反比例函数知识导图
- 格式:ppt
- 大小:224.00 KB
- 文档页数:3
初中数学《反比例函数》单元教学设计以及思维导图适用年级九年级所需时间共5课时,其中课内共用4课时(每周5课时),课外1课时。
主题单元学习概述反比例函数是北师大版九年级上册第五章的内容,它是学生在八年级学习了一次函数后以及将要在九年级下学期学习三角函数和二次函数之前安排的,具有承上启下的地位和作用。
本单元包括四部分内容,分别是反比例函数的意义、性质和应用以及课题学习。
本单元的学习重点是:反比例函数的意义,反比例函数的图像及增减性和对称性,利用反比例函数解决实际问题。
本单元的学习难点是:反比例函数解析式的确定,反比例函数增减性的理解及运用,如何把一个实际问题抽象成数学问题并加以解决,课题学习--猜想、证明与拓广。
本单元的教材划分还是很科学的,先理解反比例函数的意义,然后综合运用函数的三种研究方法(解析法、表格法、图像法)探索反比例函数的性质,最后学以致用,运用函数知识解决现实生活中的实际问题,特别的是课题学习更是体现了数学来源于生活又服务于生活的特点。
主要学习方式:自主、合作、探究预期学习成果:学生能够理解反比例函数的意义和性质并能利用相关知识解决现实生活中的实际问题。
主题单元规划思维导图主题单元学习目标知识与技能:能正确区分正比例函数、一次函数和反比例函数;求反比例函数解析式;会用描点法画出反比例函数的图象,提高画图能力;逐步提高从函数图象中获取信息的能力;能灵活运用正比例函数、一次函数和反比例函数知识剖析实际问题,体会函数模型的重要性过程与方法:经历抽象反比例函数的过程,体会反比例函数的意义;经历比较与探索能发现反比例函数的性质并能应用性质解决相关问题提高探索能力和解决问题能力;经历分析实际问题中变量之间的关系,建立反比例函数模型,从而明白解决问题的过程。
情感态度与价值观:从具体情境和已有经验出发讨论两个变量之间的依存关系,加深对函数意义的理解;提高处理较复杂问题的耐心和能力;进一步体会方程与函数的关系,能充分利用函数的图象和性质进行观察、比较、计算、归纳,从而解决有关的函数问题。
1.反比例函数定义 【例1】如果函数222-+=k k kx y 的图像是双曲线.且在第二.四象限内.那么K 的值是多少?函数的解析式?思维导图练习1当k 为何值时22(1)k y k x -=-是反比例函数?练习2.已知y=(a ﹣1)是反比例函数.则a= . 练习3.如果函数y=(k+1)是反比例函数.那么k= .练习4.如果函数y=x 2m ﹣1为反比例函数.则m 的值是2. 增减性问题【例2】在反比例函数xy 1-=的图像上有三点(1x .)1y .(2x .)2y .(3x .)3y 。
若3210x x x >>>则下列各式正确的是( )A .213y y y >>B .123y y y >>C .321y y y >>D .231y y y >>思维导图练习1.若A (-).B (-).C (-)三点都在函数y =-x1的图象上.则的大小关系是( ). A.y 1>y 2>y 3 <y 2<y 3 =y 2=y 3 <y 3<y 2K=-1<0Y 1>y 2<0 Y 3>0函数在二四象限且递曾X 1>X 2>0 X 3<0213y y y >>双曲线K ≠0 2K 2+K-2=-1二,四象限K<0K=-1练习2.已知反比例函数y =x m21-的图象上有A ()、B ()两点.当x 1<x 2<0时.y 1<y 2.则m 的取值范围是( ).A. m <0 >0 <21>3、交点问题【例3】如果一次函数()的图像与反比例函数xmn y m n mx y -=≠+=30相交于点(221,).那么该直线与双曲线的另一个交点为( )思维导图练习1.若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点.且有一个交点的纵坐标为6.则b =____ 4、反比例函数解析式【例4】已知12y y y =+.1y 与x 成正比例.2y 与x 成反比例.且当x =1时.y =7;当x =2时.y =8.(1) y 与x 之间的函数关系式; 思维导图练习1 正比例函数y=2x 与双曲线的一个交点坐标为A ().求反比例函数关系式。
第六章反比例函数知识归纳与题型突破(十类题型清单)01思维导图02知识速记一、反比例函数的概念一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线;②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=,当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图像直线有两个分支组成的曲线(双曲线)位置0k >,一、三象限;0k <,二、四象限0k >,一、三象限0k <,二、四象限增减性0k >,y 随x 的增大而增大0k <,y 随x 的增大而减小0k >,在每个象限,y 随x 的增大而减小0k <,在每个象限,y 随x 的增大而增大(4)反比例函数y=中k 的意义①过双曲线xky =(k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .②过双曲线x ky =(k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.03题型归纳题型一反比例函数的概念及应用例题1.下列函数中,y 是x 的反比例函数的是()A .3x y =B .321y x =+C .k y x=D .134y x -=巩固训练2.下列问题中的两个变量是成反比例的是()A .被除数(不为零)一定,除数与商B .货物的单价一定,货物的总价与货物的数量C .等腰三角形的周长一定,它的腰长与底边的长D .汽车所行的速度一定,它所行驶的路程与时间3.下列函数表达式中,表示y 是x 的反比例函数的有()(1)4x y =;(2)34y x=;(3)3xy -=;(4)1y 3x -=-;(5)21y x =+;(6)52y x =+A .1个B .2个C .3个D .4个4.下列各点在反比例函数2y x=图象上的是()A .()1,2-B .()2,1-C .()1,3D .()1,2--5.已知关于x 的反比例函数()32m y m x -=-,则m 的值为.6.如果2212n n n n y x+++=是反比例函数,那么n 的值是.题型二反比例函数的图像与性质例题7.关于反比例函数6y x=,下列说法不正确..的是()A .函数图像分别位于第一、三象限B .函数图像经过点()3,2--C .函数图像过()()23A m B n -,、,,则m n >D .函数图像关于原点成中心对称巩固训练8.如图是三个反比例函数11k y x=,22ky x =,33k y x =在x 轴上方的图象,则1k ,2k ,3k 的大小关系为()A .123k k k >>B .231k k k >>C .132k k k >>D .312k k k >>9.关于反比例函数4y x=-,下列说法正确的是()A .函数图像经过点()2,2B .函数图像位于第一、三象限C .函数值y 随着x 的增大而增大D .当1x >时,4y >-10.若点()11,A y -,()22,B y ,()33,C y 是反比例函数2y x=-图像上的三个点,则下列结论正确的是()A .132y y y >>B .321y y y >>C .213y y y >>D .312y y y >>题型三根据图像或性质求参数范围例题11.反比例函数2y x=的图象上有一点(),P m n ,当1n ≥-,则m 的取值范围是.巩固训练12.若反比例函数13ky x-=的图象不经过第一象限,则k 的取值范围是.13.在平面直角坐标系xOy 中,对于每一象限内的反比例函数3m y x+=图像,y 的值都随x 值的增大而增大,则m 的取值范围是.14.若反比例函数2221(21)kk y k x --=-的图象位于第二、四象限,则k 的值()A .0B .0或1C .0或2D .4题型四参数范围、图像与性质的相互判断例题15.在同一坐标系中,函数ky x=和2y kx =-+的图像大致是()A .B .C .D .巩固训练16.一次函数=−1与反比例函数()0ky k x=≠在同一直角坐标系中的图象可能是()A .B .C .D .17.已知反比例函数21k y x+=,则下列说法正确的是()A .函数图像分布在第二、四象限B .y 随x 的增大而减小C .如果两点()11,y -,()22,y 都在图像上,则12y y >D .图像关于原点中心对称18.在函数21m y x+=-(m 为常数)的图象上有三个点1(1)y -,,2(2)y -,,3(3)y ,,则函数值123、、y y y 的大小关系是().A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<题型五反比例函数与方程、不等式例题19.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)的图象与反比例函数my x=(m 为常数,且0m ≠)的图象交于A 、B 两点.则关于x 的方程mkx b x+=的解为.巩固训练20.如图,已知一次函数=B +与反比例函数.ky x=的图象交于()()3,11,3A B --,两点.观察图象可知,不等式kmx n x+>的解集是.21.已知一次函数2y x =-+与反比例函数ky x=在同一坐标系内的图象没有交点,则k 的取值范围为.题型六k 的几何意义例题22.如图,过双曲线上任意一点P 分别作x 轴,y 轴的垂线PM ,PN ,交x 轴、y 轴于点M 、N ,所得矩形PMON 的面积为8,则k 的值是()A .4B .4-C .8D .8-巩固训练23.如图,反比例函数()40y x x-=>的图像上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,则PAB 的面积为()A .1B .2C .4D .824.如图,在平面直角坐标系中,AOC △的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0k y x x=>的图象经过B ,C 两点.若AOC △的面积是6,则k 的值为.25.函数1(0)y x x =>与8(0)y x x=>的图象如图所示,点C 是y 轴上的任意一点.直线AB 平行于y 轴,分别与两个函数图象交于点A 、B ,连接AC BC 、.当AB 从左向右平移时,ABC V 的面积是.26.如图,点A B ,是反比例函数()0ky x x=>图像上的点,点,C D 分别在x 轴,y 轴正半轴上.若四边形ABCD 为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值()A .3B .6C .12D .24题型七反比例函数的代数应用例题27.已知点1()2P a b -,与点2)1(2Pa b +-,在反比例函数()0ky k x=≠的图象上,()A .若0k >,则202a b ><<,B .若0k >,则12a b <->,C .若0k <,则22a b <>,D .若0k <,则1202a b -<<<<,巩固训练28.已知点()11,A x y ,()22,B x y ,()33,C x y 在反比例函数()0ky k x=>的图象上,123x x x <<,则下列结论一定成立的是()A .若130x x <,则23y y <B .若230x x <,则130y y >C .若130x x >,则23y y >D .若230x x >,则130y y >题型八反比例函数的实际应用例题29.验光师检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了()度.A .150B .200C .250D .300巩固训练30.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度()m/s v 是载重后总质量(kg)m 的反比例函数.已知一款机器狗载重后总质量60kg m =时,它的最快移动速度6m/s v =;当其载重后总质量90kg m =时,它的最快移动速度=v m/s .31.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强p (kPa )是气体体积V (ml )的反比例函数,其图像如图所示.则下列说法中错误的是()A .这一函数的表达式为6000p V=B .当气体体积为40ml 时,气体的压强值为150kPaC .当温度不变时,注射器里气体的压强随着气体体积增大而减小D .若注射器内气体的压强不能超过400kPa ,则其体积V 不能超过15ml 题型九最值问题、其他问题例题32.已知函数1k y x =,()20ky k x=->,当13x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则a 的值为.巩固训练33.反比例函数1k y x =,()220ky k x =-≠,当a x b ≤≤(b ,a 为常数,且0b a >>)时,1y 的最小值为m ,2y 的最大值为n ,则mn的值为()A .2-B .12-C .12-或2-D .2b a-34.在同一坐标系中,若正比例函数1y k x =与反比例函数2k y x=的图象没有交点,则1k 与2k 的关系,下面四种表述:①120k k +≤;②120k k <;③1212||k k k k +<-;④121k k k +<或122k k k +<.正确的有()A .4个B .3个C .2个D .1个题型十解答综合题例题35.已知y 与2x +成反比例,且当5x =时,y =-6,求:(1)y 与x 之间的函数关系式;(2)当5y =时,x 的值.巩固训练36.如图,函数()120y x x =≥与2(0)ay x x=>的图象交于点()1,A b ,直线2x =与函数12,y y 的图象分别交于B ,C 两点.(1)求a 和b 的值;(2)求BC 的长度;(3)根据图象写出120y y >>时x 的取值范围(不需说明理由).37.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时,气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时,它的压强是多少?(2)当气球内气体的压强大于150kPa 时,气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?38.如图,已知()4,A n -,()2,4B -是反比例函数ky x=的图象和一次函数y ax b =+的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出不等式0k ax b x+-<的解集.39.已知一次函数y ax b =+与反比例函数y =kx的图象交于()()3,2,6A n B --,两点.(1)①求一次函数和反比例函数的表达式;②求AOB 的面积.(2)在x 轴的负半轴上,是否存在点P ,使得PAO 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.40.已知:如图,直线4y kx =+与函数()0,0my x m x=>>的图像交于A ,B 两点,且与x ,y 轴分别交于C ,D 两点.(1)若直线4y kx =+与直线2y x =--平行,且AOD △面积为2,求m 的值;(2)若COD △的面积是AOB V倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.①求:AH OD 的值;②求k 与m 之间的函数关系式.(3)若点P 坐标为2,0,在(2)的条件下,是否存在k ,m ,使得APB △为直角三角形,且90APB ∠=︒,若存在,求出k ,m 的值;若不存在,请说明理由.第六章反比例函数知识归纳与题型突破(十类题型清单)01思维导图02知识速记一、反比例函数的概念一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.三、反比例函数的图象和性质1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.要点:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线;②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=,当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较正比例函数反比例函数解析式图像直线有两个分支组成的曲线(双曲线)位置0k >,一、三象限;0k <,二、四象限0k >,一、三象限0k <,二、四象限增减性0k >,y 随x 的增大而增大0k <,y 随x 的增大而减小0k >,在每个象限,y 随x 的增大而减小0k <,在每个象限,y 随x 的增大而增大(4)反比例函数y=中k 的意义①过双曲线xky =(k ≠0)上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k .②过双曲线x ky =(k ≠0)上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围.03题型归纳题型一反比例函数的概念及应用例题1.下列函数中,y 是x 的反比例函数的是()A .3x y =B .321y x =C .k y x=D .134y x -=2.下列问题中的两个变量是成反比例的是()A .被除数(不为零)一定,除数与商B .货物的单价一定,货物的总价与货物的数量C .等腰三角形的周长一定,它的腰长与底边的长D .汽车所行的速度一定,它所行驶的路程与时间D .汽车所行的速度一定,它所行驶的路程与时间是正比例函数的关系,故此选项不符合题意.故选:A .【点睛】本题考查反比例函数,正确区分正比例函数与反比例函数是解题关键.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系.3.下列函数表达式中,表示y 是x 的反比例函数的有()(1)4x y =;(2)34y x=;(3)3xy -=;(4)1y 3x -=-;(5)21y x =+;(6)52y x =+A .1个B .2个C .3个D .4个4.下列各点在反比例函数y x=图象上的是()A .()1,2-B .()2,1-C .()1,3D .()1,2--5.已知关于x 的反比例函数()32m y m x -=-,则m 的值为.6.如果2212nn n n y +++=是反比例函数,那么n 的值是.例题7.关于反比例函数6y x=,下列说法不正确..的是()A .函数图像分别位于第一、三象限B .函数图像经过点()3,2--C .函数图像过()()23A m B n -,、,,则m n >D .函数图像关于原点成中心对称8.如图是三个反比例函数11k y x=,22ky x =,33k y x =在x 轴上方的图象,则1k ,2k ,3k 的大小关系为()A .123k k k >>B .231k k k >>C .132k k k >>D .312k k k >>【答案】C9.关于反比例函数y x=-,下列说法正确的是()A .函数图像经过点()2,2B .函数图像位于第一、三象限C .函数值y 随着x 的增大而增大D .当1x >时,4y >-【答案】D【分析】根据反比例函数的图象及其性质即可求解.【解析】A 、点()2,2不在它的图象上,不符合题意;B 、它的图象在第二、四象限,不符合题意;C 、在每个象限内,y 随x 的增大而增大,不符合题意;D 、当1x >时,4y >-,正确,符合题意;故选:D .【点睛】此题考查了反比函数的性质,正确掌握反比例函数的性质是解题的关键.10.若点()11,A y -,()22,B y ,()33,C y 是反比例函数2y x=-图像上的三个点,则下列结论正确的是()A .132y y y >>B .321y y y >>C .213y y y >>D .312y y y >>【答案】A【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,结合反比例函数的增减性,进而判断在同一象限内的点B 和点C 的纵坐标例题11.反比例函数2y x =的图象上有一点(),P m n ,当1n ≥-,则m 的取值范围是.12.若反比例函数13k y x -=的图象不经过第一象限,则k 的取值范围是.13.在平面直角坐标系xOy 中,对于每一象限内的反比例函数y x +=图像,y 的值都随x 值的增大而增大,则m 的取值范围是.14.若反比例函数2221(21)kk y k x --=-的图象位于第二、四象限,则k 的值()A .0B .0或1C .0或2D .4故选:A .题型四参数范围、图像与性质的相互判断例题15.在同一坐标系中,函数k y x =和2y kx =-+的图像大致是()A .B .C .D .16.一次函数=−1与反比例函数()0k y k x=≠在同一直角坐标系中的图象可能是()A .B .C .D .17.已知反比例函数1k y x+=,则下列说法正确的是()A .函数图像分布在第二、四象限B .y 随x 的增大而减小C .如果两点()11,y -,()22,y 都在图像上,则12y y >D .图像关于原点中心对称18.在函数y x+=-(m 为常数)的图象上有三个点1(1)y -,,2(2)y -,,3(3)y ,,则函数值123、、y y y 的大小关系是().A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<例题19.如图,一次函数y kx b =+(k 、b 为常数,且0k ≠)的图象与反比例函数m y x =(m 为常数,且0m ≠)的图象交于A 、B 两点.则关于x 的方程m kx b x +=的解为.【答案】1-和2【分析】本题考查了反比例函数和一次函数的图像和性质,熟练掌握反比例函数和一次函数的图像和性质是解题的关键;根据反比例函数和一次函数的图像和性质求解即可;【解析】解:观察函数图象可知:点A 的横坐标为1-,点B 的横坐标为2,20.如图,已知一次函数=B +与反比例函数.k y x =的图象交于()()3,11,3A B --,两点.观察图象可知,不等式k mx n x +>的解集是.21.已知一次函数2y x =-+与反比例函数k y x =在同一坐标系内的图象没有交点,则k 的取值范围为.解得:1k >.故答案为:1k >.题型六k 的几何意义例题22.如图,过双曲线上任意一点P 分别作x 轴,y 轴的垂线PM ,PN ,交x 轴、y 轴于点M 、N ,所得矩形PMON 的面积为8,则k 的值是()A .4B .4-C .8D .8-23.如图,反比例函数()40y x x-=>的图像上有一点P ,PA x ⊥轴于点A ,点B 在y 轴上,则PAB 的面积为()A .1B .2C .4D .8【答案】B 【分析】本题考查反比例函数系数k 的几何意义,掌握过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于k ,并根据面积关系得出方程是解题的关键.设s ,则4xy =-,再由三角形的面积公式即可得出结论.【解析】解:设s ,∵点P 在反比例函数()40y x x-=>的图象上,∴4xy =-.∵PA x ⊥轴,∴11142222PAB S PA OA xy =⨯⨯==⨯= .故选:B .24.如图,在平面直角坐标系中,AOC △的边OA 在y 轴上,点C 在第一象限内,点B 为AC 的中点,反比例函数()0ky x x =>的图象经过B ,C 两点.若AOC △的面积是6,则k 的值为.【答案】4【分析】过B ,C 两点分别作y 轴的垂线,垂足分别为D ,E ,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,由点B 为AC 的中点,推出C 点坐标为22k m m ⎛⎫ ⎪⎝⎭,,求得直线BC 的解析式,得到A 点坐标,根据AOC △的面积是6,列式计算即可求解.∴BD CE ∥,∴ABD ACE ∽,∴BD AB CE AC=,设B 点坐标为k m m ⎛⎫ ⎪⎝⎭,,则BD m =,∵点B 为AC 的中点,25.函数1(0)y x x =>与8(0)y x x=>的图象如图所示,点C 是y 轴上的任意一点.直线AB 平行于y 轴,分别与两个函数图象交于点A 、B ,连接AC BC 、.当AB 从左向右平移时,ABC V 的面积是.【点睛】此题考查了反比例函数的OP BP AP 、、的长度,难度一般.26.如图,点A B ,是反比例函数()0ky x x=>图像上的点,点,C D 分别在x 轴,y 轴正半轴上.若四边形ABCD为菱形,BD x ∥轴,6ABCD S =菱形,则k 的值()A .3B .6C .12D .24AC BD ∴⊥,OA OC =,6ABCD S = 菱形,∴11222AC BD OC BD ⨯⨯=⨯⨯=6OC BD ∴⨯=,BD x ∥轴,BE x ⊥轴,题型七反比例函数的代数应用例题27.已知点1()2P a b -,与点2)1(2Pa b +-,在反比例函数()0ky k x=≠的图象上,()A .若0k >,则202a b ><<,B .若0k >,则12a b <->,C .若0k <,则22a b <>,D .若0k <,则1202a b -<<<<,∴020b b >⎧⎨-<⎩,∴02<<b ,故选项D 正确.故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数的性质是解题的关键.巩固训练28.已知点()11,A x y ,()22,B x y ,()33,C x y 在反比例函数()0ky k x=>的图象上,123x x x <<,则下列结论一定成立的是()A .若130x x <,则23y y <B .若230x x <,则130y y >C .若130x x >,则23y y >D .若230x x >,则130y y >故选C .【点睛】本题考查了反比例函数的性质,解题关键是掌握当比例系数0k >时,函数图象在第一、三象限内,且在每个象限内,y 随x 的增大而减小;当比例系数0k <时,函数图象在第二、四象限内,且在每个象限内,y 随x 的增大而增大.题型八反比例函数的实际应用例题29.验光师检测发现近视眼镜的度数y (度)与镜片焦距x (米)成反比例,y 关于x 的函数图象如图所示.经过一段时间的矫正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了()度.A .150B .200C .250D .30030.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度()m/s v 是载重后总质量(kg)m 的反比例函数.已知一款机器狗载重后总质量60kg m =时,它的最快移动速度6m/s v =;当其载重后总质量90kg m =时,它的最快移动速度=v m/s .31.为检测某品牌一次性注射器的质量,将注射器里充满一定量的气体,当温度不变时,注射器里的气体的压强p (kPa )是气体体积V (ml )的反比例函数,其图像如图所示.则下列说法中错误的是()A .这一函数的表达式为6000p V=B .当气体体积为40ml 时,气体的压强值为150kPaC .当温度不变时,注射器里气体的压强随着气体体积增大而减小D .若注射器内气体的压强不能超过400kPa ,则其体积V 不能超过15ml 【答案】D例题32.已知函数1k y x =,()20ky k x=->,当13x ≤≤时,函数1y 的最大值为a ,函数2y 的最小值为4a -,则a 的值为.33.反比例函数1k y x =,()220ky k x=-≠,当a x b ≤≤(b ,a 为常数,且0b a >>)时,1y 的最小值为m ,2y 的最大值为n ,则mn的值为()A .2-B .12-C .12-或2-D .2b a-34.在同一坐标系中,若正比例函数1y k x =与反比例函数2y x=的图象没有交点,则1k 与2k 的关系,下面四种表述:①120k k +≤;②120k k <;③1212||k k k k +<-;④121k k k +<或122k k k +<.正确的有()A .4个B .3个C .2个D .1个【答案】B【分析】根据题意得出1k 和2k 异号,再分别判断各项即可.例题35.已知y与2x=时,y=-6,求:x+成反比例,且当5(1)y与x之间的函数关系式;y=时,x的值.(2)当536.如图,函数()120y x x =≥与2(0)ay x x=>的图象交于点()1,A b ,直线2x =与函数12,y y 的图象分别交于B ,C 两点.(1)求a 和b 的值;(2)求BC 的长度;(3)根据图象写出120y y >>时x 的取值范围(不需说明理由).当2x =时,21,y =∴点C 的纵坐标为1.413BC ∴=-=.(3)解:当120y y >>时x 的取值范围是1x >.37.某气球内充满一定质量的气体,当温度不变时,气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时,气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时,它的压强是多少?(2)当气球内气体的压强大于150kPa 时,气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?38.如图,已知()4,A n -,()2,4B -是反比例函数k y x=的图象和一次函数y ax b =+的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出不等式0k ax b x+-<的解集.39.已知一次函数y ax b =+与反比例函数y =x的图象交于()()3,2,6A n B --,两点.(1)①求一次函数和反比例函数的表达式;②求AOB 的面积.(2)在x 轴的负半轴上,是否存在点P ,使得PAO 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.由022x =--得1x =-;40.已知:如图,直线4y kx =+与函数()0,0m y x m x=>>的图像交于A ,B 两点,且与x ,y 轴分别交于C ,D 两点.(1)若直线4y kx =+与直线2y x =--平行,且AOD △面积为2,求m 的值;(2)若COD △的面积是AOB V倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.①求:AH OD 的值;②求k 与m 之间的函数关系式.(3)若点P 坐标为2,0,在(2)的条件下,是否存在k ,m ,使得APB △为直角三角形,且90APB ∠=︒,若存在,求出k ,m 的值;若不存在,请说明理由.【答案】(1)3m =①设1,1,2,2(其中∵2COD AOB S S = ,∴()2COD AOC BOC S S S =- ,∴111222OC OD OC y ⎛⋅=⋅-若90APB ∠=︒,则90APE BPN ∠+∠=︒,∵90APE PAE ∠+∠=︒,∴EAP BPN ∠=∠,∵90AEP PNB ∠=∠=︒,相似比计算线段的长.。