ,2. 已知全集U ={0, 1, 2, 3, 4},集合A ={x|x 2−3x +2≤0, x ∈Z},则A ¯=________. 【答案】 {0, 3, 4} 【考点】 补集及其运算 【解析】可求出集合A ,然后进行补集的运算即可. 【解答】∵ 全集U ={0, 1, 2, 3, 4},A ={x|1≤x ≤2, x ∈Z}={1, 2}, ∴ A ¯={0,3,4}.3. 已知a >1,比较大小√a √a ________1log 312+2log 122.【答案】 >【考点】对数值大小的比较 【解析】根据a >1及指数函数的单调性可得出√a √a >1,根据对数的运算即可得出1log 312+2log 122=1,然后即可得出答案. 【解答】∵ a >1,∴ √a √a =a 34>a 0=1,1log 312+2log 122=log 33log 312+log 124=log 123+log 124=1,∴ √a √a >1log 312+2log 122.4. 命题“设a ,b ∈R ,若a +b <4,则a <2或b ≤2”是________命题.(填“真”或“假”) 【答案】 真【考点】四种命题的真假关系 【解析】根据不等式的性质即可直接判断. 【解答】设a ,b ∈R ,若a +b <4,则a ,b 至少有一个小于等于2,故若a +b <4,则a <2或b ≤2是真命题,5. 已知x >0,y >0,且2x +5y =20,则lg x +lg y 的最大值为________. 【答案】 1【考点】 基本不等式 对数的运算性质【解析】利用基本不等式先求出xy 的范围,再根据对数的运算性质进行化简即可求得最大值,注意等号成立的条件. 【解答】解:∵ x >0,y >0,且2x +5y =20, ∴ 2x +5y =20≥2√10xy ,即xy ≤10, 当且仅当2x =5y ,即x =5,y =2时取等号. ∴ lg x +lg y =lg xy ≤lg 10=1,即最大值为1. 故答案为:1.6. 设不等式|x −a|<b 的解集为{x|−1<x <2},当m >0时,用根式表示m ab =________. 【答案】√m 34【考点】绝对值不等式的解法与证明 【解析】先根据|x −a|<b 的解集为{x|−1<x <2},求出a ,b 的值,再用根式表示m ab 即可. 【解答】由|x −a|<b ,得−b +a <x <a +b , ∵ |x −a|<b 的解集为{x|−1<x <2}, ∴ −b +a =−1且a +b =2,∴ a =12,b =32, ∴ 当m >0时,m ab =√m 34.7. 已知关于x 的不等式kx 2−kx +1≥0的解集为R ,则实数k 的取值范围是________.【答案】 [0, 4] 【考点】一元二次不等式的应用 【解析】根据题意讨论k =0和k ≠0时,求出不等式解集为R 时实数k 的取值范围. 【解答】k =0时,不等式为1≥0,解集为R ,满足题意; k ≠0时,应满足{k >0△=(−k)2−4k ×1≤0 ,解得0<k ≤4;综上知,实数k 的取值范围是[0, 4].8. 测量地震级别的里氏震级M 的计算公式为:M =lg A −lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,常数A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,而此次地震的里氏震级恰好为6级,那么里氏9级地震的最大的振幅是里氏5级地震最大振幅的________倍.【答案】 10000 【考点】对数的运算性质 【解析】根据题意中的假设,可得M =lg A −lg A 0=lg 1000−lg A 0=6;设9级地震的最大的振幅是x ,5级地震最大振幅是y ,9=lg x +3,5=lg y +3,由此知9级地震的最大的振幅是5级地震最大振幅的10000倍. 【解答】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此次地震的里氏震级恰好为6级,则M =lg A −lg A 0=lg 1000−lg A 0=3−lg A 0=6,解得:lg A 0=−3, 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lg x +3,5=lg y +3,解得x =106,y =102, ∴ xy =106102=10000.9. 若关于x 的不等式组{(2x −3)(x +1)≤0x >a 没有整数解,则实数a 的取值范围是________.【答案】 a ≥1 【考点】其他不等式的解法 【解析】先求出不等式(2x −3)(x +1)≤0的解集,然后确定不等式组的解集,进而确可求a 的范围. 【解答】由(2x −3)(x +1)≤0可得−1≤x ≤32,其中有整数−1,0,1,因为不等式组{(2x −3)(x +1)≤0x >a 没有整数解,故不等式组的解集a <x ≤32且其范围内没有整数,故a ≥1.10. 已知M =m 2+1m−1,其中m >1,则M 的最小值为________.【答案】2√2+2 【考点】基本不等式及其应用 【解析】 M =m 2+1m−1=(m −1)+2m−1+2,根据基本不等式即可求出.【解答】 ∵ m >1 ∴ M =m 2+1m−1=(m−1)2+2(m−1)+2m−1=(m −1)+2m−1+2≥2√2+2,当且仅当m −1=2m−1时,即m =1+√2时取等号, 故M 的最小值为2√2+2,11. 定义:对于非空集合A ,若元素x ∈A ,则必有(m −x)∈A ,则称集合A 为“m 和集合”.已知集合B ={1, 2, 3, 4, 5, 6, 7},则集合B 所有子集中,是“8和集合”的集合有________个.【答案】 15【考点】元素与集合关系的判断 【解析】考察子集的概念以及对数学新概念的理解,由x ∈A 及(m −x)∈A 可以得到两个数之和为m 的元素必须同时出现在集合A 中. 【解答】①含有1个元素的“8和集合”:{4};②含有2个元素的“8和集合”:{1, 7},{2, 6},{3, 5};③含有3个元素的“8和集合”:{1, 4, 7},{2, 4, 6},{3, 4, 5};④含有4个元素的“8和集合”:{1, 7, 2, 6},{1, 7, 3, 5},{2, 6, 3, 5};⑤含有5个元素的“8和集合”:{1, 7, 2, 6, 4},{1, 7, 3, 5, 4},{2, 6, 3, 5, 4}; ⑥含有6个元素的“8和集合”:{1, 7, 2, 6, 3, 5}; ⑦含有7个元素的“8和集合”:{1, 7, 2, 6, 3, 5, 4}.12. 研究问题:“已知关于x 的不等式ax 2−bx +c >0的解集为(1, 2),则关于x 的不等式cx2−bx+a>0有如下解法:由ax2−bx+c>0⇒a−b(1x )+c(1x)2>0,令y=1x,则y∈(12,1),所以不等式cx2−bx+a>0的解集为(12,1).参考上述解法,已知关于x的不等式kx+a +x+bx+c<0的解集为(−2, −1)∪(2, 3),则关于x的不等式kxax−1+bx−1cx−1<0的解集________(−12,−13)∪(12,1).【答案】(−12,−13)∪(12,1)【考点】类比推理【解析】先明白题目所给解答的方法:ax2−bx+c>0化为a−b(1x )+c(1x)2>0,类推为cx2−bx+a>0,解答不等式;然后依照所给定义解答题目即可.【解答】关于x的不等式ka+x +b+xc+x<0的解集为(−2, −1)∪(2, 3),用−1x 替换x,不等式可以化为:k(−1x)+a+(−1x)+b(−1x)+c=kxax−1+bx−1cx−1<0可得−1x∈(−2,−1)∪(2,3)可得12<x<1−12<x<−13二、选择题:(每小题4分,满分16分)如果a<b<0,那么下列不等式中正确的是()A.ab <1 B.a2>ab C.1b2<1a2D.−1a<1b【答案】B【考点】不等式的概念不等式的基本性质【解析】由不等式的性质逐一判断即可.【解答】若a<b<0,则ab>1,故A错误;若a<b<0,则a2>ab,故B正确;若a<b<0,则a+b<0,a−b<0,所以1b2−1a2=a2−b2a2b2=(a+b)(a−b)a2b2>0,即1b2>1a2,故C错误;若a<b<0,则−1a >0>1b,故D错误.下列表示图中的阴影部分的是()A.(A∪C)∩(B∪C)B.(A∪B)∩(A∪C)C.(A∪B)∩(B∪C)D.(A∪B)∩C【答案】A【考点】Venn图表达集合的关系及运算【解析】由韦恩图分析阴影部分表示的集合,关键是要分析阴影部分的性质,先用自然语言将其描述出来,再根据集合运算的定义,将共转化为集合语言,再去利用集合运算的方法,对其进行变形和化简.【解答】图中阴影部分表示元素满足:是C中的元素,或者是A与B的公共元素故可以表示为C∪(A∩B)也可以表示为:(A∪C)∩(B∪C)已知a,s,t都是正实数,且a≠1,下列运算一定正确的是()A.a s+a t=a s+tB.a s a t=a s+tC.log a s+log a t=log a(s+t)D.log a s⋅log a t=log a(st)【答案】B【考点】有理数指数幂的运算性质及化简求值对数的运算性质【解析】根据指数幂的运算性质以及对数的运算性质判断即可.【解答】根据指数幂的运算性质得:A错误,B正确;根据对数的运算性质得:C,D错误;已知a1,a2,b1,b2,c1,c2均为非零实数,则“a1a2=b1b2=c1c2”是“关于x的方程a1x2+b1x+c1=0与a2x2+b2x+c2=0解集相同”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】 A【考点】充分条件、必要条件、充要条件 【解析】根据方程的性质,我们可以判断“a 1a 2=b 1b 2=c1c 2”⇒“关于x 的方程a 1x 2+b 1x +c 1=0与a 2x 2+b 2x +c 2=0解集相同”;根据方程的解集可能为空集,可判断“M =N ”⇒“a 1a 2=b 1b 2=c1c 2”的真假,进而得到答案.【解答】∵ “a 1a 2=b 1b 2=c 1c 2”时,对应项系数成比例,对应方程的解集相同,即“a 1a 2=b 1b 2=c1c 2”是“M=N ”的充分条件但当“M =N =⌀”时,不等式a 1x 2+b 1x +c 1=0和a 2x 2+b 2x +c 2=0可能是不同的方程,则“a 1a 2=b 1b 2=c1c 2”不一定成立即“a 1a 2=b 1b 2=c1c 2”是“M =N ”的不必要条件,故“a 1a 2=b 1b 2=c1c 2”是“M =N ”的充分不必要条件.三、解答题(共5大题,满分48分)解不等式组{|4x +1|>21x≥3 .【答案】 由题意可得,{4x +1>21−3xx ≥0 或−4x +1<−2,即{x >14x <−340<x ≤13 ,解得,14<x ≤13. 故不等式的解集(14,13].【考点】其他不等式的解法 【解析】由已知结合绝对值不等式及分式不等式分别求解即可. 【解答】由题意可得,{4x +1>21−3x x ≥0 或−4x +1<−2,即{x >14x <−340<x ≤13,解得,14<x≤13.故不等式的解集(14,13 ].艺术中心要用木料制作如图所示的框架,框架下部是边长分别为x,y(单位:米)的矩形,上部是等腰直角三角形,要求框架围成的总面积为8平方米,问:总用料最省时,用料为多少米?此时x,y分别为多少米?(最后结果精确到0.01)【答案】故当x为2.343m,y为2.828m时,用料最省.【考点】根据实际问题选择函数类型【解析】根据三角形和矩形面积公式得出x和y的关系式,确保有意义求出x的范围得到定义域;根据解析式进而表示出框架用料长度为根据均值不等式求得l的最小值,求得此时的x和y.【解答】由题意得:x⋅y+12x⋅12x=8(x>0, y>0),∴y=8x −x4,∵y>0,即8x −x4>0,∴0<x<4√2,设框架用料长度为l,则l=2x+2y+√2x=( 32+√2)x+16x≥2√16(32+√2)=4√6+4√2,当且仅当(32+√2)x=16x,即x=8−4√2时,取等号,已知p:关于x的一元二次方程x2−2√3x+|m−2|=0有两个不相等的实数根.q:关于x的一元二次方程x2−mx+|a+1|+|a−3|=0对于任意实数a都没有实数根.(1)若p成立,求实数m的取值范围;(2)若p和q中有且只有一个成立,求实数m的取值范围.【答案】若命题p成立,即关于x的一元二次方程x2−2√3x+|m−2|=0有两个不相等的实数根,故△=12−4|m−2|>0,求得−1<m<5.由q:关于x的一元二次方程x2−mx+|a+1|+|a−3|=0对于任意实数a都没有实数根,恒成立,可得△′=m2−4(|a+1|+|a−3|)<0,即|a+1|+|a−3|>m24∴4>m2恒成立,−4<m<4.4若p成立而q不成立,则4≤m<5,若q成立而p不成立,则−4<m≤−1.综上,当p和q中有且只有一个成立时,则4≤m<5,或−4<m≤−1.【考点】一元二次方程的根的分布与系数的关系【解析】(1)由题意利用判别式大于零,求得m的范围.(2)求出命题q正确时,m的范围,再分别求得p成立而q不成立、q成立而p不成立时,m的范围,综合可得结论.【解答】若命题p成立,即关于x的一元二次方程x2−2√3x+|m−2|=0有两个不相等的实数根,故△=12−4|m−2|>0,求得−1<m<5.由q:关于x的一元二次方程x2−mx+|a+1|+|a−3|=0对于任意实数a都没有实数根,恒成立,可得△′=m2−4(|a+1|+|a−3|)<0,即|a+1|+|a−3|>m24∴4>m2恒成立,−4<m<4.4若p成立而q不成立,则4≤m<5,若q成立而p不成立,则−4<m≤−1.综上,当p和q中有且只有一个成立时,则4≤m<5,或−4<m≤−1.已知有限集A=(a1, a2,……,a n)(n≥2, n∈N),如果中A元素a i(i=1, 2,…,n)满足a1+a2+...+a n=a1×a2×……×a n,就称A为“完美集”.(1)如果方程:x2−bx+5=0的解集是一个“完美集”,求log√5b的值.(2)利用反证法证明:若a1,a2是两个不同的正数,且{a1, a2}是“完美集”,则a1,a2至少有一个大于2.【答案】设x1,x2为方程x2−bx+5=0的两根,∵x2−bx+5=0的解集是一个“完美集”,∴x1+x2=b,x1x2=5且x1+x2=x1x2,∴b=5,∴logb=2.√5证明:假设0<a1≤2且0<a2≤2,由a1,a2是两个不同的正数,且{a1, a2}是“完美集”,)2,∴a1+a2>4或a1+a2<0,可知a1+a2=a1a2<(a1+a22∴由0<a1≤2且0<a2≤2,可得a1+a2≤4与a1+a2>4或a1+a2<0矛盾,因此假设不成立,原命题成立.【考点】反证法与放缩法【解析】(1)设x1,x2为方程x2−bx+5=0的两根,然后根据条件得到x1+x2=b,x1x2=5且x1+x2=x1x2,再求出b即可得到log√5b的值;(2)假设0<a1≤2且0<a2≤2,然后根据条件得到a1+a2>4或a1+a2<0,得到矛盾结论,从而证明原命题成立.【解答】设x1,x2为方程x2−bx+5=0的两根,∵x2−bx+5=0的解集是一个“完美集”,∴x1+x2=b,x1x2=5且x1+x2=x1x2,∴b=5,∴logb=2.√5证明:假设0<a1≤2且0<a2≤2,由a1,a2是两个不同的正数,且{a1, a2}是“完美集”,)2,∴a1+a2>4或a1+a2<0,可知a1+a2=a1a2<(a1+a22∴由0<a1≤2且0<a2≤2,可得a1+a2≤4与a1+a2>4或a1+a2<0矛盾,因此假设不成立,原命题成立.已知一元二次函数f(x)=ax2+bx+c(a>0, c>0)的图象与x轴有两个不同的公共点,其中一个公共点的坐标为(c, 0),且当0<x<c时,恒有f(x)>0.时,求出不等式f(x)<0的解;(1)当a=1,c=12(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;(4)若不等式m2−2km+1+b+ac≥0对所有k∈[−1, 1]恒成立,求实数m的取值范围.试卷第11页,总12页【答案】当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图象与x 轴有两个不同交点,∵ f(12)=0,设另一个根为x 2,则12x 2=12,∴ x 2=1,则 f(x)<0的解集为 (12,1). f(x)的图象与x 轴有两个交点, ∵ f(c)=0,设另一个根为x 2,则cx 2=c a∴ x 2=1a,又当0<x <c 时,恒有f(x)>0,则1a>c , ∴ f(x)<0的解集为(c,1a )⋯由(2)的f(x)的图象与坐标轴的交点分别为(c,0),(1a ,0),(0,c) 这三交点为顶点的三角形的面积为S =12(1a −c)c =8, ∴ a =c16+c 2≤2√16c=18故a ∈(0,18]. ∵ f(c)=0,∴ ac 2+bc +c =0,又∵ c >0,∴ ac +b +1=0,要使m 2−2km ≥0,对所有k ∈[−1, 1]恒成立,则 当m >0时,m ≥(2k)max =2 当m <0时,m ≤(2k)min =−2当m =0时,02≥2k ⋅0,对所有k ∈[−1, 1]恒成立 从而实数m 的取值范围为 m ≤−2或m =0或m ≥2. 【考点】二次函数的图象 二次函数的性质 【解析】(1)当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图象与x 轴有两个不同交点,由此能求出 f(x)<0的解集.(2)f(x)的图象与x 轴有两个交点,由f(c)=0,设另一个根为x 2,由此能求出f(x)<0的解集.(3)由(2)的f(x)的图象与坐标轴的交点分别为(c,0),(1a ,0),(0,c),这三交点为顶点的三角形的面积为S =12(1a −c)c =8,由此能求出a 的取值范围.(4)由f(c)=0,知ac 2+bc +c =0,由c >0,知ac +b +1=0,由此能求出实数m 的取值范围. 【解答】当a =1,c =12时,f(x)=x 2+bx +12,试卷第12页,总12页f(x)的图象与x 轴有两个不同交点,∵ f(12)=0,设另一个根为x 2,则12x 2=12,∴ x 2=1,则 f(x)<0的解集为 (12,1). f(x)的图象与x 轴有两个交点, ∵ f(c)=0,设另一个根为x 2,则cx 2=c a∴ x 2=1a,又当0<x <c 时,恒有f(x)>0,则1a >c , ∴ f(x)<0的解集为(c,1a )⋯由(2)的f(x)的图象与坐标轴的交点分别为(c,0),(1a,0),(0,c)这三交点为顶点的三角形的面积为S =12(1a −c)c =8, ∴ a =c 16+c≤2√16c=18故a ∈(0,18].∵ f(c)=0,∴ ac 2+bc +c =0, 又∵ c >0,∴ ac +b +1=0,要使m 2−2km ≥0,对所有k ∈[−1, 1]恒成立,则 当m >0时,m ≥(2k)max =2 当m <0时,m ≤(2k)min =−2当m =0时,02≥2k ⋅0,对所有k ∈[−1, 1]恒成立 从而实数m 的取值范围为 m ≤−2或m =0或m ≥2.。
上海市鲁迅中学2021 2021学年高一上学期期中数学考试试卷含答案----b0e63280-6ea6-11ec-ab6d-7cb59b590d7d上海市鲁迅中学2021-2021学年高一上学期期中数学考试试卷含答案**==(本文转载自互联网,如有侵权行为,请立即联系我们删除)=**上海鲁迅中学2022-2022学年高一期中考试数学试题(时间90分钟满分100分)一、填空(每个问题3分,共30分)1如果[回答]8[分析][分析]根据n元集合有个子集,结合集合【详解】解:若共有子集,即m为集合共有n=3个元素,可以替换为答案的子集。
集合中总共有3个元素,因此满足条件的集合数为_______故答案为:8.【终点】这个问题的知识点是子集和真子集。
如果[answer][analysis][analysis],掌握具有2个子集和2真子集的n元集是解决问题的关键根据集合的交集的定义即可求出.【详细解释】解决方案:答案是:._______nn-1【点睛】本题主要考查了集合的运算,属基础题.3.已知集合【答案】0【解析】【分析】从a={1,m},B={1,M2},和a=B,M2=m可以知道。
因此,可以得到实数m的值。
M=1不满足集合中元素的相互各向异性,并四舍五入,和,则的值为_________________【详细解释】解释:根据问题的含义,解得或者.如果它不满足集合中元素的相关性,则将其舍入。
因此,答案是:0【点睛】本题考查集合相等的概念及集合元素的互异性,是基础题.4.函数【答案】【解析】【分析】为了使功能有意义,你需要满足问题中的[详细解释],因此答案是:.,得这样,就可以通过求解不等式和,这个函数的域就是定义域_____【点睛】考查函数三要素之一定义域的概念及求法,是基础题.5.已知函数【答案】-23【解析】【分析】【详细解释】可以从已知函数的解析公式中得到解释:所以答案是:-23【终点】这个问题检查已知函数的解析公式,以找到函数的值,这属于基本问题。
2020-2021学年上海中学高一(上)期中数学试卷一、单选题(本大题共4小题,共16.0分) 1. 若a 2x =√2−1,则a 3x +a −3x a x +a −x等于( )A. 2√2−1B. 2−2√2C. 2√2+1D. √2+12. 用反证法证明“已知x ,y ∈R ,x 2+y 2=0,求证:x =y =0.”时,应假设( )A. x ≠y ≠0B. x =y ≠0C. x ≠0且y ≠0D. x ≠0或 y ≠03. 已知a ,b ,c ∈R ,则下列命题中真命题的个数是( )①若ac 2>bc 2,则a >b ; ②若a ≠b ,则ba +ab >2; ③若a >b >1,则b−1a−1>ba ; ④若a >b >c >0,则1a <1b <1c .A. 1B. 2C. 3D. 44. 已知非空集合A ,B 满足以下两个条件.(ⅰ)A ∪B ={1,2,3,4,5,6},A ∩B =⌀;(ⅰ)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素,则有序集合对(A,B)的个数为( )A. 10B. 12C. 14D. 16二、单空题(本大题共12小题,共36.0分) 5. 不等式x−2x−3<0的解集为______.6. 已知集合A ={x||x|<1},B ={−2,−1,0,1,2},则A ∩B =______.7. 已知a >0,化简:√a 53⋅(1a)52⋅a 56=______.8. 某年级有60人,有30人参加合唱团,有45人参加运动队,其中参加合唱团而未参加运动队的有10人,则参加运动队而未参加合唱团的人数是______. 9. 若关于x 的不等式x 2−ax −a ≤3的解集非空,则实数a 的取值范围是______. 10. 已知“x 2−(2a +2)x +a(a +2)≤0”是“|2x +3|<1”必要非充分条件,则实数a 的取值范围是______.11. 已知正实数a ,b 满足b −ab =1,则1a +2b 的最小值是______.12. 已知集合A ={x|x 2<|x −1|+a},B ={x|−3<x <3},若A ⊆B ,则实数a 的取值范围是______.13.设实数x,y满足3≤xy2≤8,4≤x2y ≤9,则x3y4的最大值是______.14.已知集合A={1,2,5,7,11,13,15,16,19},设x i,x j∈A,若方程x i−x j=k(k>0)至少有三组不同的解,则实数k的所有可能取值是______.15.已知实数x,y满足y≠2x且x≠−2y,若16(2x−y)2+9(x+2y)2=1,则x2+y2的最小值是______.16.若集合A={x|x2−(a+2)x+2−a<0,x∈N}中有且仅有一个元素,则实数a的取值范围是______.三、解答题(本大题共5小题,共48.0分)17.已知全集U={2,4,a2−a+1},集合A={a+4,a2},A−={7},求实数a的值.18.解下列不等式:(1)|x−1|>(√2−x)2;(2)2x2−3x−53x2−13x+4≥1.19.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?20.已知关于x的方程ax2+x+1=0(a∈R).(1)若方程在区间[−1,1]上有实根,求实数a的取值范围;(2)若方程有两个实根x1,x2,且x1x2∈[110,10],求实数a的最大值.21.设n为正整数,集合A={α|α=(t1,t2,…t n),t k∈{0,1},k=1,2,…,n},对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…y n),记M(α,β)=12[(x1+ y1−|x1−y1|)+(x2+y2−|x2−y2|)+⋯+(x n+y n−|x n−y n|)].(Ⅰ)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0,写出一个集合B,使其元素个数最多,并说明理由.答案和解析1.【答案】A【解析】解:a3x+a−3xa x+a−x =(a x+a−x)(a2x−1+a−2x)a x+a−x=a2x+ 1a2x−1 =√2−1√2−11=2√2−1故选:A.将a3x+a−3x按照立方差公式展开,与分母约分,即可求出结果.本题考查立方和公式、指数幂的运算法则,考查运算能力.2.【答案】D【解析】解:用反证法证明“已知x,y∈R,x2+y2=0,求证:x=y=0.”时,应先假设x≠0或y≠0.故选:D.熟记反证法的步骤,直接填空即可.反面有多种情况,需一一否定.此题主要考查了反证法的第一步,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3.【答案】B【解析】解:对于①若ac2>bc2,则a>b,故①为真命题;②若a≠b,ab>0时,则ba +ab>2,故②为假命题;③若a>b>1,则b−1a−1−ba=a(b−1)−b(a−1)a(a−1)=b−aa(a−1)<0,故③为假命题;④若a>b>c>0,则1a <1b<1c,故④为真命题.故选:B.直接利用不等式的基本性质的应用,作差法的应用,基本不等式的应用判定①②③④的结论.本题考查的知识要点:不等式的基本性质的应用,作差法的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.4.【答案】A【解析】解:若集合A 中只有1个元素,则集合B 中只有5个元素,则1∉A ,5∉B ,即5∈A ,1∈B ,此时有C 40=1,若集合A 中只有2个元素,则集合B 中只有4个元素,则2∉A ,4∉B ,即4∈A ,2∈B ,此时有C 41=4,若集合A 中只有3个元素,则集合B 中只有3个元素,则3∉A ,3∉B ,不满足题意, 若集合A 中只有4个元素,则集合B 中只有2个元素,则4∉A ,2∉B ,即2∈A ,4∈B ,此时有C 43=4,若集合A 中只有5个元素,则集合B 中只有1个元素,则5∉A ,1∉B ,即1∈A ,5∈B ,此时有C 44=1,故有序集合对(A,B)的个数是1+4+4+1=10, 故选:A .分别讨论集合A ,B 元素个数,即可得到结论.本题主要考查排列组合的应用,根据元素关系分别进行讨论是解决本题的关键.5.【答案】{x|2<x <3}【解析】解:∵x−2x−3<0, ∴{x −2>0x −3<0或{x −2<0x −3>0,解得:2<x <3,故不等式的解集是:{x|2<x <3}, 故答案为:{x|2<x <3}.根据分式不等式的解法求出不等式的解集即可.本题考查了分式不等式问题,考查分类讨论思想,是一道基础题.【解析】解:∵A={x|−1<x<1},B={−2,−1,0,1,2},∴A∩B={0}.故答案为:{0}.可求出集合A,然后进行交集的运算即可.本题考查了描述法、列举法的定义,绝对值不等式的解法,交集的定义及运算,考查了计算能力,属于基础题.7.【答案】1【解析】解:原式=a53⋅a−52⋅a56=a53−52+56=a0=1,故答案为:1.利用有理数指数幂的运算性质求解.本题主要考查了有理数指数幂的运算,是基础题.8.【答案】25【解析】解:因为某年级有60人,有30人参加合唱团,有45人参加运动队,其中参加合唱团而未参加运动队的有10人,根据条件得到对应的图象以及数据,故参加运动队而未参加合唱团的人数是25,故答案为:25.根据条件画出对应的Venn图,进而求出结论.本题主要考查了Venn图表达集合的关系及运算,属于基础题.【解析】解:不等式x 2−ax −a ≤3可化为x 2−ax −a −3≤0, 由题意知,△=(−a)2−4×1×(−a −3)≥0, 即a 2+4a +12≥0, 所以(a +2)2+8≥0, 解得x ∈R .所以实数a 的取值范围是R . 故答案为:R .不等式化为x 2−ax −a −3≤0,利用△≥0求出实数a 的取值范围. 本题考查了利用判别式判断一元二次不等式有解的应用问题,是基础题.10.【答案】[−3,−2]【解析】解:∵p 是q 的必要不充分条件,∴q ⇒p ,且p ⇏q . 记q :A ={x||2x +3|<1}={x|−2<x <−1},p :B ={x|x 2−(2a +2)x +a(a +2)≤0}={x|a ≤x ≤a +2}, 则A 是B 的真子集.从而{a ≤−2a +2≥−1且两个等号不同时成立,解得−3≤a ≤−2.故实数a 的取值范围是[−3,−2]求出p ,q 的等价条件,结合充分条件和必要条件的定义转化为集合子集关系进行求解即可.本题主要考查充分条件和必要条件的应用,求出命题的等价条件,转化为集合关系是解决本题的关键.11.【答案】3+2√2【解析】解:∵正实数a ,b 满足b −ab =1, ∴b =11−a >0, ∴0<a <1,则1a +2b =1a +21−a =a+1−a a+2(a+1−a)1−a=3+1−a a+2a 1−a≥3+2√2,当且仅当1−a a=2a1−a即a =√2−1,b =1+√22时取等号, 故答案为:3+2√2.由已知可得b =11−a ,代入后结合乘1法,利用基本不等式可求. 本题考查了“乘1法”与基本不等式的性质,属于基础题.12.【答案】(−∞,7]【解析】解:设f(x)=x 2−(x −1)−a ,x ≥1,则f(x)≥f(1)=1−a ; g(x)=x 2−(1−x)−a ,x <1,则g(x)≥g(−12)=−54−a ; ①当A =⌀时,−54−a ≥0,即a ≤−54;满足条件A ⊆B ; ②当A ≠⌀时,{f(1)<0f(3)≥0或{g(−12)<0g(−3)≥0; ∴{1−a <07−a ≥0或{−54−a <05−a ≥0; ∴−54<a ≤7;综上所述:a 的取值范围是:(−∞,7]. 故答案为:(−∞,7].设f(x)=x 2−(x −1)−a ,x ≥1;g(x)=x 2−(1−x)−a ,x <1,要使A ⊆B ,即f(x)<0与g(x)<0的解集的并集是集合B 的子集即可.本题考查了含参数的不等式解法问题以及集合之间关系的理解,运用转化思想,属于中档题.13.【答案】27【解析】解:因为实数x ,y 满足3≤xy 2≤8,4≤x 2y≤9,则有:(x 2y )2∈[16,81],1xy 2∈[18,13],再根据x 3y 4=(x 2y )2⋅1xy 2∈[2,27],即当且仅当x =3,y =1取得等号, 即有x 3y 4的最大值是27. 故答案为:27.首先分析题目由实数x ,y 满足条件3≤xy 2≤8,4≤x 2y≤9.求x 3y4的最大值的问题.根据不等式的等价转换思想可得到:(x 2y )2∈[16,81],1xy 2∈[18,13],代入x 3y 4求解最大值即可得到答案.此题主要考查不等式的基本性质和等价转化思想,等价转换思想在考试中应用不是很广泛,但是对于特殊题目能使解答更简便,也需要注意,属于中档题.14.【答案】2,3,4,6,8,14【解析】解:用(x i ,x j )表示符合题意的解. 当k =2时,有(7,5),(13,11),(15,13); 当k =3时,有(5,2),(16,13),(19,16); 当k =4时,有(5,1),(11,7),(15,11),(19,15); 当k =6时,有(7,1),(11,5),(13,7),(19,13); 当k =8时,有(13,5),(15,7),(19,11); 当k =14时,有(15,1),(16,2),(19,5). 故符合题意的k 值为2,3,4,6,8,14. 故答案为:2,3,4,6,8,14.采用列举法,将所有符合题意的k 值求出来即可. 本题考查列举法在集合问题中的应用,属于基础题.15.【答案】495【解析】解:根据题意,x =25(2x −y)+15(x +2y),y =25(x +2y)−15(2x −y), 则x 2+y 2=[25(2x −y)+15(x +2y)]2+[25(x +2y)−15(2x −y)]2=15(2x −y)2+15(x +2y)2,又由16(2x−y)2+9(x+2y)2=1,则x 2+y 2=15[(2x −y)2+(x +2y)2]×(16(2x−y)2+9(x+2y)2)=15×[25+16(x+2y)2(2x−y)2+9(2x−y)2(x+2y)2]≥15×(25+2√16×9)=495,当且仅当16(x+2y)2(2x−y)2=9(2x−y)2(x+2y)2时等号成立,即x 2+y 2的最小值为495;故答案为:495.根据题意,分析可得x2+y2=15(2x−y)2+15(x+2y)2,进而可得x2+y2=15[(2x−y)2+(x+2y)2]×(16(2x−y)2+9(x+2y)2),结合基本不等式的性质分析可得答案.本题考查基本不等式的性质以及应用,注意x2+y2的变形,属于中档题.16.【答案】(12,2 3 ]【解析】解:∵x2−(a+2)x+2−a<0,x∈N,∴x2−2x+2<a(x+1)令f(x)=x2−2x+2;g(x)=a(x+1)∴A={x|f(x)<g(x),x∈Z}∴y=f(x)是一个二次函数,图象是确定的一条抛物线;而y=g(x)一次函数,图象是过一定点(−1,0)的动直线.又∵x∈Z,a>0.数形结合,可得:12<a≤23.故答案为:(12,2 3 ].因为集合A中的条件是含参数的一元二次不等式,首先想到的是十字相乘法,但此题行不通;应该把此不等式等价转化为f(x)<g(x)的形式,然后数形结合来解答,需要注意的是尽可能让其中一个函数不含参数.此题主要考查集合A的几何意义的灵活运用,利用数形结合的数学思想来解决参数取值范围问题.17.【答案】解:∵U={2,4,a2−a+1},A={a+4,a2},A−={7},∴a2−a+1=7,解得a=−2或3,①a=−2时,A={2,4},满足题意;②a=3时,A={7,9},不满足题意,舍去,∴a =−2.【解析】根据题意可得出a 2−a +1=7,然后解出a 的值,并检验是否满足题意即可. 本题考查了全集的定义,补集的定义及运算,考查了计算能力,属于基础题.18.【答案】解:(1)∵|x −1|>(√2−x)2,∴|x −1|>2−x 且x ≤2,即{x −1>0x −1>2−x x ≤2或{x −1≤01−x >2−x x ≤2,解得32<x ≤2或x ∈⌀,故不等式的解集为{x|32<x ≤2}.(2)原不等式化为2x 2−3x−53x 2−13x+4−1≥0, 整理得(x−9)(x−1)(3x−1)(x−4)≤0,即{(3x −1)(x −1)(x −4)(x −9)≤03x −1≠0且x −4≠0, 如图所以原不等式的解集为{x|13<x ≤1或4<x ≤9}.【解析】本题考查了分式不等式的化简以及等价转化,绝对值不等式的解法,以及穿根法求高次不等式的解集,考查化简、变形能力.(1)不等式等价于|x −1|>2−x 且x ≤2,即{x −1>0x −1>2−x x ≤2或{x −1≤01−x >2−x x ≤2,分别求出这两个不等式组的解集,再取并集,即得所求.(2)先化简分式不等式,再等价转化为对应不等式组,由穿根法求出高次不等式的解集.19.【答案】解:(1)由题意可知,二氧化碳的每吨平均处理成本为:y x =12x +80000x −200 ≥2√12x ⋅80000x−200=200, 当且仅当12x =80000x ,即x =400时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x −y (10分)=100x −(12x 2−200x +80000)=−12x 2+300x −80000=−12(x −300)2−35000 因为400≤x ≤600,所以当x =400时,S 有最大值−40000.故该单位不获利,需要国家每月至少补贴40000元,才能不亏损.【解析】(1)由题意月处理成本y(元)与月处理量x(吨)之间的函数关系可近似的表示为:y =12x 2−200x +80000,两边同时除以x ,然后利用不等式的性质进行放缩,从而求出最值;(2)设该单位每月获利为S ,则S =100x −y ,把y 值代入进行化简,然后运用配方法进行求解.此题是一道实际应用题,考查了函数的最值和不等式的基本性质,及运用配方法求函数的最值.20.【答案】解:(1)当a =0时,x =−1,符合题意;当a ≠0时,令f(x)=ax 2+x +1,要使方程ax 2+x +1=0在区间[−1,1]上有实根,设函数f(x)=ax 2+x +1,则f(−1)⋅f(1)≤0或{△≥0−1≤−12a ≤1f(−1)≥0f(1)≥0, 解得:−2≤a <0或12≤a ≤14,综上所求:实数a 的取值范围为:[−2,0]∪[12,14].(2)由题意可知a ≠0,所以由韦达定理可得:{x 1+x 2=−1a x 1⋅x 2=1a , ∴(x 1+x 2)2x 1⋅x 2=x 1x 2⋅x 2x 1+2=(−1a )21a =1a , 设t =x 1x 2,则t ∈[110,10],∴1a =t +1t +2,由对勾函数的单调性可得:2≤t +1t ≤10110,∴1a =x1x2+x2x1+2∈[4,12110],∴a∈[10121,14 ],又∵△=1−4a≥0,∴a≤14,∴实数a的取值范围为:[10121,14 ],∴实数a的最大值为14.【解析】(1)分a=0与a≠0讨论,当a=0时显然符合题意,当a≠0时,结合二次函数f(x)=ax2+x+1的图象,利用一元二次方程根的分布列出不等式组,即可解出a的取值范围,(2)利用判别式、韦达定理构造出a的不等式,用x1x2表示出a,然后利用对勾函数的单调性求出函数的值域即可.本题主要考查了二次函数的性质,考查了一元二次方程根的分布,考查了韦达定理的应用,是中档题.21.【答案】解:(Ⅰ)由题意,当n=3时,若α=(1,1,0),β=(0,1,1),则M(α,α)=1+1+0=2,M(α,β)=0+1+0=1.(Ⅱ)考虑数对(x k,y k)只有四种情况:(0,0)、(0,1)、(1,0)、(1,1),相应的x k+y k−|x k−y k|2分别为0、0、0、1,所以B中的每个元素应有奇数个1,所以B中的元素只可能为(上下对应的两个元素称之为互补元素):(1,0,0,0 )、(0,1,0,0)、(0,0,1,0)、(0,0,0,1),(0,1,1,1)、(1,0,1,1)、(1,1,0,1)、(1,1,1,0),对于任意两个只有1个1的元素α,β都满足M(α,β)是偶数,所以四元集合B={(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1)}满足题意,假设B中元素个数大于等于4,就至少有一对互补元素,除了这对互补元素之外还有至少1个含有3个1的元素α,则互补元素中含有1个1的元素β与之满足M(α,β)=1不合题意,故B中元素个数的最大值为4.(Ⅲ)B={(0,0,0,…0),(1,0,0…,0),(0,1,0,…0),(0,0,1…0)…,(0,0,0,…,1)},此时B中有n+1个元素,下证其为最大.对于任意两个不同的元素α,β,满足M(α,β)=0,则α,β中相同位置上的数字不能同时为1,假设存在B有多于n+1个元素,由于α=(0,0,0,…,0)与任意元素β都有M(α,β)=0,所以除(0,0,0,…,0)外至少有n+1个元素含有1,根据元素的互异性,至少存在一对α,β满足x i=y i=1,此时M(α,β)≥1不满足题意,故B中最多有n+1个元素.【解析】本题考查集合的新定义问题,集合之间的关系,综合性较强,难度较大.(Ⅰ)由定义直接列出即可;(Ⅱ)确定B中元素都含有1,即可列出符合条件的元素;(Ⅲ)根据题意,进行求解即可.。
上海高一高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、填空题1.已知角的终边过点,则.2.已知角是第一象限角,则是第__________象限角.3.在单位圆中,面积为1的扇形所对的圆心角的弧度数为_ .4.若,则_______.5.已知,,则=__________.6.在数列中,,则.7.在△中,若,则△的形状是_______.8.已知函数其中都是非零实数,且满足,则=___________.9.已知函数,则函数的最小值为.10.函数具备的性质有.(将所有符合题意的序号都填上)(1)是偶函数;(2)是周期函数,且最小正周期为;(3)在上是增加的;(4)的最大值为2.11.我们在高中阶段学习了六个三角比,则函数的最小值是_______________.12.已知是某三角形的三个内角,给出下列四组数据①;②;③;④.分别以每组数据作为三条线段的长,其中一定能构成三角形的数组的序号是.二、选择题1.函数的图象如图,则()A.B.C.D.2.已知函数,如果存在实数,使得对任意的实数,都有成立,则的最小正值为()A.B.C.D.3.在中,的对边分别记为,且,都是方程的根,则()A.是等腰三角形,但不是直角三角形B.是直角三角形,但不是等腰三角形C.是等腰直角三角形D.不是等腰三角形,也不是直角三角形三、解答题1.化简:2.已知函数.(1)求函数的单调递增区间;(2)将函数的图象向左平移个单位,再将图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,求的最大值及取得最大值时的的集合3.如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙、的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?4.某种波的传播是由曲线来实现的,我们把函数解析式称为“波”,把振幅都是A 的波称为“ A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波与叠加后仍是“1类波”,求的值;(2)在“类波“中有一个波是,从类波中再找出两个不同的波(每两个波的初相都不同),使得这三个不同的波叠加之后是平波,即叠加后是,并说明理由.5.已知函数在同一半周期内的图象过点,其中为坐标原点,为函数图象的最高点,为函数的图象与轴的正半轴的交点.(1)求证:为等腰直角三角形.(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线上(如图所示),试判断点是否也落在曲线上,并说明理由上海高一高中数学期中考试答案及解析一、填空题1.已知角的终边过点,则.【答案】【解析】由角的定义【考点】三角函数定义2.已知角是第一象限角,则是第__________象限角.【答案】一或三【解析】角是第一象限角,为偶数时是第一象限角,为奇数时是第三象限角【考点】角的推广3.在单位圆中,面积为1的扇形所对的圆心角的弧度数为_ .【答案】2【解析】【考点】扇形面积公式4.若,则_______.【答案】【解析】【考点】同角间三角函数关系5.已知,,则=__________.【答案】【解析】【考点】1.诱导公式;2.同角间三角函数关系6.在数列中,,则.【答案】18【解析】【考点】数列递推公式7.在△中,若,则△的形状是_______.【答案】钝角三角形【解析】由正弦定理得三角形是钝角三角形【考点】正余弦定理8.已知函数其中都是非零实数,且满足,则=___________.【答案】1【解析】【考点】三角函数诱导公式9.已知函数,则函数的最小值为.【答案】9【解析】,最小值为9【考点】三角函数基本公式10.函数具备的性质有.(将所有符合题意的序号都填上)(1)是偶函数;(2)是周期函数,且最小正周期为;(3)在上是增加的;(4)的最大值为2.【答案】(1)(4)【解析】函数是偶函数,所以周期不是,在上是单调递减函数当时,函数最大值为2【考点】三角函数的奇偶性周期性单调性11.我们在高中阶段学习了六个三角比,则函数的最小值是_______________.【答案】【解析】设最小值为【考点】1.同角间的三角函数关系;2.对勾函数12.已知是某三角形的三个内角,给出下列四组数据①;②;③;④.分别以每组数据作为三条线段的长,其中一定能构成三角形的数组的序号是.【答案】①③【解析】设的对边为令,①中,所以可以构成三角形②中,仅在即时构成三角形③中恒成立,所以可以构成三角形④中当时,不能构造三角形【考点】正余弦定理解三角形二、选择题1.函数的图象如图,则()A.B.C.D.【答案】A【解析】由可知,由图像可知,代入点可知【考点】1.函数图像;2.三角函数图像及性质2.已知函数,如果存在实数,使得对任意的实数,都有成立,则的最小正值为()A.B.C.D.【答案】B【解析】可知处取得最小值和最大值,所以,最小为【考点】三角函数最值与周期3.在中,的对边分别记为,且,都是方程的根,则()A.是等腰三角形,但不是直角三角形B.是直角三角形,但不是等腰三角形C.是等腰直角三角形D.不是等腰三角形,也不是直角三角形【答案】B【解析】变形为,三角形为直角三角形【考点】正余弦定理解三角形三、解答题1.化简:【答案】【解析】本题主要考察正余弦函数的诱导公式,在正确记忆公式的前期下化简即可试题解析:原式【考点】诱导公式2.已知函数.(1)求函数的单调递增区间;(2)将函数的图象向左平移个单位,再将图象上各点横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,求的最大值及取得最大值时的的集合【答案】(1)(2)当,的最大值为【解析】(1)首先将函数式化简为的形式,求增区间需令,解不等式得到的范围(2)中将平移伸缩后的解析式求出来,令可求得取最大值时的的值试题解析:(1).当即因此,函数的单调递增取间为(2)有已知,∴当时,∴当,的最大值为.【考点】1.三角函数的化简及性质;2.三角函数图像的平移伸缩变化3.如图所示,某建筑工地准备建造一间两面靠墙的三角形露天仓库堆放材料,已知已有两面墙、的夹角为(即),现有可供建造第三面围墙的材料米(两面墙的长均大于米),为了使得仓库的面积尽可能大,记,问当为多少时,所建造的三角形露天仓库的面积最大,并求出最大值?【答案】当时,所建造的三角形露天仓库的面积最大且值为【解析】利用正弦定理将三角形的边用表示,得到面积关于角的三角函数式,并整理为的形式,,求得最大值及对应的角的大小试题解析:在中,由正弦定理:,化简得:,,所以,即,所以当,即时,.答:当时,所建造的三角形露天仓库的面积最大且值为.【考点】1.三角函数性质;2.正弦定理解三角形4.某种波的传播是由曲线来实现的,我们把函数解析式称为“波”,把振幅都是A 的波称为“ A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波与叠加后仍是“1类波”,求的值;(2)在“类波“中有一个波是,从类波中再找出两个不同的波(每两个波的初相都不同),使得这三个不同的波叠加之后是平波,即叠加后是,并说明理由.【答案】(1)(2)【解析】(1)将两函数式相加化简找到最大值为1,建立关于的关系式,进而求得角的大小;(2)中首先设出所找的波,采用待定系数法,将三个不同的波叠加化简后与对比,找到满足的条件,求出对应的值,从而确定所求的波试题解析:(1)振幅是则,即所以(2)设则=恒成立则,消去可得若取可取(或等)此时是平波【考点】1.三角函数式的化简;2.三角函数求最值5.已知函数在同一半周期内的图象过点,其中为坐标原点,为函数图象的最高点,为函数的图象与轴的正半轴的交点.(1)求证:为等腰直角三角形.(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线上(如图所示),试判断点是否也落在曲线上,并说明理由【答案】(1)详见解析(2)点不落在曲线上【解析】(1)通过三点在函数图像中的位置可得到其坐标,进而求解出三边长度,证明满足勾股定理(2)将两点坐标设出来,根据旋转的可知横纵坐标都与转过去的角有关,因此设点时用转动的角表示,验证点在不在曲线上,即检验点的坐标是否满足曲线方程试题解析:(Ⅰ)因为函数的最小正周期,所以函数的半周期为4,故.又因为为函数图象的最高点,所以点坐标为,故,又因为坐标为,所以,所以且,所以为等腰直角三角形.(Ⅱ)点不落在曲线上. 6分理由如下:由(Ⅰ)知,,所以点,的坐标分别为,,因为点在曲线上,所以,即,又,所以.又.所以点不落在曲线上.【考点】1.三角函数图像及性质;2.三角函数式的化简。
上海市高一上学期期中考试试卷数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,2,3,4,5,6U =,集合{}2,3,4A =,{}3,4,5B =,则()UA B =( )A .{}1,2B .{}3,4C .{}1,2,3,4D .{}1,2,5,62.已知集合{|1}A x x =<,{|31}xB x =<,则( ) A .{|0}A B x x =< B .A B =RC .{|1}AB x x =>D .AB =∅3.下列各组函数中,表示同一函数的是( ) A .()1f x =,0()g x x = B .()1f x x =-,21()1x g x x -=+C .()f x x =,()g x =D .()||f x x =,2()g x =4.下列函数在其定义域内既是奇函数,又是减函数的是( ) A .1()f x x=B .2()log f x x =-C .3()f x x =-D .1(0)()1(0)x x f x x x -+<⎧=⎨--≥⎩5.已知函数()y f x =的定义域是[8,1]-,则函数(21)()2f xg x x +=+的定义域是( )A .(,2)(2,3]-∞--B .[8,2)(2,1]---C .9[,2)(2,0]2--- D .9[,2]2--6.已知函数log (1)4(0a y x a =-+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的 图象上,则()()lg 2lg 5f f +=( ) A .2-B .2C .1-D .17.已知函数2()2f x ax bx a b =++-是定义在[3,2]a a -的偶函数,则()()f a f b +=( )A .5B .5-C .0D .20198.函数2ln ||()x f x x=的图象大致为( ) A . B .C .D .9.已知2log 3.23a =,4log 23b =,log 25c =,则( ) A .b a c >> B .a c b >>C .a b c >>D .c a b >>10.已知函数212()log (4)f x x ax a =-+在区间[2,)+∞上单调递减,则实数a 的取值范围为( ) A .(2,4]-B .[2,4]-C .(,4]-∞D .[4,)+∞11.若函数()f x 的零点与2()log 21g x x x =++的零点之差的绝对值不超过0.25,则()f x 可以是( ) A .5()42x f x x =+- B .()1xf x e =- C .2()(1)f x x =-D .1()ln()2f x x =-12.设函数()||f x x x bx c =-+,则下列命题中正确的个数是( ) ①当0b >时,函数()f x 在R 上有最小值; ②当0b <时,函数()f x 在R 是单调增函数; ③若(2019)(2019)2020f f +-=,则1010c =; ④方程()0f x =可能有三个实数根. A .1B .2C .3D .4第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.函数21(01)x y aa a +=+>≠且的图象恒过的定点是 .14.函数1()|lg |x f x x e=-的零点个数为 . 15.函数22()log (2)f x x ax a =-+的值域为R ,则实数a 的取值范围是 .16.函数()y f x =是定义域为R 的偶函数,当0x ≥时,2,(02)16()51,(2)2x x x f x x ⎧≤≤⎪⎪=⎨⎪->⎪⎩,若关于x 的方程2[()]()0f x af x b ++=,a ,b ∈R ,有且仅有6个不同实数根,则实数a 的取值范围是 .三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)计算:(11421()0.252-+⨯; (2)7log 2334log lg25lg47log 8log +-+⋅18.(12分)已知函数()(0,1)xf x a b a a =+>≠,其中a ,b 均为实数. (1)若函数()f x 的图象经过点(0,2)A ,(1,3)B ,求函数1()y f x =的值域; (2)如果函数()f x 的定义域和值域都是[1,0]-,求a b +的值.19.(12分)已知函数22()log ()log (2)4xf x x =⋅的定义域为[2,8]. (1)设2log t x =,求t 的取值范围;(2)求()f x 的最大值与最小值及相应的x 的值.20.(12分)已知集合22{|log (22)}A x y mx x ==-+,{24}xB x =≤≤.(1)若A =R ,求实数m 的取值范围; (2)若A B ≠∅,求实数m 的取值范围.21.(12分)已知()f x 是定义在区间[1,1]-上的奇函数,且()11f =,若a ,[1,1]b ∈-,0a b +≠时,有()()0f a f b a b+>+.(1)判断函数()f x 在[1,1]-上是增函数,还是减函数,并证明你的结论;(2)若2()55f x m mt ≤--对所有[1,1]x ∈-,[1,1]t ∈-恒成立,求实数m 的取值范围.22.(12分)对于函数1()f x ,2()f x ,()h x ,如果存在实数a ,b ,使得12()()()h x a f x b f x =⋅+⋅,那么称()h x 为1()f x 与2()f x 的生成函数.(1)当1a b ==,()xh x e =时,是否存在奇函数1()f x ,偶函数2()f x ,使得()h x 为1()f x 与2()f x 的生成函数?若存在,请求出1()f x 与2()f x 的解析式,若不存在,请说明理由;(2)设函数21()ln(65)f x x x =++,2()ln(23)f x x a =-,1a =,1b =-,生成函数()h x ,若函数()h x 有唯一的零点,求实数a 的取值范围.数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D 【解析】全集{}1,2,3,4,5,6U =,集合{}2,3,4A =,{}3,4,5B =,{}3,4A B ∴=,{}()1,2,5,6U A B ∴=,故选D .2.【答案】A 【解析】集合{|1}A x x =<,{|31}{|0}xB x x x =<=<,{|0}AB x x ∴=<,故A 正确,D 错误;{|1}A B x x =<,故B 和C 错误,故选A . 3.【答案】C【解析】A 中,()1f x =定义域为R ,0()g x x =,定义域为{|0}x x ≠,定义域不同,不是同一函数;B 中()1f x x =-,定义域为R ,21()1(1)1x g x x x x -==-≠-+,定义域不同不是同一函数,C 中,()f x x =,定义域为R ,()g x x ==,定义域为R ,定义域相同,对应法则相同,是同一函数;D 中,()||f x x =,定义域为R ,2()g x x ==,定义域为{|0}x x >,两者定义域不同,不是同一函数, 故选C . 4.【答案】C【解析】A 错,在(,0)-∞,(0,)+∞递减,不是整个定义域递减; B 错,不是奇函数;C 对,3()()f x x f x -=-=-,且为R 上的减函数; D 错,(0)1f =-不等于0,不是奇函数, 故选C .【解析】由题意得8211x -≤+≤,解得902x -≤≤; 由20x +≠,解得2x ≠-, 故函数的定义域是9[,2)(2,0]2---,故选C .6.【答案】B【解析】函数log (1)4a y x =-+中,令11x -=,解得2x =, 此时log 144a y =+=,所以函数y 的图象恒过定点(2,4)P ,又点P 在幂函数()y f x x α==的图象上,所以24α=,解得2α=,所以2()f x x =,所以()()()()()22lg 2lg 5lg 25lg 252lg102f f f f +==⨯==⎡⎤⎣⎦,故选B .7.【答案】A 【解析】函数是偶函数,∴定义域关于原点对称,则320a a -+=,得33a =,得1a =, 则22()22f x ax bx a b x bx b =++-=++-, 则函数关于y 轴对称,则02b-=,则0b =,即2()2f x x =+, 则()()()()1012025f a f b f f +=+=+++=,故选A . 8.【答案】D【解析】函数的定义域为(,0)(0,)-∞+∞,22ln ||ln ||()()()x x f x f x x x--===-,()f x ∴为偶函数, ()f x ∴的图象关于y 轴对称,当01x <<时,ln 0x <,()0f x ∴<; 当1x >时,ln 0x >,()0f x ∴>; 当1x =时,()0f x =, 故选D .【解析】因为24log 3.21log 2>>,所以24log 3.2log 233a b =>=;因为log 5c ==41log 2233b ===,所以b c >,所以a b c >>,故选C . 10.【答案】A 【解析】函数212()log (4)f x x ax a =-+在区间[2,)+∞上单调递减,则24y x ax a =-+在区间[2,)+∞上单调递增,且满足0y >,故有224240aa a ⎧≤⎪⎨⎪-+>⎩,求得24a -<≤,故选A .11.【答案】A【解析】2()log 21g x x x =++,因为221111117()()(log 21)(log 21)1()02422444g g ⋅=+⋅+⋅+⋅+=⋅-<, 所以()g x 的零点区间是11(,)42.A 中,5()42x f x x =+-的零点12,两者的零点之差的绝对值不超过0.25,符合条件,所以A 正确;B 中,()1xf x e =-的零点是0,两者的零点之差的绝对值超过0.25,不符合条件,所以B 不正确; C 中,2()(1)f x x =-的零点为1,两者的零点之差的绝对值超过0.25,不符合条件,所以,C 不正确; D 中,1()ln()2f x x =-的零点是32,两者的零点之差的绝对值超过0.25,不符合条件,所以D 不正确, 故选A . 12.【答案】C【解析】①当0b >时,22,0()||,0x bx c x f x x x bx c x bx c x ⎧-+≥=-+=⎨--+<⎩,值域是R ,故函数()f x 在R 上没有最小值;②当0b <时,22,0()||,0x bx c x f x x x bx c x bx c x ⎧-+≥=-+=⎨--+<⎩,由解析式可知函数()f x 在R 上是单调增函数;③22(2019)(2019)20192019(20192019)22020f f b c b c c +-=-++-++==, 解得1010c =,故③对;④令2b =-,0c =,则()||20f x x x x =-=,解得0x =,2,2-,故④正确, 故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】(2,2)-【解析】令20x +=,求得2x =-,2y =, 可得函数21(01)x y aa a +=+>≠且的图象恒过定点(2,2)-,故答案为(2,2)-. 14.【答案】2【解析】令()0f x =,则1|lg |x x e =,1()xxh x e e-==,()|lg |g x x =,如下图所示, 所以两函数有两个交点,即函数()f x 有两个零点, 故答案为2.15.【答案】(][),08,-∞+∞【解析】设22t x ax a =-+,要使()f x 的值域为R , 则22t x ax a =-+值域(0,)A ⊇+∞, 即判别式280Δa a =-≥,得8a ≥或0a ≤, 即实数a 的取值范围是(][),08,-∞+∞,故答案为(][),08,-∞+∞.16.【答案】111(,1)(,)424--- 【解析】由题意,作函数()f x 的图象如下,由图象可得()10()24f x f ≤≤=, 关于x 的方程2[()]()0f x af x b ++=,a ,b ∈R 有且仅有6个不同实数根,∴方程20x ax b ++=有两个根,不妨设为1x ,2x ,且114x =,2104x <<或者110x -<<,2104x <<; 1211(,)42x x ∴+∈或者121(1,)4x x +∈-, 又12a x x -=+,111(,1)(,)424a ∴∈---, 故答案为111(,1)(,)424---. 三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)7-;(2)2.【解析】(1)原式4181(2)72=--+⨯-=-. (2)原式32332131log 3lg1002(3log 2)(log 3)222622=+-+⋅=+-+=. 18.【答案】(1)(0,1);(2)32-. 【解析】(1)函数()(0,1)x f x a b a a =+>≠,其中a ,b 均为实数,函数()f x 的图象经过点(0,2)A ,(1,3)B ,123b a b +=⎧∴⎨+=⎩,21a b =⎧∴⎨=⎩,∴函数()211x f x =+>,函数111()21x y f x ==<+. 又110()21x f x =>+,故函数1()y f x =的值域为(0,1). (2)如果函数()f x 的定义域和值域都是[1,0]-,若1a >,函数()x f x a b =+为增函数, 1110b a b ⎧+=-⎪∴⎨⎪+=⎩,求得a ,b 无解;若01a <<,函数()xf x a b =+为减函数,1011b a b ⎧+=⎪∴⎨⎪+=-⎩,求得122a b ⎧=⎪⎨⎪=-⎩,32a b ∴+=-. 19.【答案】(1)1[,3]2;(2)x =()f x 有最小值254-,8x =时,()f x 有最大值4-. 【解析】(1)由题意可得x ∈,21log 32x ∴≤≤, 即t 的取值范围为1[,3]2. (2)22222()log )2(log 2)(1log )(log 4)(1log )f x x x x x =⋅=+=-+, 令2log t x =,则22325(4)(1)34()24y t t t t t =-+=--=--,其中1[,3]2t ∈, 所以,当32t =,即x =()f x 有最小值254-, 当3t =,即8x =时,()f x 有最大值4-.20.【答案】(1)1(,)2+∞;(2)(4,)-+∞.【解析】(1)因为函数22log (22)y mx x =-+的定义域为R ,所以2220mx x -+>在R 上恒成立,当0m =时,1x <,不在R 上恒成立,故舍去;当0m ≠时,则有0480m Δm >⎧⎨=-<⎩,解得12m >,综上所述,实数m 的取值范围为1(,)2+∞. (2)易得1[,2]2B =,若A B ≠∅,所以2220mx x -+>在1[,2]2上有解, 22221112()22m x x x ∴>-+=--+在1[,2]2上有解, 当12x =,即12x =时,min 222()4x x -+=-,所以4m >-, ∴实数m 的取值范围为(4,)-+∞.21.【答案】(1)增函数,证明见解析;(2)(][),66,-∞-+∞.【解析】(1)函数()f x 在[1,1]-上是增函数,设1211x x -≤<≤, ()f x 是定义在[1,1]-上的奇函数,2121()()()()f x f x f x f x ∴-=+-.又1211x x -≤<≤,21()0x x ∴+->, 由题设2121()()0()f x f x x x +->+-,有21()()0f x f x +->,即12()()f x f x <, 所以函数()f x 在[1,1]-上是增函数.(2)由(1)知()max ()11f x f ==,2()55f x m mt ∴≤--对任意[1,1]x ∈-恒成立,只需2155m mt ≤--对[1,1]t ∈-恒成立,即2560m mt --≥对[1,1]t ∈-恒成立, 设2()56g t m mt =--,则22(1)061560(1)016560g m m m m g m m m m -≥⎧≤-≥⎧+-≥⎧⇔⇔⎨⎨⎨≥≤-≥--≥⎩⎩⎩或或, 解得6m ≤-或6m ≥,m ∴的取值范围是(][),66,-∞-+∞.22.【答案】(1)存在,1()2x x e e f x --=,2()2x x e e f x -+=;(2)102[,)33--. 【解析】(1)依题意可知,12()()x f x f x e +=---------------① 将x -代替x ,得12()()x f x f x e--+-=,因为1()f x 是奇函数,2()f x 是偶函数,所以有12()()x f x f x e --+=----------② 由①、②可得1()2x x e e f x --=,2()2x xe ef x -+=. (2)依题意可得,2()ln(65)ln(23)h x x x x a =++--, 令()0h x =,可得226506523x x x x x a⎧++>⎨++=-⎩,即2453(5x x a x ++=-<-或1)x >-, 令2()45(5g x x x x =++<-或1)x >-,结合图象可知,当2310a <-≤时,()y g x =的图象与直线3y a =-只有一个交点, 所以,实数a 的取值范围为102[,)33--.。
上海市高一第一学期期中考试数学试卷一. 填空题1. 设全集{1,3,5,7}U =,集合{1,|5|}M a =-,M U ⊆,{5,7}U C M =,则a =2. 函数1()2f x x=-的定义域是 3. 设函数2()3x f x x -=-,()g x =()()f x g x ⋅= 4. “存在x ∈R ,使得3210x x -+<”的否定形式为5. 已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()(1f x x =+,则()f x 的解析式 为6. 设x 、y 、z 为正实数,满足230x y z -+=,则2y xz的最小值是7. 已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若2(2)()f m f m ->,则实数m 的取值范围为 8. 对于任意的x ∈R ,不等式2|2||1|2x x a a -++≥-恒成立,则实数a 的取值范围是 9. 已知2()f x x ax b =-++(,)a b ∈R 的值域为(,0]-∞,若关于x 的不等式()1f x c >- 的解集为(4,1)m m -+,则实数c 的值为10. 在△ABC 中,3AC =,4AB =,5BC =,P 为角平分线AT 上一点,且在△ABC 内 部,则P 到三边距离倒数之和的最小值为 11. 已知函数11()||||f x x x x x=++-,若方程2()()0f x a f x b +⋅+=有6个不同的根, 则a 的取值范围是12. 若规定集合12{,,,}n M a a a =⋅⋅⋅()n ∈*N 的子集12{,,,}m l l l a a a ⋅⋅⋅()m ∈*N 为M 的第k 个子集,其中12111222n l l l k ---=++⋅⋅⋅+,则M 的第211个子集是二. 选择题 13. “1132x <<”是“不等式|1|1x -<成立”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要 14. 已知命题A 成立可推出命题B 不成立,那么下列说法一定正确的是( )A. 命题A 成立可推出命题B 成立B. 命题A 不成立可推出命题B 不成立C. 命题B 不成立可推出命题A 成立D. 命题B 成立可推出命题A 不成立 15. 若()f x 是R 上的奇函数,且在(0,)+∞上是增函数,若(1)0f -=,那么[()()]0x f x f x --<的解集是( )A. (1,0)(1,)-+∞B. (,1)(0,1)-∞-C. (,1)(1,)-∞-+∞ D. (1,0)(0,1)-16. 在实数集R 上定义一种运算“*”,对于任意实数a 、b ,a b *为唯一确定的实数,且具 有性质:(1),,a b a b b a ∀∈*=*R ;(2),0a a a ∀∈*=R ;(3),,,()()()()2a b c a b c c ab a c c b c ∀∈**=*+*+*-R . 关于函数1()(2)()2f x x x=* 的性质,下列说法正确的为( )A. 函数()f x 的最大值为1-B. 函数()f x 的最小值为3C. 函数()f x 为奇函数D. 函数()f x 的单调递增区间为1(,)2-∞-,1(,)2+∞三. 解答题17. 设集合{|||2}A x x a =-<,21{|1}2x B x x -=<+,若A B ⊆,求实数a 的取值范围.18. 有一批材料可以建成长为200米的围墙,如果用材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图),则围成的矩形的最大面积是多少?19. 设二次函数2()f x ax bx c =++在区间[2,2]-上的最大值、最小值分别为M 、m ,集合{|()}A x f x x ==.(1)若{1,2}A =,且(0)2f =,求()f x ;(2)若{2}A =,且1a ≥,记()g a M m =+,求()g a 的最小值.20. 已知函数2()5bf x ax x=++(常数,a b ∈R )满足(1)(1)14f f +-=. (1)求a 的值,并对常数b 的不同取值讨论函数()f x 奇偶性;(2)若()f x 在区间(,-∞上单调递减,求b 的最小值; (3)若方程229()26f x x x =++在[2,4]有解,求b 的取值范围.21. 已知,,a b c ∈R ,满足a b c >>. (1)求证:1110a b b c c a++>---; (2)现推广:把1c a -的分子改为另一个大于1的正整数p ,使110p a b b c c a++>--- 对任意a b c >>恒成立,试写出一个p ,并证明之;(3)现换个角度推广:正整数m 、n 、p 满足什么条件时,不等式0m n pa b b c c a++>--- 对任意a b c >>恒成立,试写出条件并证明之.参考答案一. 填空题1. 2或82. [1,2)(2,)-+∞(2,3)(3,)x ∈+∞4. 对任意x ∈R ,3210x x -+≥5. (1[0,)()(1(,0)x x f x x x ⎧+∈+∞⎪=⎨-∈-∞⎪⎩6. 37. (2,1)-8. [1,3]-9. 214-11. 4a <- 12. 12578{,,,,}a a a a a二. 选择题13. A 14. D 15. D 16. D三. 解答题17. [0,1]. 18. 2500. 19.(1)2()22f x x x =-+;(2)634. 20.(1)2a =;0b =时,偶函数,0b ≠时,非奇非偶函数;(2)2-;(3)13[6,]2; 21.(1)略;(2)4p <,2p =或3;(3。
2020-2021上海市高中必修一数学上期中模拟试题含答案一、选择题1.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)3.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭4.若35225a b ==,则11a b +=( ) A .12B .14C .1D .25.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭7.函数()sin lg f x x x =-的零点个数为( ) A .0B .1C .2D .38.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-9.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)10.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5] 11.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b12.函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( ) A .[)2,+∞B .[]2,4C .[]0,4D .(]2,4二、填空题13.已知函数241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,则函数(())3f f x =的零点的个数是________.14.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 15.已知函数()32f x x x =+,若()()2330f a a f a -+-<,则实数a 的取值范围是__________.16.用max{,,}a b c 表示,,a b c 三个数中的最大值,设{}2()max ln ,1,4(0)f x x x x x x =--->,则()f x 的最小值为_______.17.已知2a =5b =m ,且11a b+=1,则m =____. 18.已知函数(1)4f x x +=-,则()f x 的解析式为_________.19.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数) 20.若关于的方程有三个不相等的实数根,则实数的值为_______.三、解答题21.某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后,y 与t 之间的函数关系式y =f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?22.已知函数21()(,,)ax f x a b c Z bx c+=∈+是奇函数,且(1)2,(2)3f f =<(1)求a ,b ,c 的值;(2)判断函数()f x 在[1,)+∞上的单调性,并用定义证明你的结论; (3)解关于t 的不等式:2(1)(3)0f t f t --++>. 23.已知函数())22log f x x a x =+是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.24.求关于x 的方程2210ax x ++=至少有一个负根的充要条件.25.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.26.已知函数()f x 是R 上的奇函数,且当0x >时,()f x =1()2x.①求函数()f x 的解析式;②画出函数的图象,根据图象写出函数()f x 的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.B解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系3.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.4.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.5.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.6.C解析:C 【解析】【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.7.D解析:D 【解析】 【分析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.8.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3,解得−12⩽x⩽2,即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C选项.9.C解析:C【解析】【分析】画出函数图像,根据图像得到20a-<≤,1bc=,得到答案.【详解】()201911,02log,0x xf xx x⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a-<≤,20192019log logb c-=,故1bc=,故20abc-<≤.故选:C.【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.10.A解析:A【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.11.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.12.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1, 当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.二、填空题13.4【解析】【分析】根据分段函数的解析式当时令则解得当时做出函数的图像即可求解【详解】当时令则解得当时令得作出函数的图像由图像可知与有两个交点与有一个交点则的零点的个数为4故答案为:4【点睛】本题考查解析:4 【解析】 【分析】根据分段函数的解析式当0x ≤时,令()3f x =,则2413x x --+=,解得2x =-±0x >时,()31xf x =>,1x =,做出函数()f x ,1,22y y y ==-=--.【详解】Q 241,0()3,0x x x x f x x ⎧--+≤=⎨>⎩,∴当0x ≤时,()()2241255f x x x x =--+=-++≤,令()3f x =,则2413x x --+=,解得2x =-±120,423,-<-+<-<--当0x >时,()31xf x =>,令()3f x =得1x =,作出函数()f x ,1,22,22y y y ==-=--由图像可知,()f x 与1y =有两个交点,与22y =-+ 则(())3f f x =的零点的个数为4. 故答案为:4 【点睛】本题考查了分段函数的零点个数,考查了数形结合的思想,属于基础题.14.1120【解析】【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =解析:1120 【解析】 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元. 【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.15.(13)【解析】由题意得为单调递增函数且为奇函数所以点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式然后根据函数的单调性去掉转化为具体的不等式(组)此时要注意与的取值应在外层函数的定义域内解析:(1,3) 【解析】由题意得()f x 为单调递增函数,且为奇函数,所以()()2330f a a f a -+-<22(3)(3)3313f a a f a a a a a ⇒-<-⇒-<-⇒<<点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内16.0【解析】【分析】将中三个函数的图像均画出来再分析取最大值的函数图像从而求得最小值【详解】分别画出的图象取它们中的最大部分得出的图象如图所示故最小值为0故答案为0【点睛】本题主要考查数形结合的思想与解析:0 【解析】 【分析】将{}2()max ln ,1,4(0)f x x x x x x =--->中三个函数的图像均画出来,再分析取最大值的函数图像,从而求得最小值. 【详解】分别画出ln y x =-,1y x =-,24y x x =-的图象,取它们中的最大部分,得出()f x 的图象如图所示,故最小值为0.故答案为0 【点睛】本题主要考查数形结合的思想与常见函数的图像等,需要注意的是在画图过程中需要求解函数之间的交点坐标从而画出准确的图像,属于中等题型.17.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm 5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.18.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】 【分析】利用换元法求解析式即可 【详解】 令11t x =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥ 故答案为2()23(1)f x x x x =--≥ 【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点19.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是解析:68 【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233kk a ea e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kte -=,则1ln 3kt -=两式相除可得2ln2531ln3k kt -=-,即2lg25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.20.3【解析】令fx=x2-2x-2则由题意可得函数y=fx 与函数y=m 的图象有三个公共点画出函数fx=x2-2x-2的图象如图所示结合图象可得要使两函数的图象有三个公共点则m=3答案:3解析:3 【解析】 令,则由题意可得函数与函数的图象有三个公共点.画出函数的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则.答案:3三、解答题21.(1)0.8)4,015(,1tt t y t ≤≤⎧=⎨⋅>⎩n ; (2)服药一次后治疗有效的时间是5-=小时. 【解析】 【分析】(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点(1,4),代入点(1,4)的坐标,求出参数的值,即可得到函数的解析式;(2)由(1)的结论将函数值0.25代入函数的解析式,构造不等式,求出每毫升血液中函数不少于0.25微克的起始时刻和结束时刻,即可得到结论. 【详解】(1)由题意,根据给定的函数的图象,可设函数的解析式为1)2,01(,1t a kt t y t -≤<⎧⎪=⎨⎪≥⎩n ,又由函数的图象经过点(1,4),则当1t =时,14k ⨯=,解得4k =, 又由1t =时,11()42a-=,解得3a =,所以函数的解析式为1)324,01(,1t t t y t -≤<⎧⎪=⎨⎪≥⎩n . (2)由题意,令0.25y ≥,即当01t ≤<时,40.25t ≥,解得116t ≥, 当1t ≥时,31()0.252t -≥,解得15t ≤≤,综上所述,可得实数t 的取值范围是1516t ≤≤, 所以服药一次后治疗有效的时间是17951616-=小时. 【点睛】本题主要考查了一次函数与指数函数模型的应用,解答中认真审题,合理设出函数的解析式,代入求解是解答的关键,同时应用指数函数模型应注意的问题:(1)指数函数模型的应用类型.常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时的关键.关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型. 22.⑴1,0a b c ===⑵增函数⑶22t -<< 【解析】 【分析】 【详解】(1)()f x Q 为奇函数,()()f x f x ∴-=-即2211ax ax bx c bx c++=--++ 得bx c bx c -+=--解得0c =又1(1)221a f b a b+==⇒=+Q 412(2)32021a a fb a +-=<⇒<+Q 解得1201a a Z a a -<<∈∴==Q 或 当0a =时12b =与b Z ∈矛盾舍,当1a =时1b =综上1,0a b c === ⑵函数()f x 在[1,)+∞上为增函数任取1212,[1,),x x x x ∈+∞<且则2212121212121211()(1)()()x x x x x x f x f x x x x x ++---=-= 1212,[1,),x x x x ∈+∞<Q 且1212(1,),0x x x x ∴⋅∈+∞-<且 1212()()0()()f x f x f x f x ∴-<<即得证函数()f x 在[1,)+∞上为增函数⑶222(1)(3)0(3)(1)(1)f t f t f t f t f t --++>∴+>---=+Q211,31t t +≥+>Q ,函数()f x 在[1,)+∞上为增函数 213(1)(2)0t t t t ∴+<+⇒+-<解得222t t <⇒-<<考点:函数奇偶性的性质;函数单调性的判断与证明 23.(1) 1a = (2) [)4,+∞ 【解析】 【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解. 【详解】(1)因为())2log f x x =是R 上的奇函数,所以()00f = ,即log 0=,解得1a =. (2)由(1)可得())2log f x x =,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< .因为奇函数())22log log f x x ==,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为233log 144M f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭,因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫- ⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-, 所以()()min 23g x g t ==-,因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞. 【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 24.充要条件是1a ≤. 【解析】 【分析】当0a ≠时,根据根为“1正1负”、“2负根”进行讨论,由此求得a 的范围.当0a =时,直接解出方程的根.由此求得a 的取值范围. 【详解】①0a ≠时,显然方程没有等于零的根.若方程有两异号实根,则0a <;若方程有两个负的实根,则必有102{001440aa aa >-<∴≤∆=-≥<..②若0a =时,可得12x =-也适合题意.综上知,若方程至少有一个负实根,则1a ≤.反之,若1a ≤,则方程至少有一个负的实根,因此,关于x 的方程2210ax x ++=至少有一负的实根的充要条件是1a ≤. 【点睛】本小题主要考查根据含有参数的一元二次方程根的分布求参数,考查分类讨论的数学思想方法,属于基础题. 25.(1)见解析;(2)29(,]8. 【解析】试题分析:(Ⅰ)运用正弦定理将化简变形,再解三角方程即可获解;(Ⅱ)将角用表示,换元法求函数的值域即可.试题解析:(Ⅰ)由tan a b A =及正弦定理,得sin sin cos sin A a AA b B==,∴sin cos B A =, 即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈, 故2B A π=+,即2B A π-=;(Ⅱ)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin 2A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]8. 考点:正弦定理、三角变换,二次函数的有关知识和公式的应用.26.①1)22,(0)()0,(0)(,(0)xxx f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n ;②单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 【解析】【分析】 【详解】试题分析:①考察了利用函数的奇偶性求分段函数的解析式,根据求什么设什么所以设,那么,那么,求得的解析式,又因为,即求得函数的解析式;②根据上一问解析式,画出分段函数的图像,观察函数的单调区间. 试题解析:解: ①∵函数()f x 是定义在R 上的奇函数,∴(0)0f =. 当0x <时,0x ->,1()()()22xx f x f x -=--=-=-.∴函数()f x 的解析式为1)22,(0)()0,(0)(,(0)xxx f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n②函数图象如图所示:由图象可知,函数()f x 的单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 考点:1.分段函数的解析式;2.函数的图像.。
2021-2022学年上海市高一上学期期中考试数学试卷含解析2021-2022学年上海市高一上学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.已知实数集合,,若,则________.2.已知函数(a>0且a≠1)过定点P,且点P在角的终边上,则___________.3.已知函数是定义域为R的奇函数,当时,,则______.4.方程的解是___________.5.若关于的方程有负实根,则实数的取值范围是___________6.将函数的图象向左平移个单位得到新函数的图象,则新函数的表达式为______.7.在如今这个5G时代,6G研究己方兴末艾,2021年8月30日第九届未来信息通信技术国际研讨会在北京举办,会上传出消息,未来6G速率有望达到1Tbps,并启用毫米波、太赫兹、可见光等尖端科技,有望打造出空天地融合的立体网络,预计6G 数据传输速率有望比5G快100倍,时延达到亚毫秒级水平.香农公式是被广泛公认的通信理论基础和研究依据,它表示:在受噪声干扰的信道中,最大信息传递率取决于信道宽带,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.若不改变宽带,而将信噪比从11提升至499,则最大信息传递率会提升到原来的_________倍.(结果保留一位小数)8.已知集合,若集合满足,则实数的取值范围_____ _______.9.已知,,且,若不等式恒成立,则实数m的取值范围为______.10.设无穷等比数列的公比为,且,则该数列的各项和的最小值为__________.11.已知a为奇数且,则关于x的不等式的解集为___________.12.设,若,则的取值范围为___________.二、单选题13.已知实数,,满足,则“”是“方程表示的曲线为椭圆”的(?)A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件14.2020年9月我校正式成为市争创特色学校的项目学校(“非遗文创”特色),其中“江南传统民居木作技艺”是一项非遗保护项目,现有木料形状图如下,那么旋转后可以看成函数的图像的是(?)A.B.C.D.15.给出下列六个命题:(1)若,则函数的图像关于对称.(2)函数与在区间上都是增函数.(3)的反函数是(4)无最大值也无最小值.(5)的周期为.(6)有对称轴两条,对称中心三个.则正确题个数是A.1B.2C.3D.416.已知集合A={x|x2﹣x﹣2≥0},B={x|x﹣1},则(?)A.A?BB.C.A∩B=D.A∪B=R三、解答题17.已知集合,集合.(1)当a=1时,求,;(2)设a>0,若“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围.18.已知函数.(1)当a=0时,求函数y=f(x)的单调减区间;(2)设方程在内有两个相异的实数根、,求实数a的取值范围及的值;(3)若对任意实数x,恒成立,求实数a的取值范围.19.渔场中鱼群的最大养殖量为m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留适当的空闲量.已知鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为.(空闲率为空闲量与最大养殖量的比值).(1)写出y关于x的函数关系式,并指出这个函数的定义域;(2)求鱼群年增长量的最大值;(3)若对于任意定义域内的实数x,明年渔场中的鱼群也不能达到最大养殖量,求比例系数k的取值范围.20.已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立.(1)函数是否属于集合?说明理由;(2)设函数求的取值范围;(3)设函数图像与函数的图像有交点且横坐标为,证明:函数,并求出对应的(结果用表示出来).21.设且,有限集合,其中,若对任意(),都有,则称集合为“含差集合”.(1)分别判断集合和集合是否是“含差集合”,并说明理由;(2)已知集合,集合,若集合C是“含差集合”,试判断集合与集合的关系,并加以证明.参考答案:1.-1【分析】先根据集合中元素的互异性,求出x、y,代入即可求解.【详解】根据集合中元素的互异性,在集合B中,由元素的互异性,可得:x+y≠|x|≠0,解得x≠0,x≠-y,因为A=B,所以集合A中只能=0,即y=0.此时A={ x,0,1},B={|x|,x,0},则有|x|=1,且|x|≠x,所以x=-1.所以-1-0=-1.故答案为:-1.2.【分析】先求出定点P ,再根据三角函数定义求解.【详解】由题可得定点P,点P在角的终边上,由三角函数定义可知:,故答案为: .3.##【分析】根据给定条件利用函数奇偶性定义直接计算作答.【详解】因函数是定义域为R的奇函数,当时,,所以.故答案为:4.【分析】利用指对数的关系,解对数方程即可.【详解】由题意,知:,解得.故答案为:5.【分析】设方程有负实根为,根据指数函数的性质,得到,进而得到,即可求解.【详解】设关于的方程有负实根为,根据指数函数的性质,可得,所以,可得,即实数的取值范围是.故答案为:.6.【分析】利用函数的图象变换可得出新函数的解析式.【详解】将函数的图象向左平移个单位得到新函数的图象,则新函数的表达式为.故答案为:.7.2.5##【分析】设提升前最大信息传递率为,提升后最大信息传递率为,再根据题意求,利用指数、对数的运算性质化简即可求解.【详解】设提升前最大信息传递率为,提升后最大信息传递率为,则由题意可知,,,所以倍.所以最大信息传递率C会提升到原来的倍.故答案为:2.58.[2, +)【分析】根据结合数轴即可求解.【详解】∵≠?,,∴A与B的关系如图:∴a≥2.故答案为:[2,+).9.【分析】由基本不等式求得的最小值,解不等式可得的范围.【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:.10.【分析】先写出无穷等比数列各项和的表达式,然后利用基本不等式求解即可.【详解】是公比为的无穷等比数列,数列的各项和为,其中,又且,且,,当且仅当,即时取等号,数列的各项和的最小值为.故答案为:11.或【分析】讨论、、分别求对应解集,最后取并即得结果.【详解】由题设,又a为奇数且,则,当时,,,则不满足题设;当时,成立;当时,不等式等价于,若时,,即与题设矛盾;若时,,满足;综上,不等式解集为或.故答案为:或12.【分析】利用绝对值三角不等式可得,即,,利用中与有公共点,讨论或、研究m的范围即可.【详解】,当时等号成立,,当时等号成立,所以,而,故,此时,,令中,与所表示的区域有公共点,当或时,而,故满足;当时,由得:,而,若时,此时,故;若时,此时,故;综上,.故答案为:【点睛】关键点点睛:利用绝对值三角不等式得确定x、y的范围,再将问题转化为中与有公共点求m的范围即可.13.D【分析】先求出方程表示的曲线为椭圆的充要条件,然后根据充分条件,必要条件的定义来判断.【详解】∵方程表示的曲线为椭圆,化成椭圆方程的标准形式∴,即或;故“”推不出“方程表示的曲线为椭圆”,充分性不成立;“方程表示的曲线为椭圆”也推不出“”,必要性不成立;即“”是“方程表示的曲线为椭圆”的非充分非必要条件.故选:D.【点睛】关键点点睛:本题主要考查充分条件和必要条件的判断,熟记椭圆的方程的特点,根据充分条件和必要条件的定义是解决本题的关键,考查学生的转化与化归能力,属于基础题.14.C【解析】根据函数的定义判断.【详解】把它们放到坐标平面上,只有旋转后可以形成对于可取范围的任一有唯一的与之对应,因此旋转后可以看作函数的图象.故选:C.15.A【分析】(1)由对称轴公式得解;(2)求出两个函数的单调性得解;(3)可以采用特殊函数进行验证;(4)时,有最大值;(5)化为,周期可求;(6)注意定义域,可结合图象进行判断.【详解】(1),则函数的图象关于直线对称,所以命题正确;(2)函数在区间上不是增函数,是先减后增,在区间上是增函数.所以该命题错误;(3)取,,,,所以命题错误;(4),时,有最大值,所以命题错误;(5)原函数可化为,周期为,所以命题错误;(6)受的影响,,没有对称轴,只有一个对称中心,所以命题错误.故选.【点睛】本题考查抽象函数和具体函数的性质,意在考查学生对这些知识的理解掌握水平,问题综合性强.16.D【分析】先求解集合中不等式,计算,依次判断即可【详解】由题意,或由和不存在包含关系,故选:D17.(1),;(2).【分析】(1)化简集合A,B,再利用交集、并集的定义直接计算得解.(2)由“x∈A”是“x∈B”的必要不充分条件可得集合BA,再利用集合的包含关系列出不等式组求解即得.(1)当a=1时,,,所以,.(2)因为a>0,则,由(1)知,,因为“x∈A”是“x∈B”的必要不充分条件,于是得BA,则有,解得,所以实数a的取值范围是.18.(1),;(2),;(3).【分析】(1)利用二倍角公式将函数化简,再根据余弦函数的性质计算可得;(2)依题意可得,令,依题意在内有两个不相等的实数根据,即或在内有两个不相等的实数根,再根据的取值范围,可判断,即可求出的取值范围,再根据对称性求出;(3)依题意恒成立,令,则在上恒成立,对分类讨论,再参变分离,根据函数的性质求出的取值范围,即可得解;【详解】解:(1)当时,令,解得,所以函数的单调递减区间为;(2)令,则,令,则,即,即或,当时,,所以有两个相异的实数根、,所以,解得,即,且,所以,所以;(3)由(2)可知,因为恒成立,即恒成立,令,则,则在上恒成立;当时,显然恒成立;当时恒成立,因为在上单调递增,所以;当时恒成立,因为在上单调递增,所以;综上可得19.(1),定义域为;(2)(3)【分析】(1)先表达出空闲率,进而写出y关于x的函数解析式,并求出定义域;(2)在第一问的基础上,配方求出最大值;(3)结合题意与第二问,得到不等式,求出k的取值范围.(1)由题意得:空闲率为,所以,定义域为;(2)由(1)得:,因为,,所以当时,取得最大值,,故鱼群年增长量的最大值为(3)由题意得:,结合第二问可知:,又因为,解得:,又因为,故比例系数k的取值范围是.20.(1),答案见解析;(2);(3)证明见解析;.【分析】(1)集合M中元素的性质,即有成立,代入函数解析式列出方程,进行求解即可;(2)根据和对数的运算,求出关于a的方程,再根据方程有解的条件求出a的取值范围,当二次项的系数含有参数时,考虑是否为零的情况;(3)利用和,整理出关于的式子,利用图象与函数的图象有交点,即对应方程有根,与求出的式子进行比较和证明.【详解】(1)若在定义域内存在,则方程无解,所以(2)由题意得当时,;当时,由,得,解的综上,;(3)函数又函数图像与函数的图像有交点且横坐标为则,其中即.【点睛】此题的集合中的元素是集合,主要利用了元素满足的恒等式进行求解,根据对数和指数的元素性质进行化简,考查了逻辑思维能力和分析、解决问题的能力.21.(1)A是,B不是;(2),证明见解析.【分析】(1)根据含差集合的定义判断即可;(2)根据“含差集合”的定义,可求出集合,再与集合比较即可.【详解】(1)由,可知或或,因为,所以集合是“含差集合”,由,可知或或,因为,所以不是“含差集合”,(2)因为是含差集合,所以,且对任意(),都有,因为最小,所以,因为,所以或(舍)所以,又且,,可得,;,;当时,;当时,;当时,;因为,,此种情况不成立,当时,;所以,又且,,,,可得,,;,,;当时,;当时,;当时,;当时,,因为,此种情况不成立,当时,;当时,;所以,,,或,所以或此种情况,不成立,所以,而,所以.答案第1页,共2页试卷第1页,共3页答案第1页,共2页试卷第1页,共3页。
上海市鲁迅中学2018-2019学年高一上学期期中考试数学试题(时间90分钟满分100分)一、填空题(每题3分,共30分)1.若,则满足条件的集合的个数为_______【答案】8【解析】【分析】根据n元集合有个子集,结合集合共有n=3个元素,代入可得答案.【详解】解:若,即M为集合的子集,由集合共有3个元素,故集合共有个子集.故答案为:8.【点睛】本题考查的知识点是子集与真子集,熟练掌握n元集合有2n个子集,有2n-1个真子集,是解答的关键.2.若_______【答案】【解析】【分析】根据集合的交集的定义即可求出.【详解】解:故答案是:.【点睛】本题主要考查了集合的运算,属基础题.3.已知集合,,且,则的值为_________________【答案】0【解析】【分析】由A={1,﹣m},B={1,m2},且A=B,知m2=﹣m,由此能求出实数m的值,m=﹣1不满足集合中元素的互异性,舍去.【详解】解:,且,,解得或者.不满足集合中元素的互异性,舍去.符合题意.故答案是:0.【点睛】本题考查集合相等的概念及集合元素的互异性,是基础题.4.函数的定义域是_____【答案】【解析】【分析】要使该函数有意义,则需满足,这样解该不等式即可得出该函数得定义域.【详解】由题可得,得且,该函数定义域为.故答案是:.【点睛】考查函数三要素之一定义域的概念及求法,是基础题.5.已知函数,则_________________【答案】-23【解析】【分析】从已知函数解析式可令即可得到答案.【详解】解:当时, .故答案是:-23.【点睛】本题考查已知函数解析式求函数值,属于基础题.6.不等式的解为_____________【答案】【解析】【分析】分别根据x正负情况,按照解一元一次不等式的步骤进行解题,即可得出答案。
【详解】解:由于x为分母,故;若,则,与相矛盾,舍去;若,则,即 .故答案为.【点睛】本题考查了分式不等式的解法,掌握求不等式解的方法。