化工热力学名词解释
- 格式:docx
- 大小:100.34 KB
- 文档页数:6
第一章1.化工热力学的作用地位:化工热力学是将热力学原理应用于化学工程技术领域。
它的主要任务是以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,研究各种物理和化学变化过程达到平衡的理论极限、条件和状态。
化工热力学是化学工程学的重要组成部分,是化工过程研究、开发与设计的理论基础。
2.热力学第零定律:当两个物体分别与第三个物体处于热平衡时,则这两个物体彼此之间也必定处于热平衡。
这是经验的叙述,称热平衡定律,又称热力学第零定律。
热力学第一定律即能量守恒定律:在任何过程中能量不能创造也不能消灭,只能按照严格的当量从一种形式转变为另一种形式。
热力学第二定律:任何体系都是自动地趋向平衡状态,一切自动过程都是不可逆的3.相律定义:'2R R K F--+-=π式中F 称为自由度,也就是独立的强度性质的数目,π、R 和'R 分别是相数、独立的化学反应数和其它的强度性质的限制数。
4.热力学基本方程 对于均相系统,热力学基本方程一共有四个,它们是:∑∑==++-=Ki ii L l l l dn dY X pdV TdS dU 11μ,∑∑==+++=Ki i i Ll l l dn dY X Vdp TdS dH 11μ∑∑==++--=Ki i i Ll l l dn dY X pdV SdT dA 11μ,∑∑==+++-=Ki i i Ll l l dn dY X Vdp SdT dG 11μ),,,(),,,(),,,(),,,(i l i l i l i l n Y P T G TS H G n Y V T A TS U A n Y P S H PV U H n Y V S U U =-==-==+==这四个基本方程可由热力学第一和第二定律导得。
推导前需要一个有关状态或平衡态的基本假定:对于一个均相系统,如果不考虑除压力以外的其它广义力,为了确定平衡态,除了系统中每一种物质的数量外,还需确定两个独立的状态函数。
化工热力学的名词解释引言:化工热力学是化学工程中非常重要的一门学科,它研究的是化学反应过程中的能量转化、传递和平衡等热力学原理与方法。
以下将对化工热力学中的一些关键名词进行解释,帮助读者更好地理解和应用这些概念。
一、焓(Enthalpy):焓是化工热力学中一个非常重要的量,它表示系统的内能和对外界做的功之间的总和。
焓的变化是化学反应或物质相变等过程中的重要参量。
在常温常压下,焓通常使用标准焓表示,记为ΔH°。
通过计算物质的吸热或放热量,可以用来确定反应的热效应。
二、熵(Entropy):熵是表示系统无序程度或混乱程度的物理量。
化工热力学中的熵是指系统能量的一种度量,常用符号为S。
熵的变化是系统在吸热或放热过程中的重要参量。
熵增定律是指孤立系统熵总是增加的规律,可用来描述自然界中的很多过程。
三、自由能(Free Energy):自由能是一个系统在恒定温度下能做的最大可逆功的最大减值。
它是描述系统在恒定温度和压力下它达到一个平衡状态的程度的一个非常重要的物理量。
自由能的变化可用来预测反应是否会自发进行以及反应的方向。
四、热力学平衡(Thermodynamic Equilibrium):热力学平衡是指系统的各种宏观性质在连续不断的时间变化之后趋于稳定的状态。
对于化学反应的热力学平衡,反应物和生成物的浓度或物相的比例保持不变,且反应速率达到一种动态平衡,正反应速率相等。
热力学平衡状态是实现可持续化学反应的重要条件。
五、化学势(Chemical Potential):化学势是描述物质在一定温度、压力和组分条件下的自由能变化的关键物理量。
化学势的变化可以预测化学反应的趋势以及化学平衡的位置。
通过研究化学势的变化可以探索最佳反应条件和反应过程的优化。
六、热容(Heat Capacity):热容是指系统在吸收或释放一定量热量时温度变化的情况。
它是描述物质对热能的存储和释放能力的物理量。
热容可以分为等压热容和等容热容,分别对应恒定压力和恒定体积条件下的热容。
化工热力学化工热力学是研究化工、炼油、石油化工等生产中的热效应和热过程规律的一门科学。
它以大量实验数据为基础,用定性和半定量的方法,阐明化工单元操作中的能量转化和转移的本质及其与化学平衡的关系,从而建立起反映各种物理现象之间联系的基本理论。
在合成氨工业生产中具体应用的为动量传递理论、反应热计算和放热反应计算,其中动量传递理论还用于设计合成塔内件,以控制气体的流速和返回动量;反应热计算可为动量传递过程和计算热力学反应器提供依据。
这里面包括了各种类型的单相反应,主要涉及反应热和化学反应热两个方面的问题。
反应热的求取:反应热通常指由一个单元反应的能量变化所引起的其他单元反应的能量变化。
在确定了反应条件后,为了获得足够的信息以利于控制,可根据经验公式或由实验数据推导出反应热的经验式。
反应热的计算与表示:反应热与反应级数有着密切的联系,并且与温度的高低有一定的比例关系。
因此,正确地表示和求取反应热的过程称为反应热的计算。
在反应过程中,只有正确地求出每一步反应的反应热,才能准确地知道反应进行到什么阶段,即是在哪一步完成的。
然后根据每一步的反应热值就可以求出该步反应在该温度下完全反应所需要的热量。
对化学反应来说,当前者(如在常压下进行)和后者(如在较高的压力下进行)的温度不同时,则必须先分别求出前者和后者的反应热,再由前者和后者的反应热求得前者的反应热。
因此,通过反应热的计算,可以知道化学反应所经历的步骤,也可以通过反应热的计算,估算出反应所经历的温度范围。
反应热计算对设计和安装合成塔和催化剂、使反应器有最佳工作状态等都是必不可少的。
在动量传递理论中也涉及到反应热的问题,但不直接考虑反应热,而把热量视为分子传递的作用力,通过作用力的相互作用传递热量。
2化工热力学分析在实际工作中也有重要意义。
例如,在合成氨工业生产中具体应用的为动量传递理论、反应热计算和放热反应计算,其中动量传递理论还用于设计合成塔内件,以控制气体的流速和返回动量;反应热计算可为动量传递过程和计算热力学反应器提供依据。
一, 课程简介化工热力学是化学工程学科的一个重要分支,是化工类专业学生必修的基础技术课程。
化工热力学课程结合化工过程阐述热力学基本原理, 定理及其应用,是解决工业过程(特殊是化工过程)中热力学性质的计算和预料, 相平衡计算, 能量的有效利用等实际问题的。
二, 教学目的培育学生运用热力学定律和有关理论知识,初步驾驭化学工程设计及探讨中获得物性数据;对化工过程中能量和汽液平衡等有关问题进行计算的方法,以及对化工过程进行热力学分析的基本实力,为后续专业课的学习及参与实际工作奠定基础。
三, 教学要求化工热力学是在基本热力学关系基础上,重点探讨能量关系和组成关系。
本课程学习须要具备肯定背景知识,如高等数学和物理化学等方面的基础知识。
采纳敏捷的课程教学方法,使学生能正确理解基本概念,娴熟驾驭各种基本公式的应用领域及应用技巧,驾驭化学工程设计及探讨中求取物性数据及平衡数据的各种方法。
以课堂讲解, 自学和作业等多种方式进行。
四, 教学内容第一章绪论本章学习目的及要求:了解化工热力学的发展简史, 主要内容及探讨方法。
第二章流体的P-V-T关系本章学习目的及要求:了解纯物质PVT的有关相图中点, 线, 面的物理意义,驾驭临界点的物理意义及其数学特征;理解志向气体的基本概念和数学表达方法,驾驭采纳状态方程式计算纯物质PVT性质的方法;了解对比态原理,驾驭用三参数对比态原理计算纯物质PVT性质的方法;了解真实气体混合物PVT性质的计算方法。
第一节纯物质的PVT关系1. 主要内容: P-V相图,流体。
2. 基本概念和知识点:临界点。
3. 实力要求:驾驭临界点的物理意义及其数学特征。
第二节气体的状态方程式1. 主要内容:志向气体状态方程,维里方程,R-K方程。
2. 基本概念和知识点:志向气体的数学表达方法,维里方程,van der Waals方程,R-K方程。
3. 实力要求:驾驭采纳状态方程式计算纯物质PVT性质的方法。
第三节对比态原理及其应用1. 主要内容:三参数对比态原理,普遍化状态方程。
化工热力学2笔记
一、化工热力学
1、什么是化工热力学
化工热力学是研究能量变化和物质变化的关系的理论,是化工学的一个重要的分支。
物理化学是研究物质的组成、性质和变化的规律以及影响它们变化的因素,而化工热力学则是研究物质变化的能量关系,通过研究物质的能量变化,了解物质的变化规律,从而应用到化学工程上。
2、化工热力学的基本概念
(1)热量:热量(Q)是指系统物质的能量总量,能够表示物质的温度、压力、体积等能量。
(2)热力学量:热力学量(U)是指系统物质的有效能量,它在物质内部发生变化时不发生改变。
(3)物质的焓:焓(H)是指物质或系统的可以源的热量,也可以说是物质的内能,它在物质的变化过程中不发生改变。
(4)焓的热力值:热力值(L)是指物质或系统的热量变化引起的焓变化,它在物质变化过程中不发生改变。
(5)物质的熵:熵(S)是指物质或系统的混乱程度,表示系统热量的分布状态,也表示系统物质的均匀度。
它在物质变化过程中不发生改变。
3、化工热力学的基本原理
(1)热力学第一定律:热力学第一定律(或热力学不等式)是
指物质系统的焓减小到极限时,其系统热量内热力值ulp(U)的增加是这种减小的最大值。
(2)热力学第二定律:热力学第二定律是指当一个热力学系统在恒定温度和压力下的熵总量是一定的,它永远不会自行组织、结构化,从而发生“反常”变化的现象。
化工热力学的特点化工热力学是研究化学反应与能量转化之间关系的学科,它是化学工程学科中的一个重要分支。
化工热力学的特点主要表现在以下几个方面:1. 热力学基础:化工热力学是建立在热力学基础上的,它包括了热力学原理、热力学方程等基本知识。
热力学是研究能量转化与能量传递规律的科学,它研究的对象不仅包括化学反应过程中的能量变化,还包括物质的相变、传热、传质等过程。
化工热力学通过运用热力学的基本原理和方程,来研究化学反应与能量转化之间的关系。
2. 系统分析:化工热力学研究的对象是化学反应系统,这个系统可以是一个单一的物质,也可以是多个物质之间的反应体系。
化工热力学通过对系统的分析和描述,可以揭示系统中的能量变化规律和物质转化规律,为化学工程的设计和优化提供理论依据。
3. 能量平衡:化工热力学中的一个重要概念是能量平衡。
能量平衡是指在化学反应过程中,系统所吸收和释放的能量之间的平衡关系。
通过能量平衡的分析,可以确定化学反应的放热或吸热性质,从而对反应过程进行控制和调节。
4. 热力学参数:化工热力学研究中常常涉及到一些热力学参数的计算和测定。
例如,焓变、熵变、自由能变等参数,它们可以通过实验测定和计算来获得。
这些参数的计算和测定对于研究化学反应的热力学特性和能量转化效率具有重要意义。
5. 热力学分析方法:化工热力学研究中使用了一系列的分析方法和工具。
例如,热力学平衡分析法、热力学循环分析法、热力学图等。
这些方法和工具可以帮助研究人员对化学反应系统进行全面的热力学分析,揭示系统中的能量转化规律和热力学特性。
6. 应用广泛:化工热力学的研究成果在化学工程领域具有广泛的应用价值。
例如,在化学反应工程中,热力学分析可以用来确定反应的最适温度、最适压力等条件,从而提高反应的效率和产率。
在能源工程中,热力学分析可以用来优化能源转换过程,提高能源利用效率。
在环境工程中,热力学分析可以用来研究废气处理过程中的热能回收和利用等。
化工热力学名词解释1、(5分)偏离函数:*M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P下当气体处于理想状态下热力学性质M* 之间的差额。
2、(5分)偏心因子:000.1)lg(7.0--==r T s r P ω 表示分子与简单的球形流体(氩,氪、氙)分子在形状和极性方面的偏心度。
3、(5分)广度性质4、(5分)R-K 方程(R edlich -Kwon g 方程)5、(5分)偏摩尔性质:偏摩尔性质 ij n P T ii n nM M ≠∂∂=,,])([在T、P和其它组分量n j均不变情况下,向无限多的溶液中加入1m ol的组分i 所引起的一系列热力学性质的变化。
6、(5分)超额性质:超额性质的定义是 ME = M -M id,表示相同温度、压力和组成下,真实溶液与理想溶液性质的偏差。
ΔM E 与M E 意义相同。
其中G E 是一种重要的超额性质,它与活度系数7、(5分)理想溶液:理想溶液有二种模型(标准态):^f i i d= X i f i (LR ) 和^f i id = X i k i (HL )有三个特点:同分子间作用力与不同分子间作用力相等,混合过程的焓变化,内能变化和体积变化为零,熵变大于零,自由焓变化小于零。
8、(5分)活度:化工热力学简答题1、(8分)简述偏离函数的定义和作用。
偏离函数定义, *M M M R -=指气体真实状态下的热力学性质M 与同一T,P 下当气体处于理想状态下热力学性质M* 之间的差额。
如果求得同一T ,P下M R ,则可由理想气体的M* 计算真实气体的M 或ΔM 。
2、(8分)甲烷、乙烷具有较高的燃烧值,己烷的临界压力较低,易于液化,但液化石油气的主要成分既不是甲烷、乙烷也不是己烷,而是丙烷、丁烷和少量的戊烷。
试用下表分析液化气成分选择的依据。
(1)虽然甲烷具有较高的燃烧值,但在它的临界温度远低于常温,而乙烷的临界温度也低于夏天的最高温度,也就是说,即使压力再高,也不能使它们液化。
(2)尽管己烷的临界压力较低,但它的正常沸点远高于常温,即在常温它不易气化,不利于燃烧。
3、(6分)工程上常见的汽液平衡问题有哪些类型?4、(6分)相平衡的热力学一致性检验用热力学的普遍原理来检验实验数据的可靠性。
检验的基本公式是Gibbs-Duhem方程。
该方程确立了混合物中所有组分的逸度(或活度系数)之间的相互关系。
常用的方法是面积检验法和点检验法。
汽液平衡数据的热力学一致性是判断数据可靠性的必要条件,但不是充分条件。
3.相平衡的热力学一致性检验5、(6分)卡诺定理的主要内容是是么?所有工作于等温热源和等温冷源之间的热机,以可逆热机效率最大,所有工作于等温热源和等温冷源之间的可逆热机其效率相等,与工作介质无关。
ηmax=1-T2/T16、(6分)如何利用热力学第一定律测量湿蒸汽的干度?采用节流原理,当湿蒸汽充分节流后变为过热蒸汽,测定过热蒸汽的温度、压力得知过热蒸汽的焓值,从而求得湿蒸汽的干度。
7、(6分)什么是理想功、损失功?理想功是指体系的状态变化是在一定的环境条件下按完全可逆的过程进行时,理论上可以产生的最大功或者必须消耗的最小功。
损失功时指给定相同的状态变化时的不可逆实际功与理想功之间的差值。
Wl=W ac-Wid在热功转化的实际热机循环中,将5Mpa、40℃水在锅炉中定压加热到400℃的过热蒸汽。
(1)计算其过程的焓变。
工程中常采用水的热力学图或表来查询过程始态和终态的焓值进行计算。
现技术员小张使用不同来源的水蒸汽表或图(均是正式的权威出版物,数据可靠)查到同一状态点的焓值h值竟相差较大,为什么?工程中使用热力学性质图、表来求解热力学过程的焓变、熵变时要注意什么问题。
(2)请自行给出已知条件,计算工质在锅炉所吸收的热量Q。
(答题时只需给出解题的步骤和方法,不必给出具体结果)(1)状态(T、P)的焓值H是相对于某一基准态的焓值。
1分如基准态规定不同,同一状态点(T、P)其焓值也是不同的。
小张遇到问题,因不同来源水蒸汽图或表的焓值基准态规定不同造成的。
4分要注意问题:所查询过程始态和终态的焓值的基准态应相同。
2分(2)对锅炉进行能量衡算Q + W = △H + △[(1/2)C 2 ]+ △(gh ) 1分W ≈0 △(gh) ≈0 △[(1/2)C 2] ≈0 1分 ∴ Q ≈△H 1分方法一:△H = H 2- H 1 [KJ/Kg] 查水蒸汽图或表的始、末态的焓值。
1分方法二:设计过程计算焓变(1分)5M pa、40℃水→5M pa 饱和水→5Mpa 饱和水蒸汽→5Mp a 、400℃的过热蒸汽。
据热容进行显热计算)(12121t t C dt C H p t t p -≈=∆⎰[KJ/Kg],据汽化潜热进行相变热计算。
1、 二元体系的活度计算式⎩⎨⎧+=-=)25.0(ln )25.1(ln 12212212x x x x γγ的模型是否有合理?请分析说明。
如果该模型合理,则应满足G-D方程0)(ln )(ln 2211=+γγd x d x 1分222211)(ln )(ln dx d x dx d x γγ-= 1分 而 )65()1()(ln 222211x x x dx d x -⋅-=γ1分 )56)(1()(ln 222222--⋅-=-x x x dx d x γ 1分 该模型合理 2、请举两个例子简单说明热力学第二定律在实际中的应用。
(1)夏天从低温热源(房间)将热量移到高温热源(环境)以实现制冷的效果,(1分)该过程是不能自发进行的(1分)。
而借助空调消耗电功,则制冷循环就可自发进行了,即可将热量从低温热源移到高温热源。
(1分)(2)冬天从低温热源(环境)将热量移到高温热源(房间)以实现供热的效果,(1分)该过程是不能自发的(1分)。
而借助空调消耗电功,则热泵供热循环就可自发进行了。
(1分)1.写出①稳定流动系统热力学第一定律的一般形式;②当流体流经泵和③流经换热器时系统热力学第一定律的简化形式。
答:稳定流动系统的热力学第一定律表达式为:s W Q z g u H +=∆+∆+∆221 (1) 流体流经换热器传质设备 W s =0;另外,考虑动能项和势能项与焓变之间的数量级差别,动能项和势能项可以忽略,即0212≈∆u ,0≈∆z g ;因此,稳流系统热力学第一定律可化简为:Q H =∆ ﻩ流体流经泵、压缩机、透平等设备在数量级的角度上,动能项和势能项不能与焓变相比较,可以忽略,即0212≈∆u ,0≈∆z g ;即:s W Q H +=∆ ﻩﻩﻩ ﻩ ﻩﻩﻩﻩﻩ 若这些设备可视为与环境绝热,或传热量与所做功的数值相比可忽略不计,那么进一步可化简为:s W H =∆2.完成相平衡体系求解过程框图。
假设体系为部分理想系,已知总压及液相各组成,求该体系温度及汽相组成(ξ为某一有限小数)。
解:汽相中组分i 分逸度系数=Viφˆ ,饱和蒸汽中纯组分i 的逸度系数=Si φ 组分i在汽相分逸度系数=Vi φˆ 1 ,=Siφˆ 11、 以二元溶液为例,写出三种计算偏摩尔性质的方法,要求写出详细计算方法,步骤或所需的公式。
2、 (1)图解法,如图示 。
(2)公式法(3)偏摩尔混合变量法(4)由定义式 (5)有吉布斯—杜亥姆方程。
2、写出开系稳流过程的热力学第一定律表达式,并举一应用实例。
2s 1h u g Z q W 2∆+∆+∆=-(以1Kg 为基准)对于换热过程,21u 2∆=0,g Z ∆=0,2s 1h u g Z q W 2∆+∆+∆=-s W =0 h q ∴∆=。
换热量可由过程的焓变化求出。
(举例可任意)证明题:某二元溶液的偏摩尔焓可由如下方程表示:A Bx H H +=-2211 A Bx H H +=-2122输出T ,y i式中:H 1、H 2分别为纯组分1和2的焓,A 、B 是温度和压力的函数; 问:从热力学角度考虑该对方程是否合理? 解: 等T,等Piix dM0=∑ 1122x dH x dH 0+= 21211dH dH x x 0dx dx += 122211dx H d x dx H d x = 1221x 2Bx x 2Bx = =∴左式右式 即从热力学角度考虑该对方程合理。
1、试证明单组分系统T -S 图上等压线的斜率大于零。
. 解: pp p p S H H T S H H T S T ⎪⎭⎫⎝⎛∂∂•⎪⎭⎫ ⎝⎛∂∂=∂∂•∂∂=⎪⎭⎫⎝⎛∂∂)(p p C T H =⎪⎭⎫ ⎝⎛∂∂ T S H p =⎪⎭⎫ ⎝⎛∂∂∴ 0 pp C T S T =⎪⎭⎫⎝⎛∂∂2、出真实溶液的超额焓V E与混合过程焓变化ΔV的关系并说明原因。
解:id EH H H-= id E H H H ∆-∆=∆对于理想溶液:0=∆idH∴ H H E ∆=∆E id E H H H H ∆=-=∴ H H E ∆=3、试按热力学观点分析如下活度系数方程的正确性(A 、B仅是T 、P的函数):B)-(A 2Ax ln 221+=γA)-(B 2x ln 212+=B γ解:恒温恒压下D G - Eq 0ln =∑iid x γ(2分)+111ln dx d x γ0ln 122=dx d x γ 21dx dx -=(1分)212111112ln ln x Ax dx d x dx d x -=-=γγ 211222ln x Bx dx d x =γ )(222ln ln 212121212111A B x x x Bx x Ax dx d x dx d x -=+-=+-γγ (2分) 当A=B 时,符合热力学一致性检验。