重型汽车驱动桥的基本结构及发展方向
- 格式:docx
- 大小:16.44 KB
- 文档页数:5
重型货车驱动桥开题报告重型货车驱动桥开题报告一、引言重型货车作为运输行业的重要组成部分,承载着大量的货物运输任务。
而驱动桥作为重型货车的核心组成部分,直接影响着车辆的性能和稳定性。
本文旨在对重型货车驱动桥进行研究,探讨其结构、工作原理以及存在的问题,并提出改进方案。
二、重型货车驱动桥的结构和工作原理1. 驱动桥的结构重型货车驱动桥通常由驱动轴、差速器、行星齿轮机构等组成。
驱动轴负责将发动机的动力传递到车轮上,差速器则用于平衡车轮间的差异转速,行星齿轮机构则起到传递和放大动力的作用。
2. 驱动桥的工作原理在行驶过程中,发动机的动力通过传动系统传递到驱动轴上,驱动轴再将动力传递到车轮上,从而推动车辆前进。
差速器的作用是在转弯时平衡车轮间的差异转速,避免因内外侧车轮转速不同而导致的转向困难。
三、重型货车驱动桥存在的问题1. 动力传递效率低下由于重型货车的工作环境恶劣,驱动桥在长时间运行过程中容易受到磨损和疲劳,导致动力传递效率下降,造成能源浪费。
2. 车辆稳定性差重型货车驱动桥的结构和工作原理决定了其对车辆稳定性的影响。
在转弯时,差速器的作用不够灵活,容易导致车辆侧滑或失控。
四、改进方案1. 采用新材料为了提高驱动桥的耐磨性和抗疲劳性,可以考虑采用新型材料,如高强度钢、铝合金等,以增强驱动桥的承载能力和使用寿命。
2. 优化差速器设计通过改进差速器的结构和工作原理,提高其灵活性和响应速度,以减少车辆在转弯时的侧滑和失控现象,提高车辆的稳定性。
3. 引入智能控制系统通过引入智能控制系统,对驱动桥的工作状态进行实时监测和调整,以确保驱动桥的正常运行和最佳工作状态。
五、结论重型货车驱动桥作为车辆的核心组成部分,对车辆的性能和稳定性起着至关重要的作用。
然而,目前的驱动桥存在动力传递效率低下和车辆稳定性差等问题。
通过采用新材料、优化差速器设计以及引入智能控制系统等改进方案,可以有效提高驱动桥的性能和稳定性,进一步提升重型货车的运输效率和安全性。
重型自卸汽车设计(驱动桥总成设计)摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,对于重型自卸汽车也很重要。
驱动桥位于传动系的末端,它的基本功用是将传动轴或变速器传来的转矩增大并适当减低转速后分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力,纵向力和横向力。
通过提高驱动桥的设计质量和设计水平,以保证汽车良好的动力性、安全性和通过性。
此次重型自卸汽车驱动桥设计主要包括:主减速器、差速器、轮边减速器、车轮传动装置和驱动桥壳进行设计。
主减速器采用中央减速器附轮边减速器的形式,且中后桥采用双级贯通式布置形式,国内外多桥驱动的重型自卸汽车大多数采用这种布置形式;本设计主减速器采用了日益广泛应用的双曲面齿轮;差速器设计采用普通对称圆锥行星差速器;车轮传动装置采用全浮式半轴;驱动桥壳采用整体型式;并对驱动桥的相关零件进行了校核。
本文驱动桥设计中,利用了CAD绘图软件表达整体装配关系和部分零件图。
关键词:驱动桥、主减速器、差速器、半轴、双曲面齿轮THE DESIGN OF HEAVY SELF UNLOADINGTRUCK(THE DESIGN OF TRANSAXLE ASSEMBLY)ABSTRACTDrive axle is the one of automobile four important assemblies. It’s performance directly influences on the entire automobile,especially for the heavy self unloading truck . Driving axle set at the end of the transmission system. The basic function of driving axle is to increase the torque transported from the transmission shaft or transmission and decrease the speed ,then distribute it to the right、left driving wheel, another function is to bear the vertical force、lengthways force and transversals force between the road surface and the body or the frame. In order to obtain a good power performance, safety and trafficability characteristic, engineers must promote quality and level of designDriving axle design of the heavy self unloading truck mainly contains: main reduction, differential, wheel border reduction, transmitted apparatus of wheel and the housing of driving axle. The main reducer adopts central reduction along with wheel border reduction. And also the design have the same run-through structure between middle transaxle and the rear one with heavy trucks home and abroad that have several transaxles. Hypoid gear, a new type gear is a good choice for the main reducer of heavy self unloading truck. The differential adopted a common, symmetry, taper, planet gear. Transmission apparatus of wheel adopted full floating axle shaft, and the housing of driving axle adopted the whole pattern,and proofread interrelated parts.During the design process, CAD drafting software is used to expresses the wholes to assemble relationship and part drawing by drafting.Key words:driving axle, the main reducer,differential, wheel border reduction, half shaft, hypoid gear目录第一章绪论 (1)§ 1.1 驱动桥简介 (1)§ 1.2 驱动桥设计的要求 (1)第二章驱动桥的结构方案分析 (3)第三章驱动桥主减速器设计 (6)§ 3.1 主减速器简介 (6)§ 3.2 主减速器的结构形式 (6)§ 3.3 主减速器的齿轮类型 (6)§ 3.4 主减速器主动齿轮的支承型式 (7)§ 3.5 主减速器的减速型式 (8)§ 3.6 主减速器的基本参数选择与设计计算 (8)§ 3.6.1 主减速比的确定 (8)§ 3.6.2 主减速器齿轮计算载荷的确定 (9)§ 3.6.3 主减速器齿轮基本参数选择 (10)§ 3.6.4 主减速器双曲面锥齿轮设计计算 (12)§ 3.6.5 主减速器双曲面齿轮的强度计算 (21)§ 3.7 主减速器齿轮的材料及热处理 (25)§ 3.8主减速器第一级圆柱齿轮副设计 (26)§ 3.8.1基本参数设计计算 (26)§ 3.8.2圆柱齿轮几何参数计算 (27)§ 3.9轮边减速器设计及计算 (28)§ 3.9.1轮边减速器方案的确定 (28)§ 3.9.2轮边减速器各齿轮基本参数的确定 (28)§ 3.9.3各齿轮几何尺寸计算 (29)第四章差速器设计 (31)§ 4.1差速器简介 (31)§ 4.2 差速器的结构形式的选择 (31)§ 4.2.1 对称式圆锥行星齿轮差速器的差速原理 (32)§ 4.2.2 对称式圆锥行星齿轮差速器的结构 (33)§ 4.3差速器齿轮主要参数的选择 (33)§ 4.4差速器齿轮的几何尺寸计算与强度校核 (36)第五章驱动车轮的传动装置 (39)§ 5.1车轮传动装置简介 (39)§ 5.2半轴的型式和选择 (39)§ 5.3半轴的设计计算与校核 (39)§ 5.4半轴的结构设计及材料与热处理 (41)第六章驱动桥壳设计 (42)§ 6.1 驱动桥壳简介 (42)§ 6.2 驱动桥壳的结构型式及选择 (42)§ 6.3 驱动桥壳强度分析计算 (43)§ 6.3.1当牵引力或制动力最大时 (43)§ 6.3.2通过不平路面垂直力最大时 (44)第七章结论 (46)参考文献 (47)致谢 (48)附录A (49)第一章绪论§ 1.1 驱动桥简介在科学技术快速发展的今天,随着汽车工业的不断进步,汽车的各项性能指标也在不断提高,作为传动系末端的驱动桥的设计,更要有进一步的改进,以适应市场的需要,促进汽车行业的发展。
Internal Combustion Engine &Parts1汽车驱动桥基本类型及结构汽车车桥中,前桥主要用来转向,一般也称之为前轴。
在车桥市场中,前桥占车桥销售额的33%左右,其中具有驱动功能的前桥占比非常小,仅在特殊工况下的军车、石油、矿用及野外作业等领域车辆中配用。
后桥主要为驱动桥,主要用来降速增扭和改变动力传输方向。
后桥可分为单级减速驱动桥与双级减速驱动桥,其中双级减速驱动桥又分为中央双级减速驱动桥和中央、轮边双级减速驱动桥。
1.1中央单级减速驱动桥中央单机减速驱动桥是驱动桥结构最简单的一种,在中央桥包处由一对准双曲线螺旋锥齿轮实现降速增扭,其结构简单、重量轻、易于装配,一般在主传动比小于6情况下采用单机减速桥。
对于一些承载较大的载重车,要求具有大的减速比,如果采用单级减速驱动桥,则必须加大从动齿轮直径,这样一来会影响驱动桥桥包离地间隙,降低整桥通过性。
所以此时有必要采用双机减速驱动桥。
1.2中央双级减速驱动桥目前国内车桥市场上,中央双级减速驱动桥主要有两种类型:一类是在单级减速器中预留空间,当要求增大牵引力与速比时,装入圆柱行星齿轮减速机构,将原中央单级减速改为中央双级减速,其桥壳、主减等均可互换;另一类是需要改制第一级锥齿轮,然后装入第二级圆柱直齿轮或斜齿轮,变成中央双级驱动桥。
中央双级减速驱动桥作为一种派生产品,使用受到一定限制,因此一般不作为一种基本桥型来发展,只用来作派生的特殊驱动桥。
1.3中央单级、轮边减速驱动桥轮边减速驱动桥由中央一级减速加轮边一级减速组成。
当前轮边减速驱动桥可分为圆锥行星齿轮式轮边减速桥与圆柱行星齿轮式轮边减速桥两类,其主要区别在于轮边行星齿轮结构不同。
这类桥由于存在一级轮边减速,降低了半轴传递的转矩,把增大的转矩直接加到轴头轮边减速器上,而且由于存在轮边减速,其中央桥包尺寸可以减小,保证了车辆的高通过性。
与单级桥相比,其结构复杂,重量大,价格贵,而且轮边减壳存在齿轮传动,长时间行驶会产生大量的热致使轮毂过热,因此作为公路车驱动桥,它不如单级减速桥,轮边减速驱动桥主要应用在工程车及矿用车等非公路车上。
驱动桥的结构及组成一、驱动桥是什么呢?驱动桥呀,就像是汽车或者其他车辆的一个超级重要的小世界。
它在整个车辆的传动系统里可是扮演着超级厉害的角色呢。
你想啊,如果把车辆比作一个人,那驱动桥就像是人的腿关节部分,负责把动力传递到车轮,让车跑起来或者干活呢。
它就默默地在那儿,不怎么起眼,但是少了它,车就只能原地发呆啦。
二、驱动桥的结构1. 主减速器这个主减速器可是驱动桥里的一个大佬呢。
它的任务就是把从传动轴传来的动力进行减速增扭。
怎么理解呢?就好比你要搬一个很重的东西,直接用力可能很难搬动,但是你用一个杠杆,就能比较轻松地撬动了。
主减速器就是这样一个类似杠杆原理的存在。
它把高转速小扭矩的动力转化成低转速大扭矩的动力,这样就能让车辆的车轮更有力地转动啦。
而且主减速器的结构也有不同的类型呢,像单级主减速器,结构比较简单,就像一个简单的小机器,但是效率很高。
还有双级主减速器,就更复杂一些,不过能适应更多不同的工况。
2. 差速器差速器这个东西可太有趣啦。
你有没有想过,当车辆转弯的时候,内侧车轮和外侧车轮走过的距离是不一样的。
如果没有差速器,那车轮就会互相较劲,就像两个人拔河一样,这样车肯定就走不好啦。
差速器就能让内侧和外侧车轮以不同的速度转动,保证车辆顺利转弯。
它就像是一个超级聪明的小管家,协调着左右车轮的速度关系。
差速器里面有很多小零件,像行星齿轮这些,它们相互配合,共同完成这个神奇的任务。
3. 半轴半轴就像是连接差速器和车轮的小桥梁。
它把差速器输出的动力传递到车轮上。
半轴得很结实才行,因为它要承受很大的扭矩。
如果半轴不结实,就像一个脆弱的小树枝,那在车辆行驶过程中,动力就不能很好地传递到车轮,车就会出现问题。
半轴的设计也有很多讲究呢,要考虑它的长度、粗细、材料等因素,这样才能保证它能稳定地完成自己的使命。
三、驱动桥的组成部分1. 桥壳桥壳就像是驱动桥的房子,它把驱动桥的其他部分都包裹在里面,起到保护的作用。
目录1前言 (2)2 总体方案论证 (3)2.1非断开式驱动桥 (3)2.2断开式驱动桥 (4)2.3多桥驱动的布置 (4)3 主减速器设计 (6)3.1主减速器结构方案分析 (6)3.2主减速器主、从动锥齿轮的支承方案 (7)3.3主减速器锥齿轮设计 (9)3.4主减速器锥齿轮的材料 (11)3.5主减速器锥齿轮的强度计算 (12)3.6主减速器锥齿轮轴承的设计计算 (13)4 差速器设计 (18)4.1差速器结构形式选择 (19)4.2普通锥齿轮式差速器齿轮设计 (19)4.3差速器齿轮的材料 (21)4.4普通锥齿轮式差速器齿轮强度计算 (21)5 驱动车轮的传动装置设计 (23)5.1半轴的型式 (23)5.2半轴的设计与计算 (23)5.3半轴的结构设计及材料与热处理 (26)6 驱动桥壳设计 (27)6.1桥壳的结构型式 (27)6.2桥壳的受力分析及强度计算 (28)7 结论 (29)致谢 (30)附件清单 (31)1前言本课题是对货车驱动桥的结构设计。
故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。
驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式与设计计算方法。
汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。
例如,驱动桥包含主减速器、差速器、驱动车轮的传动装置(半轴及轮边减速器)、桥壳和各种齿轮。
锻造二车间讲义动力传递的纽带卡车车桥结构图文讲解发动机,变速箱和车桥是卡车的三大动力核心总成,三者中车桥虽不像发动机和变速箱一样常被人们提及,但却在汽车动力传输的过程中发挥着纽带的作用,对整车的行驶的动力性和稳定性有着举足轻重的作用。
● 什么是车桥?车桥,通过悬架和车架(或承载式车身)相连,两端安装汽车车轮的桥式结构。
图为车桥总成● 车桥的作用车桥的功能就是传递车架(或承载式车身)与车轮之间各方向作用力及其力矩,其对汽车的动力性,稳定性,承载能力等性能有着重要的影响。
如果是作为驱动桥,除了承载作用外还起到驱动、减速和差速的作用。
● 车桥的结构卡车一般采用发动机前置,后轮驱动的布置方法。
一般情况下,前桥都是转向桥,而驱动桥在后桥。
前桥的结构前桥定型结构卡车前桥由主要由前梁,转向节,主销和轮毂等部分组成。
车桥两端与转向节绞接。
前梁的中部为实心或空心梁。
● 驱动桥结构驱动桥位于汽车传动系统的末端,主要由主减速器、差速器、半轴和驱动桥壳等组成。
驱动桥典型结构1.主减速器主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速度。
主减速器类型较多,有单级、双级、双速、轮边减速器等。
卡车后桥主减速器1)单级主减速器由一对减速齿轮实现减速的装置,称为单级减速器。
其结构简单,重量轻。
2)双级主减速器对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速,通常称为双级减速器。
双级减速器有两组减速齿轮,实现两次减速增扭。
双级主减速器为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。
二级齿轮副是斜齿圆柱齿轮。
主动圆锥齿轮旋转,带动从动圆锥齿轮旋转,从而完成一级减速。
第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。
因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。
我国重型汽车车桥历史、现状及发展趋势?设计?计算?研究?我国重型汽车车桥历史,现状及发展趋势郑娟英(陕西汉德车桥有限公司)摘要:简要介绍我国重型汽车车桥的发展历史和现状,主要制造商及其产品,技术发展水平,对比国外先进车桥技术,分析和总结我国重型汽车车桥的发展趋势及发展对策.关键词:重型车桥轮边减速器单级减速驱动桥发展趋势Thehistory,statusquoanddevelopmentdirectionofourcountry'Sheavy-dutyaxleZhengJuanyingSHAANXIHANDEAXLECO.,LTDAbstract:Introducingthehistoryandstatusquoofourcountry'Sheavy—dutyaxle,mainmanufacturerandproduction,technologylevel,contrastingadvancedtechnologyofoverseasheavy—dutyaxle,analyzingandsumming—updevelopmentdirectionandcountermeasureofourcountry'Sheavy-dutyaxle.Keywords:heavy??dutyaxleplanetary??reductionsinglereductiondriveaxledevelopment direction重型汽车通常是指总重大于15吨的重型卡车,军用越野汽车以及长度大于10米的大客车等产品.根据以上重型汽车的划分标准及我国轴荷相关法律,法规的要求,通常所谓的重型车桥是指轴荷10吨以上,单桥牵引力大于25吨的车桥产品.无论从价格还是技术层面上,重型车桥是重型汽车比肩发动机和驾驶室的三大核心总成之一,承受着汽车的满载簧上荷重及地面经车轮,车架或承载式车身经悬架给与的铅锤力,纵向力,横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大扭矩,桥壳还承受着反作用力矩.汽车车桥的结构形式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性,经济性,平顺性,通过性,机动性和操纵稳定性等有直接关系.因此,车桥对整车极其重要,重型车桥的技术水平直接影响着重型汽车的技术水平,可靠性. 2010年第2期1.我国重型商用车桥产品的发展历程及目前的情况我国重型车桥按照结构划分,主要有两种,一种是带轮边减速器的双级减速驱动桥,主要技术以上世纪80年代引进的STEYR技术为典型代表;另一种是单级减速驱动桥,主要技术以日产柴技术为代表的东风460和解放457.1.1.我国重型商用车桥产品的发展历程随着上世纪80年代,为解决我国汽车行业"缺重少轻"现象,当时中国重型汽车集团公司引进奥地利STEYR汽车公司的9l系列重型汽车,重型STEYR车桥产品也随之进入我国,目前该产品已经成为我国重型车桥市场的主流产品.上世纪90年代,解放和东风公司相继引进日产柴技术,成功开发了DF460和FAW457系列单级减速驱动桥,与引进的STEYR轮边减速驱动桥共同构成了我国重.19.?设计?计算?研究?型车桥的主体.1.2.我国重型车桥产品行业发展现状随着近年来我国重型汽车市场的快速增长,重型商用车桥的市场容量也在迅速扩张,2009年全年销量约为180万根,销售收入约为300亿元左右. 预计到2010年全年市场容量将达到200万根以上, 销售收入超过350亿元.由此可见,市场规模相当可观.其中,前桥业务占整个车桥行业销售额的30%左右,后驱动桥,双联后驱动桥占绝对主导地位,支撑桥份额不到10%.目前国内重型商用汽车市场中,单,双级减速驱动桥比例大致是4:6,其中单级桥主要集中在一汽解放,东风汽车;双级桥主要集中在中国重汽,陕汽重卡,北方奔驰和上汽红岩依维柯.1.3.我国主要重型汽车车桥生产企业产品介绍主要制造商集中在东风德纳车桥有限公司,一汽解放汽车有限公司车桥分公司,中国重汽济南桥箱有限公司,陕西汉德车桥有限公司,安徽安凯福田曙光车桥有限公司,一汽山东汽车改装厂及青特众力车桥有限公司等企业.表1国内单级桥产品型谱牵引质量公司,产品名称及技术来源轴荷主要用途(吨)东风公司一汽集团中国重汽汉德安凯北奔26吨80480德纳485自主495美驰HD469曼468现代载货车,牵引双联桥70460日产柴457日产柴457美驰车,自卸车23吨载货车,牵引50-60435435HD425曼435双联桥车,白卸车13吨44-50500500HD485曼485载货车,自卸车单后桥等HD450自主725.AO1客车表2国内双级桥产品型谱牵引质量公司,产品名称及技术来源主要用途驱动桥轴荷(吨)东风公司一汽集团中国重汽汉德车桥安凯车桥奔放奔驰300H斯太300H自主300H斯太300H斯太尔3OOH32吨双联桥7O一82吨300H奔驰开发尔尔斯太尔载货车,自300H曼卸车,牵引300H自主300H斯太300H斯太300H斯太盔300H26吨双联桥7O一82吨尔300H奔驰开发尔尔斯太尔300H曼载货车,牵23吨双联桥44—52吨233H曼引车等说明:以上表1,表2中的双联桥中的后桥可单独使用.1.4.行业竞争状况分析国内重型车桥市场主要集中在大的汽车集团旗下,行业集中度非常高,其中解放,东风,中国重汽,陕重汽,北方奔驰和上汽红岩依维柯重型车桥基本自产,占市场份额的90%以上..20.随着普利适优迪车桥有限公司,美国车桥国际控股有限公司(AAM)等在中国的纷纷落户,我国车桥行业内,外资公司由合资到独资的逐渐渗入也在加快进程,开始了产品,技术,人才,市场的全面竞争格局.汽车实用技术?设计?计算?研究?1.5.我国重型车桥产品存在的问题据专业人士称,在汽车底盘平台主要零部件中,依靠现有技术,车桥总成最有可能达到国际先进水平.但是,如今国内上百家商用车车桥企业中, 具有一定实力,水平及规模的只有十多家,产品水平与国外企业差距很大.总体来讲,国外先进的车桥能够保修100万公里甚至150万公里,而国内重型商用车桥的使用寿命仅为8O万公里左右,至于保修历程大多也就是10万公里或1年时间.主要问题是:加工设备技术落后,工艺水平普遍较低,过程控制能较弱,试制,试验,监测及分析技术落后等导致产品质量不稳定,出现"漏油,漏气"的现象较多,齿轮噪声高,早期失效普遍,制动器质量缺陷较多等.存在以上问题的主要原因是:由于对知识产权的保护力度不够,使得车桥行业内抄袭成风,导致国内的车桥企业对研发的投入普遍不足;封闭的集团内车桥市场使得企业缺乏技术积淀和研发人才储备.2.国外典型重型商用车用车桥产品介绍2.1.VOLVO公司VOLVO公司重型驱动桥有带轮边减速器的双级桥和单级桥,制动器有鼓式,盘式两种,车桥制动系统可安装ABS/ASR系统,目前全球最先进的EBS 电子制动控制系统,可以安装板簧或四气囊空气悬架.2.1.1.单级减速驱动桥单后桥一适用于4x2,6x2和8x2驱动方式轴荷型号减速方式牵引总质量(吨)(吨)RSS1344B单级l344RS1356SV单级l356双联桥一适合于6x4和8x4驱动方式型号减速方式轴荷(吨)牵引总质量(吨)RTS2370A单级23702.1.2.带轮边减速器的双级减速驱动桥单后桥一适用于4x2,6x2和8x2驱动方式2010年第2期牵引总质量型号减速方式轴荷(吨)(吨)带轮边减速RSH1370C1370器双联驱动桥一适用于6x4和8x4驱动方式牵引总质型号减速方式轴荷(吨)量(吨)带轮边减速RTH2180C2l80器带轮边减速RTH211OC2l10O器带轮边减速RTH2610C261O0器带轮边减速RTH32lOC3210O器带轮边减速RTH3212C32120器2.2.MAN公司拥有全系列前轴,单级减速驱动桥,双级减速驱动桥,低地板前轴,低地板驱动桥,前驱动桥和支撑轴产品.2.2.1.HY/HYD系列单级桥该系列单级桥产品主要用于公路用车,如牵引车,载货车及部分专用车,制动器可选择鼓式制动或盘式制动,悬架可选择安装板簧悬架,少片簧悬架和4气囊空气悬架,还可安装ABs/AsR系统,电子制动系统(EBS).型号减速方式用途轴荷牵引总质量HY1133单级桥单后桥l1.533HYD1152单级桥贯通桥11.544-52.21.?设计?计算?研究?HY1350单级桥单后桥1344HYD1370单级桥贯通桥l3702.2.2.HP/HPD系列双级驱动桥主要用于路况恶劣的工地,矿山等工况的车辆,如自卸车,军用越野汽车等.型号减速方式用途轴荷牵引总质里带轮边减HP1133单后桥11.533速器带轮边减HPD1153贯通桥11.544-52速器带轮边减HP1333单后桥11.533速器带轮边减HPD1353贯通桥l1.544—52速器带轮边减HP1352单后桥l344-52速器带轮边减HPD1382贯通桥1370-82速器带轮边减HP1652单后桥l644-52速器带轮边减HPD1682贯通桥1670-82速器2.2.3.VP/VPD系列前转向驱动桥该系列车桥和HP/HPD系列后驱动桥一起使用,主要应用于全驱动,全地形车辆越野汽车..22.型号减速方式用途轴荷牵引总质量vPo6单级桥单后桥6vPo9单级桥单后桥9VPD09单级桥贯通桥9现代商用车桥发展趋势探讨重型车桥总成的整体性能正在向轻量化,低噪音,高效率,大扭矩,宽速比,长寿命,低成本,更舒适,更安全,更加注重电子化和环保的方向发展,比如ABS/ASR系统,电子制动系统(EBS),轮胎气压监控报警系统(TPM)集中润滑,充放气系统悬架等都应用在车桥总成上.3.1.承受更大扭矩,满足搭载大马力发动机重型卡车必然从运输单位成本的角度考虑,发展大功率重吨位的大型汽车列车.在20世纪5O年代,载货车的最大功率约150千瓦(近200马力), 20世纪初提高到最大功率约440千瓦(近600马力),50年内提高了3倍.有专家预测,在未来的50年内,卡车的最大功率将达到735千瓦(1000马力),汽车总质量将达到100吨.因此,满足大扭矩,大功率发动机的车桥产品将是重型车桥未来的方展方向之一.3.2.齿轮及其他传动机件工作平稳,可靠,低噪音目前国内驱动桥传动系统的主要问题是噪音较高,疲劳寿命较短,主要原因是齿轮精度和强度不够.因此,提高齿轮及其它传动机件的加工精度,装配精度,增强齿轮支承刚度,增强桥壳及主减速器壳的刚度以避免其受载变形后破坏齿轮的正确啮合,都是降低驱动桥噪声的有效措施.而齿轮的高强度化制造技术关键在于高强度齿轮钢材的开发和齿轮强化技术的应用,齿轮的高精度制造技术包括合理选材,高精度淬火技术和从动齿轮压力淬火技术.3.3,零件标准化,部件通用化,产品系列化采用几种典型的零部件,以不同组合的设计方法和生产方式达到驱动桥产品系列化或变形的目的,或力求做到将某一基型的驱动桥以更换或增减汽车实用技术?设计?计算-研究?不多的零件,用到不同性能,不同吨位,不同用途的多驱动桥上.如此,将极大的方便供应商开发,产品采购,生产组织管理,售后服务等环节的工作, 降低产品的生产制造和运营成本.3.4.高燃油经济性和环保性车桥燃油经济性的提高,主要措施是提高驱动桥的传动效率,而驱动桥传动效率主要取决于其齿轮啮合及轴承运转时的摩擦损失和润滑油扰动,飞溅引起的功率损失.提高齿轮精度及支承刚度;正确选择润滑油可减小齿面的摩擦损失,改善啮合; 正确选择轴承的尺寸及型号,间隙或预紧度,改善润滑;选择合理的油面高度,控制润滑油的扰动,飞溅引起的功率损失,这些都是减小驱动桥的功率损失,提高传动效率的有效方法.由于石油资源的稀缺性,导致油价长期保持高价运行的状态,因此,提高燃油经济性,一方面降低了产品的使用成本,增强产品的市场竞争力,另一方面也有利于环境保护.3.5.电子化,智能化满足ABS/ASR系统,汽车采用电子稳定程序(ESP)等电子硬件的安装和使用.3.6.产品市场细分过去,单级桥因为主减速器尺寸大,离地间隙小,导致通过性较差,应用范围相对较小.现在,一方面随着我国公路运输条件的改善重型汽车使用条件对通过性的要求降低,使单级桥的劣势得以忽略;另一方面物流业对车辆可靠性,高速性能等要求的变化,公路用重型汽车驱动桥已加快向单级桥发展.单级减速驱动桥结构简单,传动链较短,易损件少,可靠性高,机械传动效率较高,燃油消耗率较低,成本较为低廉,符合市场对这一发展趋势需求.预计未来我国的重型车桥产品中75%的驱动桥产品将是单级减速驱动桥,而这一比例目前只有40%,将日益接近于目前美,欧等成熟市场.我国现有的斯太尔驱动桥属于典型的欧洲重型载货汽车产品的双级桥结构,其传动效率相对较低,油耗高,但这并不意味着传统双级桥市场的没落,在一些路况恶劣,如资源勘探,矿山开采,油田作业,军用越野车,修路,水电站建设等需要高通过性的地方,仍需要双级桥,且我国目前正在进行大规模的基础设施现代化建设,这一市场需求仍将在长时期内保持较高的需求量.2010年第2期预计未来2-3年内,重型汽车所需车桥总成将形成以下格局:公路运输以10吨及以上单级减速驱动桥,承载轴为主;工程,港口等用车以10吨及以上双级减速驱动桥为主.4.对于我公司重型车桥发展的几点意见4.1.明确公司的产品发展规划和发展战略制定,完善公司产品发展规划和发展战略,就是直面激烈的竞争,严峻的挑战,为取得优势地位, 保证自己的生存和发展确立企业总体的长远的目标,发展方向和重点,做到有的放矢,成为车桥行业技术引领者,掌握市场主动权.4.2.加大产品研发投入同国内其它车桥制造商一样,还没有形成自己的研发体系和能力,这将极大的制约发展后劲.加强人才队伍建设,一方面引进高级能人才,另一方面要保持人才队伍的稳定;加大对产品研发的投入,包括软件和硬件两方面,加快试制车间,实验室的建设步伐,采用先进的测试设施,建设国家认定试验室,为新产品设计和老产品改进提供依据,增强产品竞争力和行业影响力.例如VOLVO公司位于瑞典哥德堡的全新测试装置能够对整个32吨级双后桥施以横向,纵向的压力,以及车轮的扭矩(根据从消费者驾驶车辆的跟踪测试中获得的数据,研究人员设定不同的测试程序.该试验台能够模拟现实工作环境中卡车车桥所承受的巨大压力,运行相应的基本程序,其中包括长途运输,区域配送以及建筑工地作业.此外,针对不同运输环节中的特殊驾驶情况,测试环节也能够被相应改变.),模拟车桥产品得整个生命周期.该试验台架的应用,大大缩短了试验的时间,并且提供车桥优化设计的依据,确保卡车不会因为车桥的尺寸,结构问题而出现运转不良,超载或浪费燃料的情况.4.3.继续完善产品系列进一步开发485贯通桥,500单级减速桥产品,满足重型汽车搭载500马力及以上大功率发动机的需求,使公司产品形成系列化.利用公司现有产品技术资源,开发与汽车桥类似的工程机械车桥产品,如汽车起重机,矿用自卸.23—?设计?计算?研究?车,石油钻进运输平台车等车桥产品.4.4.大力发展先进军用车桥依托陕重汽在军用越野汽车市场的独特优势,开发满足未来战争需求的高机动性,高通过性,高承载能力以及较高通用性的车桥;满足安装各类型悬挂系统(油气悬挂,独立悬挂),大直径,宽断面,可调压胎和轮胎中央充放气系统,先进的电子技术,如安装ABS/ASA系统,EBS系统等的车桥产品.4.5.依托现有产品资源,开发新一代产品着眼于未来重型汽车发展趋势,新能源卡车技术的开发,开发新一代车桥产品技术平台,如满足重卡使用的电动车桥产品等,实现企业自主开发的能力,核心竞争力的形成.参考文献:[1]辛木.商用车桥行业现状及发展动向.重型汽车,2008,6 [2111J惟信.汽车车桥设计.北京:清华大学出版社,2004 汽车实用技术。
重型汽车驱动桥的基本结构及发展方向
[关键词] 重型汽车驱动桥趋势
1.重型汽车驱动桥的基本结构
驱动桥是重型汽车的重要标志之一,其基本结构有以下三种:
1.1中央单级减速驱动桥
是驱动桥结构中最为简单的一种,是驱动桥的基本形式,在载重汽车中占主导地位。
一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。
目前的中央单级减速器趋于采用双曲线螺旋伞齿轮,主动小齿轮采用骑马式支承,有差速锁装置供选用。
1.2中央双级驱动桥
在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装人圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥,这种改制“三化”程度高,桥壳、主减速器等均可通用,盆齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥,这时桥壳可通用,主减速器不通用,盆齿轮有2个规格。
由于上述中央双级减速桥均是在中央单级桥的速比超出一定数值或牵引总质量较大时,作为系列产品而派生出来的一种型号,它们很难变型为前驱动桥,使用受到一定限制;因此,综合来说,双级减速桥一般均不作為一种基本型驱动桥来发展,而是作为某一特殊考虑而派生出来的驱动桥存在。
1.3中央单级、轮边减速驱动桥
轮边减速驱动桥较为广泛地用于油田、建筑工地、矿山等非公路车与军用车上。
当前轮边减速桥可分为2类:一类为圆锥行星齿轮式轮边减速桥,沃尔沃、雷诺等都采用此类车桥;另一类为圆柱行星齿轮式轮边减速驱动桥,奔驰、斯堪尼亚、中国重汽、重庆重汽等都采用此
类车桥。
1.3.1圆锥行星齿轮式轮边减速桥
由圆锥行星齿轮式传动构成的轮边减速器,轮边减速比为固定值2,它一般均与中央单级桥组成为一系列。
在该系列中,中央单级桥仍具有独立性,可单独使用,需要增大桥的输出转矩,使牵引力增大或速比增大时,可不改变中央主减速器而在两轴端加上圆锥行星齿轮式减速器即可变成双级桥。
这类桥与中央双级减速桥的区别在于:降低半轴传递的转矩,把增大的转矩直接增加到两轴端的轮边减速器上,其“三化”程度较高。
但这类桥因轮边减速比为固定值2,因此,中央主减速器的尺寸仍较大,一般用于公路、非公路军用车。
1.3.2圆柱行星齿轮式轮边减速桥
单排、齿圈固定式圆柱行星齿轮减速桥,一般减速比在3至4.2之间。
由于轮边减速比大,因,中央主减速器的速比一般均小于3,这样盆齿轮就可取较小的直径,以保证重型汽车对离地问隙的要求。
这类桥比单级减速器的质量大,价格也要贵些,而且轮毅内具有齿轮传动,长时间在公路上行驶会产生大量的热量而引起过热;因此,作为公路车用驱动桥,它不如中央单级减速桥。
2.重型汽车驱动桥的发展方向及市场预测
随着我国公路条件的改善和物流业对车辆性能要求的变化,重型汽车驱动桥技术已呈现出向单级化发展的趋势。
2.1单级桥与双级桥的主要区别及用途
单级桥有主减速器,一级减速。
桥包尺寸大,离地间隙小,相对双级桥而言,其通过性较差,主要用于公路运输车辆。
双级桥有主减速器减速、轮边减速器减速,形成二级减速。
由于是二级减速,主减速器减速速比小,主减速器总成相对较小,桥包相对减小,因此离地间隙加大,通过性好。
该系列桥总成主要用于公路运输,以及石油、工矿、林业、野外作业和部队等领域。
2.2单级减速驱动桥产品的优势
2.2.1单级减速驱动桥是驱动桥中结构最简单的一种,制造工艺简
单,成本较低,是驱动桥的基本类型,在重型汽车上占有重要地位;
2.2.2重型汽车发动机向低速大转矩发展的趋势,使得驱动桥的传动比向小速比发展;
2.2.3 随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低,因此,重型汽车不必像过去一样, 采用复杂的结构提高通过性;
2.2.4 与带轮边减速器的驱动桥相比,由于产品结构简化,单级减速驱动桥机械传动效率提高,易损件减少,可靠性提高。
单级桥产品的优势为单级桥的发展拓展了广阔的前景。
从产品设计的角度看,重型车产品在主减速比小于6的情况下,应尽量选用单级减速驱动桥。
2.3重卡车桥技改火热出炉重卡车桥布局将在两三年内完成
近几年重型车企业的产销数据显示,重卡市场的集中度正在进一步提高。
随着缺陷汽车召回制度及欧Ⅲ、欧Ⅳ排放标准的实施,加上原材料涨价等因素,重型车的研发、制造、销售等环节的成本将有一定幅度的上升,因此,未来几年内,重型车市场的盈利水平将会越来越低,重型车市场价格将会全面调整和适度下降。
重卡未来几年盈利水平的降低,在客观上为重卡的重组创造了条件。
随着整个重型汽车市场的发展变化,作为4大总成之一的车桥也会随之发生变化,面临市场集中度的问题。
与重卡企业相似,目前国内重型车桥生产企业也主要集中在一汽车桥厂、一汽山汽改、东风襄樊车桥公司、中国重汽桥箱厂、陕西汉德车桥公司、重庆红岩桥厂和安凯车桥厂几家企业。
这些企业几乎占到国内重卡车桥90%以上的市场。
2005、2021年这一格局依然不会有很大改观。
随着重卡产销持续上升,重卡车桥生产企业纷纷扩大产能并实施技改项目。
各重卡桥厂产能的提升,为重卡的发展打下了坚实的基础。
重卡热销,各厂家纷纷扩大产能的同时,将加大优势资源的竞争能力。
竞争的加剧必然造成巨头的出现。
衡量一个成功的桥厂,其5万根以上的产量是最低基准线。
在斯太尔平台桥厂中,中国重汽桥箱厂、
陕西汉德车桥有限公司、重庆红岩桥厂、安凯桥厂产能有望在2004-2021年突破5万根大关。
按2021年重卡发展势头预测,10万根的产能目标,也并非是主要4家斯太尔重卡桥厂遥不可及的目标。
可以预料在未来两三年内,主要重卡车桥企业的二期、三期技改将会全面完成,其重卡车桥国内布局也将初步完成。
2.4离吨位、高完好率、高速的重卡呼唤新型重卡车桥
为了适应未来的发展需要,提高运输效率,有关人士呼吁我国重卡企业必须转变传统的公路运输概念,生产出适应快速、长途、重载的高效率、高效益型重卡。
我国现有的斯太尔驱动桥产品主要满足中高档重型汽车的需求,属于典型的欧洲重型汽车产品的零部件结构,这决定了存在诸多缺点:传动效率相对较低,油耗高长途运输容易导致汽车轮载发热,散热效果差,为了防止过热发生爆胎,不得不增加喷淋装置使结构相对复杂,导致产品价格高等。
随着公路网络的不断完善,特别是高速公路的迅猛发展,上述缺点在公路运输重型汽车中日显突出,据统计,欧美重型汽车采用该结构的车桥产品呈下降趋势,日本采用该结构的产品更少。
有关专家预测我国采用斯太尔驱动桥产品的合理比例是占整个重型汽车驱动桥的25%,驱动桥的主流产品是单级减速驱动桥产品。
未来重卡车桥将由典型的斯太尔双级减速驱动桥向单级桥方向发展。
GB1589的颁布实施,鼓励中重卡向多轴化发展。
国内众多重卡企业纷纷推出多轴卡车,这使承载轴的需求量大增。
承载轴的走俏,为各大桥厂提供了更大的市场空间。
2.5重型汽车车桥市场预测
专家预测,在未来l0年内,客车的市场需求量仅仅是重型载货汽车的10%左右,市场空间不大,如果考虑轿车进人家庭的影响,今后的大型客车市场将逐步下降;因此,各企业发展战略的重点都放在重卡车桥上。
客车车桥产品可以保留,用以满足客车生产的需要。
2021年及以后的几年内,重型汽车所需桥总成将会形成以下产品格局:公路运输以10t及以上单级减速驱动桥、承载轴为主,工程、港
口等用车以10t级以上双级减速驱动桥为主。
公路运输车辆向大吨位、多轴化、大功率方向发展,使得驱动桥总成也向传动效率高的单级减速方向发展。
有关专家预测,未来我国的重型车桥产品中75%的驱动桥将是单级驱动桥。
而作为双级减速的STR驱动桥将会继续巩固工程车辆市场。
■。