函数的基本性质
- 格式:doc
- 大小:17.00 KB
- 文档页数:2
第四讲 函数的基本性质.函数的单调性概念(1)增函数和减函数的概念如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性.区间D 叫做函数y =f (x )的单调区间. (3)函数的单调性等价变形 设[]2121,,x x b a x x ≠∈,那么 ①[]1212()()()0x x f x f x --> ⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;②[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.2.运算法则:如果函数)(x f 和)(x g 在相同区间上是单调函数,则(1)增函数+增函数是增函数;(2)减函数+减函数是减函数;(3)增函数-减函数是增函数;(4)减函数-增函数是减函数;3.常见函数的单调性:(1)一次函数b kx y +=,当0>k 时,在区间),(+∞-∞上是增函数,当0<k 时,在区间),(+∞-∞上是减函数;(2)反比例函数xky =,当0>k 时,在区间)0,(-∞和区间),0(+∞上是减函数,当0<k 时,在区间)0,(-∞和区间),0(+∞上是增函数(3)二次函数c bx ax y ++=2,当0>a 时,在区间)2,(ab--∞是减函数,在区间),2(+∞-a b 是增函数,当0<a 时,在区间)2,(a b --∞是增函数,在区间),2(+∞-ab是减函数.4.函数单调性判定方法①定义法:取值、作差、变形、定号、下结论 ②运算法则法④图像法,利用图像研究函数的单调性.1.根据函数的单调性的定义,证明函数1)(3+-=x x f 在),(+∞-∞上是减函数。
2.判断函数)0()(>+=p xpx x f 的单调性3.根据函数的单调性的定义,证明函数x x x f -+=1)(2在),(+∞-∞上是减函数。
函数的基本性质(函数的单调性、奇偶性、周期性)一、函数单调性 1、可以从三个方面理解(1)图形刻画:对于给定区间上的函数()f x ,函数图象如从左向右连续上升,则称函数在该区间上单调递增;函数图象如从左向右连续下降,则称函数在该区间上单调递减。
(2)定性刻画:对于给定区间上的函数()f x ,如函数值随自变量的增大而增大,则称函数在该区间上单调递增;如函数值随自变量的增大而减小,则称函数在该区间上单调递减。
(3)定量刻画,即定义。
2、判断增函数、减函数的方法:①定义法:一般地,对于给定区间上的函数()f x ,如果对于属于这个区间的任意两个自变量的值1x 、2x ,当21x x <时,都有()()21x f x f <〔或都有()()21x f x f >〕,那么就说()f x 在这个区间上是增函数(或减函数)。
与之相等价的定义: ⑴()()02121>--x x x f x f ,〔或都有()()02121<--x x x f x f 〕则说()f x 在这个区间上是增函数(或减函数)。
其几何意义为:增(减)函数图象上的任意两点()()()()2211,,,x f x x f x 连线的斜率都大于(或小于)0。
⑵()()()[]02121>--x f x f x x ,〔或都有()()()[]02121<--x f x f x x 〕则说()f x 在这个区间上是增函数(或减函数)。
②导数法:一般地,对于给定区间上的函数()f x ,如果()0`>x f 那么就说()f x 在这个区间上是增函数;如果()0`<x f 那么就说()f x 在这个区间上是减函数;如果函数()x f y =在某个区间上是增函数(或减函数),就说()f x 在这一区间上具有(严格的)单调性,这一区间叫做()f x 的单调区间。
如函数是增函数则称区间为增区间,如函数为减函数则称区间为减区间。
函数的基本性质⏹1。
函数的奇偶性⏹(1)函数的奇偶性的定义。
⏹(2)函数的奇偶性的判断与证明。
⏹(3)奇、偶函数图象的特征。
⏹2。
函数的单调性⏹(1)函数的单调性的定义。
⏹(2)函数的单调性的判断与证明。
⏹复合函数的单调性⏹(3)求函数的单调区间。
3.函数的周期性(1)定义:设函数的定义域是D,若存在非零常数T,使得对任何x∈D,都有x+T ∈D且f(x+T)=f(x),则函数f(x)为周期函数,T为f(x)的一个周期。
定理:设函数的定义域是D,a,b为不相等的常数,若对任何x∈D,都有x+a∈D,x+b∈D,且f(x+a)=f(x+b),则函数f(x)为周期函数,a-b为f(x)的一个周期。
(2)最小正周期:(3)定理:若T是函数f(X)的一个周期,则nT也是函数f(x)的一个周期.(n为非零整数.)4.函数图象的对称性⏹一·中心对称:⏹(1) 奇函数的图象关于原点对称;⏹一般地,如果方程f(x,y)=0满足f(x,y)=f(-x,-y),则曲线f(x,y)=0关于原点对称(2)函数y=f(x)的图象关于点(a,b)对称的充要条件为:对函数定义域中的任意x均满足2b-y=f(2a-x)(3)函数的图象关于点(a,0)对称的充要条件为: f(x) =- f(2a-x) ⇔f(a+x)=- f(a-x)(4)设函数f(x)对其定义域中的任意值x均满足f(a+x)=-f(b-x),则f(x)的图象关于点((a+b)/2,0)成中心对称.二.轴对称:(1)偶函数的图象关于Y轴对称;一般地,如果方程f(x,y)=0满足f(x,y)=f(-x,y),则曲线f(x,y)=0关于Y轴对称(2)设a是非零常数,如果对函数定义域中的任意值x均满足f(x)=f(2a-x)⇔f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称。
一般地,如果方程f(x,y)=0满足f(x,y)=f(2a-x,y),则曲线f(x,y)=0关于直线x=a对称设函数f(x)对其定义域中的任意值x均满足f(a+x)=f(b-x),则f(x)的图象关于直线x=(a+b)/2对称.(3)反函数的图象⏹函数y=f(x)的图象与y=f -1(x)的图象关于直线y=x对称;⏹函数y=f(x)的图象与y=-f-1 (-x)的图象关于直线y= - x对称;⏹设函数y=f(x)有反函数y=f– 1(x),则其图象关于直线y=X对称的充要条件是:f(x)=f– 1(x).5.函数图象的对称性与函数的周期性有着密切的内在联系,我们有下面的结论:⏹命题1:如果函数的图象关于直线x=a和直线x=b(a ≠b)对称,那么函数是以2(a-b)为周期的周期函数。
函数的基本性质知识梳理1) 函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f [ g(x)]为增;若y f(u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u)为增,u g(x)为减,则y f[g(x)]为减;若 y f (u )为减, u g (x )为增,则 y f [ g (x )]为减.f (x ) (2)打“√”函数 ax (a 0)x的图象与性质yf(x) 分别在( , a]、[ a,)上为增函数,分别在[ a,0) 、(0, a]上为减函数.(3)最大(小)值定义ox①一般地,设函数 yf (x )的定义域为 I ,如果存在实数M满足:(1 )对于任意的 x I ,都有 f(x )M;(2)存在 x 0 I ,使得 f(x0) M.那么,我们称M 是函数f (x )的最大值,记作 f max(x ) M②一般地,设函数 y f (x )的定义域为 I ,如果存在实数 m 满足:(1)对于任意的 x I ,都有 f(x ) m(2)存在 x 0 I ,使得 f (x 0)m .那么,我们称 m是函数f(x )的最小值,记作fmax (x ) m.2)函数的奇偶性①定义及判定方法②若函数 f (x )为奇函数,且在x 0处有定义,则f (0) 0.③奇函数在 y 轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④ 在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数) ,两个偶函数(或奇函数) 的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.3) 函数的周期性定义】若T为非零常数,对于定义域内的任一x,使 f (x T) f ( x)恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期。
函数是数学中一种重要的概念,它具有一些重要的性质。
常见的函数性质包括:
1.单调性:函数在定义域内单调递增或递减。
2.可导性:函数在定义域内可导。
3.可积性:函数在定义域内可积。
4.可逆性:函数在定义域内可逆。
5.可微性:函数在定义域内可微。
6.可解析性:函数在定义域内可解析。
7.持久性:函数在定义域内持久,即函数的值在定义域内不会突然变化。
8. 函数的值域:函数的值域是函数在定义域内所有可能取到的值的集合。
9. 函数的导函数:函数在定义域内可导,那么它就有导函数,并且导函数是唯一的。
10. 函数的导数:函数的导数描述了函数在某一点处的变化率。
这些性质对于理解和分析函数具有重要的意义。
不同的函数具有不同的性质,因此在研究和使用函数时需要结合具体情况来考虑这些性质。
高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。